Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Results
2.1. Efficiency of the Chemical Hybridizing Agent
2.2. Relationship between Seed Set and Both Floral and Flowering Traits
2.3. Hybrid Performance and Heterosis
2.4. Combining Ability
3. Discussion
3.1. CHA Efficiency
3.2. Variation in Cross-Pollination Traits
3.3. Hybrid Performance and Heterosis
3.4. General and Specific Combining Abilities
4. Materials and Methods
4.1. Plant Materials and Field Experiments
4.2. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IISD. SDG Knowledge Hub. 2020. Available online: https://sdg.iisd.org/news/world-population-to-reach-9-9-billion-by-2050/ (accessed on 22 April 2021).
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Joshi, A.K. Hybrid Wheat: Past, Present and Future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef]
- Singh, S.P.; Srivastava, R.; Kumar, J. Male Sterility Systems in Wheat and Opportunities for Hybrid Wheat Development. Acta Physiol. Plant. 2015, 37, 1713. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Mühleisen, J.; Maurer, H.P.; Zhang, H.; Gowda, M.; Reif, J.C. Hybrid Breeding in Autogamous Cereals. Theor. Appl. Genet. 2012, 125, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Whitford, R.; Fleury, D.; Reif, J.C.; Garcia, M.; Okada, T.; Korzun, V.; Langridge, P. Hybrid Breeding in Wheat: Technologies to Improve Hybrid Wheat Seed Production. J. Exp. Bot. 2013, 64, 5411–5428. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Chatrath, R.; Mishra, B. Perspective of Hybrid Wheat Research: A Review. Indian J. Agric. Sci. 2010, 80, 1013–1027. [Google Scholar]
- Longin, C.F.H.; Gowda, M.; Mühleisen, J.; Ebmeyer, E.; Kazman, E.; Schachschneider, R.; Schacht, J.; Kirchhoff, M.; Zhao, Y.; Reif, J.C. Hybrid Wheat: Quantitative Genetic Parameters and Consequences for the Design of Breeding Programs. Theor. Appl. Genet. 2013, 126, 2791–2801. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Melchinger, A.E.; Zhang, P.; Ammar, K.; Flachenecker, C.; Hoisington, D.; Warburton, M.L. Hybrid Performance and Heterosis in Spring Bread Wheat, and Their Relations to SSR-Based Genetic Distances and Coefficients of Parentage. Euphytica 2005, 144, 51–59. [Google Scholar] [CrossRef]
- Selva, C.; Riboni, M.; Baumann, U.; Würschum, T.; Whitford, R.; Tucker, M.R. Hybrid Breeding in Wheat: How Shaping Floral Biology Can Offer New Perspectives. Funct. Plant Biol. 2020, 47, 675–694. [Google Scholar] [CrossRef] [PubMed]
- Würschum, T.; Leiser, W.L.; Weissmann, S.; Maurer, H.P. Genetic Architecture of Male Fertility Restoration of Triticum timopheevii Cytoplasm and Fine-Mapping of the Major Restorer Locus Rf3 on Chromosome 1B. Theor. Appl. Genet. 2017, 130, 1253–1266. [Google Scholar] [CrossRef]
- Tucker, E.J.; Baumann, U.; Kouidri, A.; Suchecki, R.; Baes, M.; Garcia, M.; Okada, T.; Dong, C.; Wu, Y.; Sandhu, A.; et al. Molecular Identification of the Wheat Male Fertility Gene Ms1 and Its Prospects for Hybrid Breeding. Nat. Commun. 2017, 8, 869. [Google Scholar] [CrossRef] [PubMed]
- Kempe, K.; Rubtsova, M.; Gils, M. Split-Gene System for Hybrid Wheat Seed Production. Proc. Natl. Acad. Sci. USA 2014, 111, 9097–9102. [Google Scholar] [CrossRef]
- Adhikari, A.; Ibrahim, A.M.H.; Rudd, J.C.; Baenziger, P.S.; Sarazin, J. Estimation of Heterosis and Combining Abilities of U.S. Winter Wheat Germplasm for Hybrid Development in Texas. Crop Sci. 2020, 60, 788–803. [Google Scholar] [CrossRef]
- de Vries, A.P. Flowering Biology of Wheat, Particularly in View of Hybrid Seed Production—A Review. Euphytica 1971, 20, 152–170. [Google Scholar] [CrossRef]
- D’Souza, L. Studies on the Suitability of Wheat as Pollen Donor for Cross Pollination, Compared with Rye, Triticale and Secalotricum. Z. Fur Pflanzenzucht. 1970, 63, 246–269. [Google Scholar]
- Langer, S.M.; Longin, C.F.H.; Würschum, T. Phenotypic Evaluation of Floral and Flowering Traits with Relevance for Hybrid Breeding in Wheat (Triticum aestivum L.). Plant Breed. 2014, 133, 433–441. [Google Scholar] [CrossRef]
- Boeven, P.H.G.; Würschum, T.; Rudloff, J.; Ebmeyer, E.; Longin, C.F.H. Hybrid Seed Set in Wheat Is a Complex Trait but Can Be Improved Indirectly by Selection for Male Floral Traits. Euphytica 2018, 214, 110. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Pillen, K.; Plieske, J.; Ganal, M.W.; Röder, M.S. Genetic and Physical Mapping of Anther Extrusion in Elite European Winter Wheat. PLoS ONE 2017, 12, e0187744. [Google Scholar] [CrossRef] [PubMed]
