Sustainable Production of Insecticidal Compounds from Persea indica
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Plant Material
4.2. Aeroponic Cultivation
4.3. Extraction and Isolation
4.4. HPLC-MS Analysis
4.5. Antifeedant Activity
4.6. Nematicidal Bioassay
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kondraskov, P.; Schütz, N.; Schüßler, C.; De Sequeira, M.M.; Guerra, A.S.; Caujapé-Castells, J.; Jaén-Molina, R.; Marrero-Rodríguez, A.; Koch, M.A.; Linder, P.; et al. Biogeography of mediterranean hotspot biodiversity: Reevaluating the tertiary relict’ hypothesis of Macaronesian laurel forests. PLoS ONE 2015, 10, e0132091. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Coloma, A.; Hernandez, M.G.; Perales, A.; Fraga, B.M. Chemical ecology of Canarian laurel forest: Toxic diterpenes from Persea indica (lauraceae). J. Chem. Ecol. 1990, 16, 2723–2733. [Google Scholar] [CrossRef] [PubMed]
- González-Coloma, A.; Cabrera, R.; Castañera, P.; Gutiérrez, C.; Fraga, B.M. Insecticidal activity and diterpene content of Persea indica. Phytochemistry 1992, 31, 1549–1552. [Google Scholar] [CrossRef][Green Version]
- Fraga, B.M.; González-Coloma, A.; Gutiérrez, C.; Terrero, D. Insect antifeedant isoryanodane diterpenes from Persea indica. J. Nat. Prod. 1997, 60, 880–883. [Google Scholar] [CrossRef]
- Fraga, B.M.; Terrero, D. Alkene-γ-lactones and avocadofurans from Persea indica: A revision of the structure of majorenolide and related lactones. Phytochemistry 1996, 41, 229–232. [Google Scholar] [CrossRef]
- Fraga, B.M.; Terrero, D.; Gutiérrez, C.; González-Coloma, A. Minor diterpenes from Persea indica: Their antifeedant activity. Phytochemistry 2001, 56, 315–320. [Google Scholar] [CrossRef]
- Weyerstahl, P.; Marschall, H.; Scora, R.W. Constituents of the leaf essential oil of Persea indica (L.) K. Spreng. Flav. Fragr. J. 1993, 8, 201–207. [Google Scholar] [CrossRef]
- Pino, J.A.; Fernandes, P.; Marbot, R.; Rosado, A.; Fontinha, S.S. Leaf oils of Helichrysum melaleucum rchb. ex holl., Oenanthe divaricata (R. Br.) mabb. And Persea indica (L.) Spreng. from Madeira. J. Essent. Oil Res. 2004, 16, 487–489. [Google Scholar] [CrossRef]
- González-Coloma, A.; Terrero, D.; Perales, A.; Escoubas, P.; Fraga, B.M. Insect antifeedant ryanodane diterpenes from Persea indica. J. Agric. Food Chem. 1996, 44, 296–300. [Google Scholar] [CrossRef]
- González-Coloma, A.; Gutiérrez, C.; Hübner, H.; Achenbach, H.; Terrero, D.; Fraga, B.M. Selective insect antifeedant and toxic action of ryanoid diterpenes. J. Agric. Food Chem. 1999, 47, 4419–4424. [Google Scholar] [CrossRef]
- Pessah, I.N. Recent Advances in the Chemistry of Insect Control II; Crombie, L., Ed.; Royal Society of Chemistry: Cambridge, UK, 1989; Volume 79, pp. 278–296. [Google Scholar]
- Gonzalez-Coloma, A.; Martín, L.; Mainar, A.M.; Urieta, J.S.; Fraga, B.M.; Rodríguez-Vallejo, V.; Díaz, C.E. Supercritical extraction and supercritical antisolvent fractionation of natural products from plant material: Comparative results on Persea indica. Phytochem. Rev. 2012, 11, 433–446. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Ali Chandio, F.; Tunio, M.H.; Ahmad, F.; Ali Solangi, K. Overview of the aeroponic agriculture—An emerging technology for global food security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Christie, C.B.; Nichols, M.A. Aeroponics. A production system and research tool. Acta Hortic. 2004, 648, 185–190. [Google Scholar] [CrossRef]
- González-Coloma, A.; Cabrera, R.; Socorro-Monzón, A.R.; Fraga, B.M. Persea indica as a natural source of the insecticide ryanodol. Phytochemistry 1993, 34, 397–400. [Google Scholar] [CrossRef]
- Xu, Y.M.; Gao, S.; Bunting, D.P.; Gunatilaka, A.A.L. Unusual withanolides from aeroponically grown Withania somnifera. Phytochemistry 2011, 72, 518–522. [Google Scholar] [CrossRef]
