Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Contents and Chemical Composition of L. fischeri Leaf and Root Extracts
2.2. In Vitro Antioxidant Activities of L. fischeri Leaf and Root Extracts
2.3. Antioxidant Activities of L. fischeri Leaf and Root Extracts in LPS-Stimulated RAW 264.7 Cells
2.4. Anti-Inflammatory Activities of Root and Leaf Extracts from L. fischeri in LPS-Treated RAW 264.7 Cells
3. Materials and Methods
3.1. Materials
3.2. Preparation of Ethanol Extracts of L. fischeri
3.3. GC-MS Analysis
3.4. In Vitro Colorimetric Assays
3.5. Total Phenolic and Flavonoid Contents
3.6. Cell Culture
3.7. Cell Viability
3.8. NO Production
3.9. Intracellular ROS Accumulation
3.10. Western Blot Analysis
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Limón-Pacheco, J.; Gonsebatt, M.E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Z.; Zhang, C.-C.; Fu, Y.-J.; Cui, Q. Comparative analysis of phytochemical profile, antioxidant and anti-inflammatory activity from Hibiscus manihot L. flower. Arab. J. Chem. 2022, 15, 103503. [Google Scholar] [CrossRef]
- McGarry, T.; Biniecka, M.; Veale, D.J.; Fearon, U. Hypoxia, oxidative stress and inflammation. Free Radic. Biol. Med. 2018, 125, 15–24. [Google Scholar] [CrossRef]
- Nakajima, S.; Kitamura, M. Bidirectional regulation of NF-κB by reactive oxygen species: A role of unfolded protein response. Free Radic. Biol. Med. 2013, 65, 162–174. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [Green Version]
- Ham, J.R.; Yun, K.W.; Lee, M.-K. Anti-Inflammatory and Antioxidant In Vitro Activities of Magnoliae Flos Ethanol Extract. Prev. Nutr. Food Sci. 2021, 26, 485–491. [Google Scholar] [CrossRef]
- Öztürk, M.; Kolak, U.; Topçu, G.; Öksüz, S.; Choudhary, M.I. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food Chem. 2011, 126, 31–38. [Google Scholar] [CrossRef]
- Seleshe, S.; Ameer, A.; Kang, S.N. Exploration of the Antioxidant Chemical Constituents and Antioxidant Performance of Various Solvent Extracts of Eighteen Plants. Prev. Nutr. Food Sci. 2022, 27, 212–222. [Google Scholar] [CrossRef]
- Kim; Lee, S.Y.; Ahn, S.H.; Han, J.H.; Park, J.W. Biological Control of Gom-chwi (Ligularia fischeri) Phytophthora Root Rot with Enterobacter asburiae ObRS-5 to Suppress Zoosporangia Formation and Zoospores Germination. Plant Pathol. J. 2020, 36, 244–254. [Google Scholar] [CrossRef]
- Fu, Y.-P.; Yuan, H.; Xu, Y.; Liu, R.-M.; Luo, Y.; Xiao, J.-H. Protective effects of Ligularia fischeri root extracts against ulcerative colitis in mice through activation of Bcl-2/Bax signalings. Phytomedicine 2022, 99, 154006. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.-M. Ligularia fischeri leaf extract prevents the oxidative stress in DBA/1J mice with type II collagen-induced arthritis. J. Appl. Toxicol. 2007, 27, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Sejin, A.; Hee-Sook, P.; Gun-Hee, K. Evaluation of the Antioxidant Activity of Cooked Gomchwi (Ligularia fischeri) Using the Myoglobin Methods. Prev. Nutr. Food Sci. 2014, 19, 34–39. [Google Scholar]
- Lee, K.-H.; Choi, E.-M. Analgesic and anti-inflammatory effects of Ligularia fischeri leaves in experimental animals. J. Ethnopharmacol. 2008, 120, 103–107. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.-J.; Kim, J.-K.; Ahn, E.-K.; Ko, H.-J.; Cho, Y.-R.; Lee, S.-J.; Bae, G.-U.; Kim, Y.K.; Park, J.W.; et al. Ligularia fischeri inhibits endothelial cell proliferation, invasion and tube formation through the inactivation of mitogenic signaling pathways and regulation of vascular endothelial cadherin distribution and matrix metalloproteinase expression. Oncol. Rep. 2015, 34, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.J.; Kim, J.K.; Suh, S.H.; Kim, C.R.; Kim, H.K.; Kim, C.-J.; Park, G.G.; Park, C.-S.; Shin, D.-H. Ligularia fischeri Extract Protects Against Oxidative-Stress-Induced Neurotoxicity in Mice and PC12 Cells. J. Med. Food 2014, 17, 1222–1231. [Google Scholar] [CrossRef]
- Pyun, C.-W.; Seo, T.-S.; Kim, D.-J.; Kim, T.-W.; Bae, J.-S. Protective Effects of Ligularia fischeri and Aronia melanocarpa Extracts on Alcoholic Liver Disease (In Vitro and In Vivo Study). Biomed Res. Int. 2020, 2020, 9720387. [Google Scholar] [CrossRef] [Green Version]