- El Hanafi, S.; Bendaou, N.; Kehel, Z.; Sanchez-Garcia, M.; Tadesse, W. Phenotypic Evaluation of Elite Spring Bread Wheat Genotypes for Hybrid Potential Traits. Euphytica 2020, 216, 168. [Google Scholar] [CrossRef]
- Song, X.; Feng, J.; Cui, Z.; Zhang, C.; Sun, D. Genome-Wide Association Study for Anther Length in Some Elite Bread Wheat Germplasm. Czech J. Genet. Plant Breed. 2018, 54, 109–114. [Google Scholar] [CrossRef]
- Boeven, P.H.G.; Longin, C.F.H.; Leiser, W.L.; Kollers, S.; Ebmeyer, E.; Würschum, T. Genetic Architecture of Male Floral Traits Required for Hybrid Wheat Breeding. Theor. Appl. Genet. 2016, 129, 2343–2357. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Lohwasser, U.; Nagel, M.; Börner, A.; Pillen, K.; Röder, M.S. Genome-Wide Association Mapping of Anther Extrusion in Hexaploid Spring Wheat. PLoS ONE 2016, 11, e0155494. [Google Scholar] [CrossRef]
- Adhikari, A.; Basnet, B.R.; Crossa, J.; Dreisigacker, S.; Camarillo, F.; Bhati, P.K.; Jarquin, D.; Manes, Y.; Ibrahim, A.M.H. Genome-Wide Association Mapping and Genomic Prediction of Anther Extrusion in CIMMYT Hybrid Wheat Breeding Program via Modeling Pedigree, Genomic Relationship, and Interaction With the Environment. Front. Genet. 2020, 11, 586687. [Google Scholar] [CrossRef]
- van Ginkel, M.; Ortiz, R. Cross the Best with the Best, and Select the Best: HELP in Breeding Selfing Crops. Crop Sci. 2018, 58, 17–30. [Google Scholar] [CrossRef]
- Singh, F.; Singh, R.K.; Singh, V.P. Combining Ability Studies in Pearl Millet (Pennisetum typhoides (Burm.) S.& H.). Theor. Appl. Genet. Int. J. Plant Breed. Res. 1974, 44, 106–110. [Google Scholar] [CrossRef]
- Comstock, R.E.; Robinson, H.F.; Harvey, P.H. A Breeding Procedure Designed To Make Maximum Use of Both General and Specific Combining Ability. Agron. J. 1949, 41, 360–367. [Google Scholar] [CrossRef]
- Ahangar, L.; Ranjbar, G.A.; Nouroozi, M. Estimation of Combining Ability for Yield and Yield Components in Rice (Oryza sativa L.) Cultivars Using Diallel Cross. Pak. J. Biol. Sci. 2008, 11, 1278–1281. [Google Scholar] [CrossRef]
- Sprague, G.F.; Tatum, L.A. General vs. Specific Combining Ability in Single Crosses of Corn 1. Agron. J. 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Kumari, J.; Dikshit, H.K.; Singh, B.; Singh, D. Combining Ability and Character Association of Agronomic and Biochemical Traits in Pea (Pisum sativum L.). Sci. Hortic. 2015, 181, 26–33. [Google Scholar] [CrossRef]
- Comstock, R.E.; Robinson, H.F. The Components of Genetic Variance in Populations of Biparental Progenies and Their Use in Estimating the Average Degree of Dominance. Biometrics 1948, 4, 254. [Google Scholar] [CrossRef] [PubMed]
- Cabral Mendes, U.; Branco De Miranda Filho, J.; Oliveira, S.; Fialho, E.; Reis, D. Heterosis and Combining Ability in Crosses between Two Groups of Open-Pollinated Maize Populations. Crop Breed. Appl. Biotechnol. 2015, 15, 235–243. [Google Scholar] [CrossRef]
- El Hanafi, S.; Cherkaoui, S.; Kehel, Z.; Al-Abdallat, A.; Tadesse, W. Genome-Wide Association and Prediction of Male and Female Floral Hybrid Potential Traits in Elite Spring Bread Wheat Genotypes. Plants 2021, 10, 895. [Google Scholar] [CrossRef]
- Gillberg, J.; Marttinen, P.; Mamitsuka, H.; Kaski, S. Modelling G3E with Historical Weather Information Improves Genomic Prediction in New Environments. Bioinformatics 2019, 35, 4045–4052. [Google Scholar] [CrossRef]
- Joppa, L.R.; McNeal, F.H.; Berg, M.A. Pollen Production and Pollen Shedding of Hard Red Spring (Triticum aestivum L. Em Thell.) and Durum (T. durum Desf.) Wheats. Crop Sci. 1968, 8, 487–490. [Google Scholar] [CrossRef]
- Easterly, A.C.; Garst, N.; Belamkar, V.; Ibrahim, A.M.H.; Rudd, J.C.; Sarazin, J.; Baenziger, P.S. Evaluation of Hybrid Wheat Yield in Nebraska. Crop Sci. 2020, 60, 1210–1222. [Google Scholar] [CrossRef]
- Kumar, A.; Chhaya, R.; Singh, V.P.; Singh, L. Exploitation of Heterosis for Grain Yield and Quality Traits in Wheat. J. Pharmacogn. Phytochem. 2020, 9, 1465–1468. [Google Scholar]
- Akel, W.; Rapp, M.; Thorwarth, P.; Würschum, T.; Longin, C.F.H. Hybrid Durum Wheat: Heterosis of Grain Yield and Quality Traits and Genetic Architecture of Anther Extrusion. Theor. Appl. Genet. 2019, 132, 921–932. [Google Scholar] [CrossRef]
- Li, Y.; Peng, J.; Liu, Z. Heterosis and combining ability for plant height and its components in hybrid wheat with Triticum timopheevi cytoplasm. Euphytica 1997, 95, 337–345. [Google Scholar] [CrossRef]