- Song, J.; Jung, S.; Jee, S.; Yoon, J.W.; Byeon, Y.S.; Park, S.; Kim, S.B. Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source. Sci. Rep. 2021, 11, 2924. [Google Scholar] [CrossRef]
- Ferrini, F.; Fraternale, D.; Donati Zeppa, S.; Verardo, G.; Gorassini, A.; Carrabs, V.; Albertini, M.C.; Sestili, P. Yield, characterization, and possible exploitation of Cannabis sativa L. roots grown under aeroponics cultivation. Molecules 2021, 26, 4889. [Google Scholar] [CrossRef]
- Son, Y.; Park, J.; Kim, J.; Yoo, G.; Nho, C.W. The changes in growth parameters, qualities, and chemical constituents of lemon balm (Melissa officinalis L.) cultivated in three different hydroponic systems. Ind. Crops Prod. 2021, 163, 113313. [Google Scholar] [CrossRef]
- Gangopadhyay, M.; Das, A.K.; Sahu, R.; Saha, A.; Dey, S.; Bandyopadhyay, S.; Mitra, A. Evaluation of growth response for mass production and accumulation of 2-hydroxy-4-methoxybenzaldehyde in endangered Hemidesmus indicus by an aeroponic system. Ind. Crops Prod. 2021, 172, 114072. [Google Scholar] [CrossRef]
- González-Coloma, A.; Sainz, P.; Andrés, M.F.; Martínez-Díaz, R.A.; Bailén, M.; Navarro-Rocha, J.; Díaz, C.E. Chemical composition and biological activities of Artemisia pedemontana subsp. Assoana essential oils and hydrolate. Biomolecules 2019, 9, 558. [Google Scholar] [CrossRef]
- Moler, E.R.V.; Nelson, A.S. Perspectives on drought preconditioning treatments with a case study using western larch. Front. Plant Sci. 2021, 12, 741027. [Google Scholar] [CrossRef] [PubMed]
- Mannerheim, N.; Blessing, C.H.; Oren, I.; Grünzweig, J.M.; Bachofen, C.; Buchmann, N. Carbon allocation to the root system of tropical tree Ceiba pentandra using 13C pulse labelling in an aero-ponic facility. Tree Physiol. 2020, 40, 350–366. [Google Scholar] [CrossRef] [PubMed]
- Eshel, A.; Grünzweig, J.M. Root-shoot allometry of tropical forest trees determined in a large-scale aeroponic system. Ann. Bot. 2013, 112, 291–296. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharma, U.; Kataria, V.; Shekhawat, N.S. Aeroponics for adventitious rhizogenesis in evergreen haloxeric tree Tamarix aphylla (L.) karst.: Influence of exogenous auxins and cutting type. Physiol. Mol. Biol. 2018, 24, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Martin-Laurent, F.; Lee, S.; Tham, F.; Jie, H.; Diem, H.G. Aeroponic production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics. For. Ecol. Manag. 1999, 122, 199–207. [Google Scholar] [CrossRef]
- Fraga, B.M.; Díaz, C.E.; Bolaños, P.; Bailén, M.; Andrés, M.F.; González-Coloma, A. Alkane, alkene, alkyne-γ-lactones and ryanodane diterpenes from aeroponically grown Persea indica roots. Phytochemistry 2020, 176, 112398. [Google Scholar] [CrossRef]
- Fraga, B.M.; Terrero, D.; Bolaños, P.; Díaz, C.E. Diterpenes with new isoryanodane derived skeletons from Persea indica. Tetrahedron Lett. 2017, 58, 2261–2263. [Google Scholar] [CrossRef]
- Navarro-Rocha, J.; Andrés, M.F.; Díaz, C.E.; Burillo, J.; González-Coloma, A. Composition and biocidal properties of essential oil from pre-domesticated Spanish Satureja montana. Ind. Crops Prod. 2020, 145, 111958. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Andrés, M.F.; González-Coloma, A.; Sanz, J.; Burillo, J.; Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 2012, 11, 371–390. [Google Scholar] [CrossRef]
- Püntener, W. Manual for Field Trials in Plant Protection; Ciba-Geigy Limited: Basel, Switzerland, 1981; 205p. [Google Scholar]
Retention Time (min) | Wild (Abundance %) | Aeroponic (Abundance %) | m/z | Identified Compounds | |||||
---|---|---|---|---|---|---|---|---|---|
Stems | Leaves | Stems | Leaves | Roots | |||||