- Morgan, C.L.; Austin, R.B.; Ford, M.A.; Bingham, J.; Angus, W.J.; Chowdhury, A. An Evaluation of F1 Hybrid Winter Wheat Genotypes Produced Using a Chemical Hybridizing Agent. J. Agric. Sci. 1989, 112, 143. [Google Scholar] [CrossRef]
- Kindred, D.R.; Gooding, M.J. Heterosis for Yield and Its Physiological Determinants in Wheat. Euphytica 2005, 142, 149–159. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, V.K.; Vyas, R.P.; Singh, V. Heterosis and Combining Ability Analysis in Bread Wheat (Triticum aestivum L.). J. Plant Breed. Crop Sci. 2011, 3, 209–217. [Google Scholar]
- Singh, H.; Sharma, S.N.; Sain, R.S. Heterosis Studies for Yield and Its Components in Bread Wheat over Environments. Hereditas 2004, 141, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Marker, S.; Dayal, A.; Lal, G.M. Study of Heterosis for Grain Yield and Its Components in Wheat (Triticum aestivum) over Normal and Heat Stress Condition. J. Pharmacogn. Phytochem. 2017, 6, 824–830. [Google Scholar]
- Virmani, S.S.; Edwards, I.B. Current Status and Future Prospects for Breeding Hybrid Rice and Wheat. Adv. Agron. 1983, 36, 145–214. [Google Scholar] [CrossRef]
- Engledow, F.L.; Pal, B.P. Investigations on Yield in Cereals: VIII. Hybrid Vigour in Wheat. J. Agric. Sci. 1934, 24, 390–409. [Google Scholar] [CrossRef]
- Briggle, L.W. Heterosis in Wheat—A Review. Crop Sci. 1963, 3, 407–412. [Google Scholar] [CrossRef]
- Borghi, B.; Perenzin, M. Diallel Analysis to Predict Heterosis and Combining Ability for Grain Yield, Yield Components and Bread-Making Quality in Bread Wheat (T. aestivum). Theor. Appl. Genet. 1994, 89, 975–981. [Google Scholar] [CrossRef]
- Borghi, B.; Perenzin, M. Yield and yield stability of conventional varieties and F1 bread wheat hybrids. J Genet Breed 1990, 44, 307–310. [Google Scholar]
- Mühleisen, J.; Piepho, H.P.; Maurer, H.P.; Longin, C.F.H.; Reif, J.C. Yield Stability of Hybrids versus Lines in Wheat, Barley, and Triticale. Theor. Appl. Genet. 2014, 127, 309–316. [Google Scholar] [CrossRef]
- Kant, L.; Mahajan, V.; Gupta, H.S. Mid-parent advantage and heterobeltiosis in F1 hybrids from crosses of winter and spring wheat. Sabrao J. Breed. Genet. 2011, 43, 2. [Google Scholar]
- Longin, C.F.H.; Mi, X.; Würschum, T. Genomic Selection in Wheat: Optimum Allocation of Test Resources and Comparison of Breeding Strategies for Line and Hybrid Breeding. Theor. Appl. Genet. 2015, 128, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Gowda, M.; Longin, C.F.H.; Lein, V.; Reif, J.C. Relevance of Specific versus General Combining Ability in Winter Wheat. Crop Sci. 2012, 52, 2494–2500. [Google Scholar] [CrossRef]
- Nie, Y.; Ji, W.; Ma, S. Assessment of Heterosis Based on Genetic Distance Estimated Using SNP in Common Wheat. Agronomy 2019, 9, 66. [Google Scholar] [CrossRef]
- Pickett, A.A.; Galwey, N.A. Further Evaluation of Hybrid Wheat. Plant Var. Seeds 1997, 10, 13–32. [Google Scholar]
- Angus, W.J. Hybrid wheat—A dream or reality? Asp. Appl. Biol. 1997, 50, 15–22. [Google Scholar]
- Rashid, K.; Sadaqat, H.A.; Khan, A.S.; Ahmed, N. Combining ability analysis of physio-morphic parameters of spring wheat (Triticum aestivum L.) under water deficit conditions. J. Agric. Res. 2019, 57, 2. [Google Scholar]
- Beck, D.L.; Vasal, S.K.; Crossa, J. Heterosis and combining ability of CIMMYT’s tropical early and intermediate maturity maize (Zea mays L.) germplasm. Maydica 1990, 35, 279–285. [Google Scholar]
- Eugenio Gomes Gama, E.; Roy Hallaue, A.; Gava Ferrão, R.; Martins Barbosa, D. Heterosis in maize single crosses derived from a yellow Tuxpeño variety in Brazil. Braz. J. Genet. 1995, 18, 81–85. [Google Scholar]
- Reif, J.; Hallauer, A.; Melchinger, A.E. Heterosis and Heterotic Patterns in Maize. Maydica 2005, 50, 215–223. [Google Scholar]
- Rewale, V.S.; Bendale, V.W.; Bhave, S.; Madav, R.; Jadhav, B. Combining Ability of Yield and Yield Components in Okra. J. Maharashtra Agric. Univ. 2003, 28, 244–246. [Google Scholar]
- El Hanafi, S.; Backhaus, A.; Bendaou, N.; Sanchez-Garcia, M.; Al-Abdallat, A.; Tadesse, W. Genome-Wide Association Study for Adult Plant Resistance to Yellow Rust in Spring Bread Wheat (Triticum aestivum L.). Euphytica 2021, 217, 87. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- ImageJ. Available online: https://imagej.nih.gov/ij/index.html (accessed on 30 March 2021).
- Patterson, H.D.; Thompson, R. Recovery of Inter-Block Information When Block Sizes Are Unequal. Biometrika 1971, 58, 545. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C.; Trudy, F.C. Introduction to Quantitative Genetics, 4th ed.; Longman Group: Harlow, UK, 1996; p. 464. ISBN 978-0-582-24302-6. [Google Scholar]
- Butler, D.; Gilmour, A.R.; Gogel, B.J. Analysis of Mixed Models for S Language Environments: ASReml-R Reference Manual. Available online: https://vsn.klever.co.uk/downloads/asreml/release3/asreml-R.pdf (accessed on 22 October 2020).
- Matzinger, D.F.; Mannand, T.J.; Cockerham, C.C. Diallel cross in Nicotiana tabacum. Crop Sci. 1962, 2, 238–286. [Google Scholar] [CrossRef]
- Fonsecca, S.; Patterson, F.L. Hybrid vigour in seven-parent diallel cross in common wheat (T. aestivum L.). Crop Sci. 1968, 2, 85–88. [Google Scholar] [CrossRef]
Parameter | HD | PLH | SPS | GYS | PSH | VAE | PM | AL | Seed Set (Seed/Spike) |
---|---|---|---|---|---|---|---|---|---|
Min | 99 | 96.5 | 18.3 | 1.336 | 6 | 6 | 26.545 | 3.5 | 24.5 |
Max | 109 | 100 | 21.35 | 2.208 | 9 | 9 | 39.58 | 4.05 | 47.05 |
Mean | 104.38 | 98.19 | 19.61 | 1.82 | 7.65 | 7.73 | 33.42 | 3.81 | 35.68 |
LSD | 3.28 | 3.76 | 0.95 | 0.36 | 0.93 | 1.07 | 4.01 | 0.35 | 7.97 |
σ2g | 6.27 ** | 10.63 ** | 2.22 *** | 0.53 ** | 0.68 *** | 1.04 *** | 21.31 *** | 0.63 * | 19.23 ** |
σ2g×y | 0.93 ** | 2.32 * | 1.15 ** | 0.23 ** | 1.85 *** | 0.36 *** | 14.43 ** | 0.94 * | 23.05 ** |
σ2e | 0.43 | 0.47 | 1.20 | 0.17 | 0.27 | 0.36 | 4.84 | 0.53 | 69.51 |
H2 | 0.55 | 0.74 | 0.54 | 0.48 | 0.93 | 0.92 | 0.94 | 0.56 | 0.63 |
Parameter | DH | PLH | SPS | GSP | PM | PSH | VAE | AL |
---|---|---|---|---|---|---|---|---|
PLH | −0.47 * | |||||||
SPS | 0.11 | 0.63 ** | ||||||
GSP | 0.21 | 0.15 | 0.66 *** | |||||
PM | 0.28 | 0.25 | 0.81 **** | 0.94 **** | ||||
PSH | 0.35 | 0.3 | 0.87 **** | 0.86 **** | 0.96 **** | |||
VAE | 0.32 | 0.25 | 0.82 **** | 0.90 **** | 0.95 **** | 0.95 **** | ||
AL | 0.67 *** | −0.14 | 0.32 | 0.48 * | 0.55 ** | 0.60 ** | 0.55 ** | |
Seed set | 0.18 | 0.29 | 0.79 **** | 0.98 **** | 0.97 **** | 0.91 **** | 0.94 **** | 0.46 * |
Parents/F1 Hybrids | Biomass (t ha−1) | TKW (g) | Yield (t ha−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1Y1 | E1Y2 | E2Y1 | E2Y2 | Overall | E1Y1 | E1Y2 | E2Y1 | E2Y2 | Overall | E1Y1 | E1Y2 | E2Y1 | E2Y2 | Overall | |
Parents | |||||||||||||||
P1 | 10.15 | 11.08 | 6.01 | 5.48 | 8.60 | 36.78 | 40.38 | 30.99 | 27.37 | 36.49 | 4.53 | 5 | 3.29 | 4.10 | 4.25 |
P2 | 9.83 | 9.78 | 5.71 | 4.27 | 7.42 | 37.35 | 43.58 | 30.36 | 25.73 | 34.1 | 4.44 | 4.77 | 3.76 | 3.08 | 4.08 |