3.00–5.00 | 19.61 | 18.41 | 39.75 | 17.83 | 20.7 | Polar compounds eluted with water | |||
7.30 | 5.18 | 6.40 | 4.33 | 449 | 353 | 266 | |||
7.70 | 3.36 | 1.34 | 7.31 | 421 | |||||
7.73 | 2.86 | 153 | |||||||
7.91 | 1.48 | 325 | 289 | 417 | |||||
7.94 | 2.53 | 1.89 | 397 | 433 | |||||
8.05 | 3.54 | 3.63 | 2.66 | 2.93 | 417 | 381 | |||
8.18 | 9.59 | 3.98 | 399 | ||||||
8.24 | 6.12 | 419 | 421 | Cinnzeylanol 2 | |||||
8.35 | 6.97 | 14.80 | 6.96 | 137 | |||||
8.49 | 2.36 | 417 | 483 | 335 | |||||
8.87 | 4.34 | 504 | 505 | 419 | |||||
8.82 | 1.15 | 5.57 | 441 | 477 | |||||
8.94 | 1.87 | 431 | 467 | 397 | |||||
9.00 | 1.56 | 433 | 397 | Cinnzeylanine 3 | |||||
9.11 | 1.16 | 2.65 | 167 | ||||||
9.34 | 6.17 | 10.70 | 11.72 | 7.14 | 401 | ||||
9.53 | 5.18 | 195 | |||||||
9.85 | 0.44 | 11.90 | 3.39 | 417 | 381 | Cinnzeylanone 4 | |||
10.22 | 2.11 | 432 | 459 | ||||||
10.31 | 13.84 | 486 | |||||||
10.92 | 2.21 | 301 | 424 | ||||||
11.03 | 10.49 | 179 | 137 | ||||||
12.37 | 5.72 | 2.69 | 241 | 181 | 113 | ||||
21.29 | 17.16 | 327 | 363 | 443 | Majorenolide 5 | ||||
22.64 | 1.38 | 4.44 | 2.02 | 28.63 | 265 | ||||
22.93 | 3.69 | 299 | 147 | ||||||
23.40 | 4.02 | 2.23 | 8.51 | 4.95 | 249 | 147 | |||
23.69 | 9.49 | 461 | 524 | 249 | |||||
25.43 | 38.91 | 13.79 | 5.25 | 6.40 | 339 | Epiryanodol 1 | |||
26.31 | 5.38 | 3.79 | 666 |
Origin | Part | S. littoralis | R. padi | M. persicae | M. javanica |
---|---|---|---|---|---|
%FI a | %SI a | % Mortality b | |||
Aeroponic | Leaf | 62.30 ± 5.88 * 52.6 (31.2–88.0) c | 48.8 ± 10.5 | 17.1 ± 7.2 | 4.45 ± 0.60 |
Stem | 94.85 ±2.85 * 12.1 (7.8–18.7) c | 44.9 ± 8.4 | 21.7 ± 6.5 | 7.86 ± 3.09 | |
Root | 39.38 ± 7.73 > 100 c | 28.5 ± 7.2 | 22.1 ± 7.2 | 5.01 ±0.51 | |
Wild | Leaf | 89.67 ± 10.13 * 36.8 (28.0–48.0) c | 43.7 ± 8.3 | 42.6 ± 8.7 | 0.09 ± 2.07 |
Stem | 98.46 ± 1.49 * 8.5 (2.7–23.9) c | 44.8 ± 7.3 | 41.5 ± 8.8 | 0.08 ± 0.98 |
Compound | S. littoralis | Predicted %FI a | |||
---|---|---|---|---|---|
EC50 µg/cm2 (95% Confidence Limits) | Wild | Aeroponic | |||
Stem | Leaf | Stem | Leaf | ||
1 | 0.16 (0.07–0.35) | 95.28 | 32.85 | 12.5 | |
2 | 1.26 (0.73–2.20) | 2.5 | |||
3 | 0.02 (0.01–0.07) | 37.1 | |||
4 | 0.04 (0.02–0.09) | 5.5 | 148 | 29.9 | |
Total predicted %FI | 95 * | 38 ns | 100 * | 67 * | |
Calculated %FI b | 98 * | 89 * | 95 * | 62 * |
Rt (min) | M+ | m/z | Compound | Reference | ||
---|---|---|---|---|---|---|
8.8 | 384 | 419 | 383 | Perseanol | [4] | |
8.9 | 384 | 419 | 421 | 383 | Cinnzeylanol (2) | [2] |
9.5 | 408 | 461 | 425 | Anhydrocinnzeylanine | [6] | |
9.6 | 426 | 397 | 433 | Cinnzeylanine (3) | [9] | |
10.1 | 382 | 417 | 381 | Cinnzeylanone (4) | [9] | |
21.2 | 280 | 327 | 363 | 443 | Majorenolide (5) | [27] |
22.7 | 300 | 121 | (−)-Borneol-cis-p-coumarate | [27] | ||
25.4 | 336 | 487 | 181 | Indicol | [4] | |
25.4 | 400 | 339 | Epiryanodol (1) | [2,27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Coloma, A.; Andrés, M.F.; Contreras, R.; Zúñiga, G.E.; Díaz, C.E. Sustainable Production of Insecticidal Compounds from Persea indica. Plants 2022, 11, 418. https://doi.org/10.3390/plants11030418
Gonzalez-Coloma A, Andrés MF, Contreras R, Zúñiga GE, Díaz CE. Sustainable Production of Insecticidal Compounds from Persea indica. Plants. 2022; 11(3):418. https://doi.org/10.3390/plants11030418
Chicago/Turabian StyleGonzalez-Coloma, Azucena, María Fe Andrés, Rodrigo Contreras, Gustavo E. Zúñiga, and Carmen Elisa Díaz. 2022. "Sustainable Production of Insecticidal Compounds from Persea indica" Plants 11, no. 3: 418. https://doi.org/10.3390/plants11030418
APA StyleGonzalez-Coloma, A., Andrés, M. F., Contreras, R., Zúñiga, G. E., & Díaz, C. E. (2022). Sustainable Production of Insecticidal Compounds from Persea indica. Plants, 11(3), 418. https://doi.org/10.3390/plants11030418