P3 | 12.37 | 12.21 | 5.27 | 5.66 | 8.89 | 40.6 | 42.66 | 25.99 | 30.86 | 35 | 4.84 | 4.72 | 2.95 | 3.83 | 3.93 |
P4 | 9.78 | 10.72 | 5.13 | 4.47 | 7.77 | 35.19 | 40.67 | 28.65 | 30.51 | 34.71 | 4.3 | 4.74 | 3.37 | 3.59 | 4.26 |
P5 | 11.28 | 10.22 | 5.04 | 5.26 | 8.04 | 38.22 | 42.15 | 30.54 | 32.87 | 35.72 | 4.63 | 4.66 | 3.58 | 3.82 | 4.19 |
P6 | 11.8 | 8.99 | 5.25 | 4.67 | 7.65 | 38.78 | 37.38 | 34.14 | 28.03 | 34.7 | 4.9 | 4.72 | 3.14 | 3.44 | 4.07 |
P7 | 9.89 | 8.45 | 5.79 | 5.26 | 7.35 | 32.81 | 38.48 | 33.28 | 31.17 | 34.56 | 4.04 | 3.9 | 3.61 | 4.04 | 3.88 |
P8 | 11.56 | 10.63 | 5.17 | 5.39 | 8.22 | 36.43 | 40.7 | 33.45 | 29.73 | 34.83 | 4.81 | 5.17 | 3.58 | 3.78 | 4.39 |
P9 | 9 | 12.06 | 6.39 | 6.17 | 8.95 | 35.64 | 40.39 | 39.66 | 35.82 | 38.77 | 4 | 4.85 | 3.76 | 4.09 | 4.24 |
P10 | 10.21 | 12.01 | 6.24 | 5.59 | 8.97 | 36.85 | 40.71 | 35.46 | 34.34 | 37.62 | 4.56 | 4.73 | 3.61 | 4.16 | 4.25 |
P11 | 10.11 | 9.81 | 6.34 | 4.66 | 7.79 | 36.89 | 41.27 | 34.46 | 35.47 | 36.93 | 4.55 | 4.94 | 3.38 | 3.72 | 4.17 |
P12 | 10.55 | 8.58 | 5.10 | 5.89 | 7.58 | 37.12 | 36.79 | 37.51 | 39.37 | 37.8 | 4.7 | 4.17 | 3.67 | 3.95 | 4.11 |
P13 | 10.11 | 11.63 | 5.56 | 4.48 | 8.01 | 36.3 | 46.01 | 31.26 | 31.65 | 35.97 | 4.39 | 5.09 | 4.01 | 3.77 | 4.32 |
P14 | 9.45 | 11.61 | 5.76 | 5.98 | 8.12 | 33.42 | 42.76 | 34.25 | 32.95 | 35.95 | 3.87 | 4.87 | 3.94 | 4.03 | 3.92 |
P15 | 9.54 | 8.2 | 5.06 | 7.48 | 7.51 | 32.18 | 37.47 | 29.89 | 35.23 | 33.98 | 4.07 | 4.27 | 3.51 | 4.25 | 3.97 |
P16 | 10.09 | 10.48 | 5.26 | 7.41 | 8.32 | 36.41 | 48.29 | 31.95 | 31.82 | 36.99 | 4.35 | 4.24 | 3.9 | 4.12 | 4.14 |
P17 | 11.5 | 11.21 | 6.27 | 6.94 | 9 | 36.1 | 40.16 | 32.49 | 30.47 | 34.53 | 4.54 | 4.93 | 3.11 | 4.39 | 4.23 |
P18 | 11.56 | 10.87 | 5.14 | 6.26 | 8.5 | 37.15 | 40.44 | 31.97 | 35.91 | 36.42 | 4.83 | 4.54 | 3.28 | 4.42 | 4.29 |
F1 hybrids | |||||||||||||||
P1/P2 | 9.15 | 11.59 | 5.31 | 7.33 | 8.35 | 35.42 | 44.20 | 30.51 | 34.39 | 36.13 | 4.38 | 5.00 | 3.24 | 4.21 | 4.21 |
P1/P6 | 10.88 | 10.78 | 6.58 | 5.82 | 8.57 | 41.30 | 45.01 | 34.51 | 35.88 | 38.84 | 4.79 | 4.82 | 3.62 | 4.72 | 4.52 |
P1/P8 | 11.60 | 10.88 | 6.64 | 7.08 | 8.79 | 38.69 | 43.67 | 32.50 | 35.51 | 37.80 | 4.84 | 4.91 | 3.03 | 4.85 | 4.37 |
P1/P18 | 10.15 | 11.15 | 5.41 | 6.54 | 8.32 | 37.07 | 42.73 | 30.74 | 33.62 | 36.11 | 4.51 | 4.82 | 3.80 | 4.49 | 4.38 |
P3/P2 | 9.86 | 9.72 | 5.64 | 7.10 | 8.02 | 35.36 | 42.15 | 28.00 | 35.39 | 36.16 | 3.97 | 4.91 | 3.42 | 3.54 | 4.04 |
P3/P6 | 12.22 | 12.33 | 4.98 | 7.15 | 9.08 | 39.59 | 46.44 | 26.51 | 30.37 | 35.48 | 4.38 | 4.84 | 3.25 | 3.61 | 4.06 |
P3/P8 | 10.46 | 9.36 | 4.68 | 6.26 | 7.90 | 37.59 | 38.94 | 27.36 | 31.27 | 34.55 | 4.52 | 4.02 | 3.93 | 4.41 | 4.17 |
P3/P18 | 10.85 | 10.84 | 5.74 | 6.60 | 8.51 | 39.07 | 37.73 | 30.34 | 32.70 | 35.03 | 4.74 | 4.62 | 3.85 | 4.41 | 4.39 |
P4/P7 | 10.84 | 9.91 | 5.97 | 4.93 | 7.14 | 37.73 | 39.79 | 36.85 | 36.30 | 37.04 | 4.92 | 4.96 | 3.77 | 4.15 | 4.65 |
P4/P11 | 8.86 | 10.57 | 5.39 | 6.06 | 7.75 | 35.64 | 43.19 | 33.41 | 34.29 | 36.62 | 4.81 | 5.01 | 3.60 | 3.83 | 4.29 |
P4/P17 | 10.37 | 12.86 | 5.15 | 4.61 | 8.11 | 39.46 | 42.81 | 35.41 | 35.20 | 38.62 | 4.63 | 5.70 | 3.85 | 4.16 | 4.73 |
P9/P2 | 12.04 | 12.83 | 6.50 | 7.23 | 9.28 | 39.22 | 43.02 | 35.20 | 40.88 | 39.36 | 5.23 | 5.25 | 4.37 | 4.88 | 5.13 |
P9/P6 | 10.24 | 11.40 | 7.27 | 7.01 | 8.90 | 40.75 | 44.32 | 40.10 | 39.93 | 41.19 | 4.86 | 5.74 | 4.63 | 5.04 | 5.27 |
P9/P8 | 11.31 | 13.43 | 6.18 | 5.75 | 8.69 | 40.79 | 45.07 | 37.32 | 39.19 | 40.59 | 4.84 | 5.84 | 4.18 | 4.36 | 4.98 |
P9/P18 | 11.47 | 12.95 | 5.82 | 6.37 | 9.13 | 42.14 | 44.89 | 38.41 | 31.78 | 39.44 | 5.18 | 5.87 | 3.82 | 4.17 | 4.70 |
P10/P5 | 12.25 | 11.96 | 6.23 | 5.71 | 9.06 | 40.56 | 42.98 | 36.99 | 36.69 | 39.81 | 5.26 | 5.68 | 4.00 | 4.36 | 4.84 |
P10/P12 | 10.92 | 11.97 | 6.78 | 8.23 | 9.48 | 37.91 | 43.79 | 39.00 | 40.36 | 40.14 | 4.96 | 5.52 | 3.87 | 4.45 | 4.72 |
P10/P14 | 9.77 | 12.41 | 6.46 | 6.99 | 8.94 | 37.09 | 48.14 | 38.55 | 39.55 | 40.78 | 4.84 | 6.12 | 3.90 | 4.74 | 4.65 |
P10/P15 | 10.77 | 11.84 | 6.90 | 6.17 | 8.93 | 38.41 | 42.79 | 39.45 | 40.96 | 40.28 | 4.92 | 5.43 | 3.44 | 4.26 | 4.58 |
P13/P7 | 10.69 | 9.08 | 5.80 | 5.66 | 7.90 | 38.72 | 38.65 | 32.19 | 31.97 | 35.16 | 4.55 | 3.91 | 3.77 | 3.81 | 4.07 |
P13/P11 | 10.52 | 11.06 | 6.61 | 5.90 | 8.58 | 39.30 | 47.01 | 32.01 | 34.38 | 37.84 | 4.15 | 5.34 | 3.40 | 3.92 | 4.19 |
P16/P7 | 10.60 | 9.72 | 5.28 | 7.25 | 8.15 | 33.44 | 36.42 | 29.60 | 30.96 | 32.79 | 3.84 | 3.91 | 3.49 | 3.70 | 3.81 |
P16/P11 | 10.17 | 10.75 | 6.28 | 5.82 | 8.32 | 36.46 | 41.39 | 36.20 | 38.38 | 37.92 | 4.08 | 4.38 | 3.50 | 3.76 | 4.04 |
σ2g | 0.13 | 0.25 * | 0.39 | 0.53 * | 12.25 * | 9.62 * | 10.6 * | 3.51 * | 8.92 * | 2.63 * | 0.21 * | 0.07 | 0.16 * | 0.18 * | 0.82 ** |
σ2L×E | NA | NA | NA | NA | 0.20 ** | NA | NA | NA | NA | 4.26 ** | NA | NA | NA | NA | 0.14 * |
σ2e | 1.28 | 0.59 | 1.90 | 0.72 | 1.20 | 5.77 | 12.81 | 9.01 | 12.74 | 9.76 | 0.37 | 0.15 | 0.25 | 0.13 | 0.26 |
h2 | 0.24 | 0.34 | 0.29 | 0.60 | 0.37 | 0.29 | 0.62 | 0.44 | 0.58 | 0.47 | 0.38 | 0.49 | 0.57 | 0.73 | 0.53 |
Traits | DH | PLH | SPS | TLP | BM | TKW | YLD |
---|---|---|---|---|---|---|---|
PLH | 0.83 *** | ||||||
SPL | −0.01 | −0.18 | |||||
SPS | −0.2 | 0.07 | 0.12 | ||||
TLP | 0.15 | 0.11 | −0.07 | 0.41 ** | |||
BM | 0.29 | 0.18 | −0.09 | 0.48 ** | 0.6 *** | ||
TKW | 0.08 | 0.13 | 0.2 | 0.38 * | 0.55 *** | 0.56 *** | |
YLD | 0.03 | 0.06 | −0.04 | 0.45 *** | 0.49 *** | 0.77 *** | 0.75 *** |
Variance Component | DH | PLH | SPL | SPS | TLP | BM | TKW | YLD |
---|---|---|---|---|---|---|---|---|
Parents analyzed separately | ||||||||
σ2g | 5.45 * | 4.40 * | 0.60 | 12.54 * | 0.91 | 0.30 * | 0.22 * | 0.16 * |
σ2L | 6.78 | 17.62 | 0.31 | 0.19 | 0.07 | 0.28 | 4.12 | 0.08 |
σ2e | 1.38 | 12.88 | 60.84 | 91.29 | 90.22 | 1.95 | 11.23 | 0.93 |
H2 | 0.39 | 0.45 | 0.74 | 0.82 | 0.78 | 0.31 | 0.35 | 0.42 |
Hybrids analyzed separately | ||||||||
σ2GCA-parent | 0.19 * | 2.64 * | 0.03 | 0.07 | 0.05 | 0.08 * | 0.09 * | 0.07 * |
σ2SCA | 0 | 0 | 0 | 0 | 0.02 | 0.015 * | 0.08 * | 0.011 * |
σ2GCA-parent x L | 0.09 | 0 | 0 | 0.02 | 0 | 0.07 | 0.04 | 0.02 |
σ2e | 3.31 | 11.45 | 53.61 | 101.17 | 82.46 | 2.91 | 9.27 | 1.06 |
σ2GCA/ σ2SCA | - | - | - | - | 2.50 | 5.33 | 1.13 | 6.36 |
H2 | 0.29 | 0.52 | 0.31 | 0.72 | 0.69 | 0.48 | 0.53 | 0.68 |
Parents/Hybrids | DH | PLH | SPL | SPS | TLP | BM | TKW | YLD |
---|---|---|---|---|---|---|---|---|
GCA Parents | ||||||||
P1 | 5.45 | 4.40 | 0.60 | 12.54 | 0.91 | 0.30 | 0.22 | 0.16 |
P2 | −0.85 | −4.42 ** | 0.01 | −0.38 | 0.17 | 0.01 | −0.70 | −0.05 |
P3 | −0.74 | −3.46 * | −0.08 | −0.04 | 0.01 | −0.13 | −2.39 * | −0.30 * |
P4 | −0.87 * | 1.53 | −0.39 | −0.32 | −0.23 | −0.85 * | −0.27 | 0.29 * |
P5 | −1.29 | 1.38 | 0.05 | 0.14 | 0.42 * | 0.55 * | 2.11 * | 0.38 * |
P6 | −0.33 | −0.24 | −0.28 | 0.21 | 0.21 | 0.34 | 0.81 | 0.15 |
P7 | −0.58 | 1.37 | −0.19 | −0.16 | −0.26 * | −0.78 * | −2.70 * | −0.29 |
P8 | −1.57 * | 2.04 * | 0.25 | −0.23 | −0.09 | −0.05 | −0.05 | 0.04 |
P9 | −0.83 | 0.59 | 0.44 | 0.06 | 0.14 | 0.49 * | 2.45 * | 0.56 * |
P10 | 1.51 ** | 2.83 * | −0.37 * | 0.46 * | 0.11 | 0.59 * | 2.56 * | 0.23 * |
P11 | 0.58 | −1.31 | 0.15 | −0.32 | −0.11 | −0.30 | −0.24 | −0.29 * |
P12 | 3.97 *** | 5.04 ** | −0.59 * | 0.54 * | −0.07 | 0.97 * | 2.44 * | 0.36 * |
P13 | 1.27 * | −1.78 | −0.04 | −0.11 | 0.10 | −0.27 | −1.20 | −0.33 * |
P14 | 1.01 * | 3.35 * | −0.22 | 1.21 * | 0.26 | 0.42 * | 3.08 ** | 0.28 * |
P15 | 2.35 ** | 1.54 | −0.70 * | −0.05 | −0.19 | 0.41 | 2.58 * | 0.12 |
P16 | 0.07 | −0.23 | 0.12 | −0.19 | −0.18 | −0.28 | −2.34 * | −0.54 * |
P17 | 0.08 | 0.38 | −0.86 * | −0.12 | 0.27 * | −0.41 | 0.92 | 0.27 * |
P18 | 0.70 | −1.35 | 0.86 | 0.31 | −0.15 | 0.14 | −0.84 | 0.03 |
SE | 0.33 | 0.55 | 0.10 | 0.09 | 0.05 | 0.11 | 0.44 | 0.07 |
SCA cross combination | ||||||||
P1/P2 | 1.14 | 2.94 | 0.51 | −0.72 | −0.29 | −0.27 | −2.17 | −0.47 |
P1/P6 | 0.29 | −2.50 | −0.08 | −0.10 | 0.01 | −0.30 | −0.30 | −0.22 |
P1/P8 | 0.91 | 2.11 | 0.57 | 0.08 | −0.14 | 0.30 | −0.49 | −0.26 |
P1/P18 | 0.02 | 0.59 | 0.19 | 0.09 | −0.09 | −0.36 | −1.39 | −0.23 |
P3/P2 | −1.58 | −7.50 * | −0.38 | 0.48 | 0.15 | −0.64 | −3.23 * | −0.67 * |
P3/P6 | 1.85 | −3.01 | −0.19 | 0.09 | −0.08 | 0.10 | −5.41 * | −0.86 * |
P3/P8 | −3.29 | −8.42 * | −0.53 | −0.53 | −0.14 | −0.69 | −5.49 * | −0.63 * |
P3/P18 | 0.52 | −7.47 * | 1.37 | 0.37 | −0.27 | 0.01 | −5.89 * | −0.35 |
P4/P7 | −1.53 | 4.00 | −0.38 | −0.17 | −0.59 | −1.44 | 1.77 * | 0.57 * |
P4/P11 | −2.88 | 3.19 | −0.65 | −0.84 | −0.47 | −1.32 | −1.11 | 0.21 |
P4/P17 | −0.87 | 1.53 | −0.39 | −0.32 | −0.23 | −0.85 | −0.27 | 0.09 |
P9/P2 | −1.10 | 1.59 | 0.48 | 0.17 | 0.24 | 1.24 * | 4.81 * | 1.27 * |
P9/P6 | −3.67 | 2.54 | 0.88 | −0.06 | 0.17 | 0.53 | 5.14 * | 1.21 * |
P9/P8 | 0.84 | 3.34 | 0.57 | 0.38 | 0.39 | 0.72 | 5.39 * | 1.02 * |
P9/P18 | 2.53 | 3.09 | 0.75 | 0.66 | −0.44 | 0.12 | −0.01 | −0.27 |
P10/P5 | 1.08 | 8.64 * | −0.33 | 0.97 | 0.36 | 1.12 * | 5.37 * | 0.66 * |
P10/P12 | 1.51 | 2.83 | −0.37 | 0.46 | 0.11 | 0.59 | 2.56 * | 0.23 * |
P10/P14 | 1.51 | 2.83 | −0.37 | 0.46 | 0.11 | 0.59 | 2.56 * | 0.23 * |
P10/P15 | 1.51 | 2.83 | −0.37 | 0.46 | 0.11 | 0.59 | 2.56 * | 0.23 * |
P13/P7 | 2.59 | −3.94 | −0.19 | −0.17 | 0.50 | −0.10 | −1.03 | −0.44 |
P13/P11 | 2.49 | −3.24 | 0.08 | 0.20 | 0.28 | 0.09 | −0.82 | −0.32 |
P16/P7 | −0.58 | −0.54 | 0.26 | −0.28 | −0.21 | 0.13 | −4.55 * | −0.91 * |
P16/P11 | 0.86 | −0.43 | 0.26 | 0.01 | −0.12 | −0.18 | −1.88 | −0.67 * |
SE | 0.38 | 0.88 | 0.11 | 0.09 | 0.06 | 0.14 | 0.73 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Hanafi, S.; Cherkaoui, S.; Kehel, Z.; Sanchez-Garcia, M.; Sarazin, J.-B.; Baenziger, S.; Tadesse, W. Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.). Plants 2022, 11, 508. https://doi.org/10.3390/plants11040508
El Hanafi S, Cherkaoui S, Kehel Z, Sanchez-Garcia M, Sarazin J-B, Baenziger S, Tadesse W. Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.). Plants. 2022; 11(4):508. https://doi.org/10.3390/plants11040508
Chicago/Turabian StyleEl Hanafi, Samira, Souad Cherkaoui, Zakaria Kehel, Miguel Sanchez-Garcia, Jean-Benoit Sarazin, Stephen Baenziger, and Wuletaw Tadesse. 2022. "Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.)" Plants 11, no. 4: 508. https://doi.org/10.3390/plants11040508
APA StyleEl Hanafi, S., Cherkaoui, S., Kehel, Z., Sanchez-Garcia, M., Sarazin, J.-B., Baenziger, S., & Tadesse, W. (2022). Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.). Plants, 11(4), 508. https://doi.org/10.3390/plants11040508