- Azam Ansari, M.; Chung, I.-M.; Rajakumar, G.; Alzohairy, M.A.; Almatroudi, A.; Gopiesh Khanna, V.; Thiruvengadam, M. Evaluation of Polyphenolic Compounds and Pharmacological Activities in Hairy Root Cultures of Ligularia fischeri Turcz. f. spiciformis (Nakai). Molecules 2019, 24, 1586. [Google Scholar] [CrossRef] [Green Version]
- Gobu, F.-R.; Chen, J.-J.; Zeng, J.; Wei, W.-J.; Wang, W.-F.; Lin, C.-J.; Gao, K. Isolation, Structure Elucidition, and Immunosuppressive Activity of Diterpenoids from Ligularia fischeri. J. Nat. Prod. 2017, 80, 2263–2268. [Google Scholar] [CrossRef]
- Huang, X.; Gao, Y.; Xu, F.; Fan, D.; Liang, Y.; Wang, X.; Wu, H. Molecular mechanism underlying the anti-inflammatory effects of volatile components of Ligularia fischeri (Ledeb) Turcz based on network pharmacology. BMC Complement. Altern. Med. 2020, 20, 109. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.W.; Iqbal, S.; Khong, N.M.H.; Ooi, D.-J.; Ismail, M. Antioxidant activity of phenolics–saponins rich fraction prepared from defatted kenaf seed meal. LWT Food Sci. Technol. 2014, 56, 181–186. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Shahidi, F. Emerging Role of Phenolic Compounds as Natural Food Additives in Fish and Fish Products. Crit. Rev. Food Sci. Nutr. 2013, 53, 162–179. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. Front. Sustain. Food Syst. 2020, 4, 525810. [Google Scholar] [CrossRef]
- Wei, H.; Manivannan, A.; Chen, Y.; Jeong, B.R. Effect of Different Cultivation Systems on the Accumulation of Nutrients and Phytochemicals in Ligularia fischeri. Hortic. Plant J. 2018, 4, 24–29. [Google Scholar] [CrossRef]
- Hong, S.; Joo, T.; Jhoo, J.-W. Antioxidant and anti-inflammatory activities of 3,5-dicaffeoylquinic acid isolated from Ligularia fischeri leaves. Food Sci. Biotechnol. 2015, 24, 257–263. [Google Scholar] [CrossRef]
- Kim, S.M.; Jeon, J.-S.; Kang, S.W.; Jung, Y.-J.; Ly, L.N.; Um, B.-H. Content of Antioxidative Caffeoylquinic Acid Derivatives in Field-Grown Ligularia fischeri (Ledeb.) Turcz and Responses to Sunlight. J. Agric. Food Chem. 2012, 60, 5597–5603. [Google Scholar] [CrossRef]
- Jun-Ping, L.; Cai-Fang, W.; Ting, L.; Yan-Bing, Z.; Yan-Ze, L.; Zhen-Zhong, Z. Chemical Constituents from the Roots of Ligularia fischeri Turcz. J. Nat. Prod. Res. Dev 2011, 23, 1014–1016. [Google Scholar]
- Park, H.-J.; Kwon, S.-H.; Yoo, K.-O.; Sohn, I.-C.; Lee, K.-T.; Lee, H.-K. Sesquiterpenes from the Leaves of Ligularia fischeri var. spiciformis. Planta Med. 2000, 66, 783–784. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Li, X.-H.; Shi, Y.-P. A Pair of Epimeric Spirosesquiterpenes from the Roots of Ligularia fischeri. J. Nat. Prod. 2010, 73, 143–146. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Puupponen-Pimiä, R.; Aarni, M.; Oksman-Caldentey, K.-M. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. In vitro and cellular antioxidant activities of 3-deoxyanthocyanidin colourants. Food Biosci. 2021, 42, 101171. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.-L.; Jun, M.; Jeong, W.-S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 2018, 44, 36–49. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Campbell, N.K.; Fitzgerald, H.K.; Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 2021, 21, 411–425. [Google Scholar] [CrossRef]
- Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of Cell Protection by Heme Oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, W.; Dong, C.; Li, C.; Fu, X.; Min, L.; Tian, J.; Jin, H.; Shen, J. Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-κB and MAPKs signaling pathways. Toxicol. Vitr. 2012, 26, 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Guan, Y.; Yang, R.; Li, J.; Wang, J.; Jia, A.-Q. Anti-inflammatory activity of 3-cinnamoyltribuloside and its metabolomic analysis in LPS-activated RAW 264.7 cells. BMC Complement. Altern. Med. 2020, 20, 329. [Google Scholar] [CrossRef]
- Kocak, M.S.; Sarikurkcu, C.; Cengiz, M.; Kocak, S.; Uren, M.C.; Tepe, B. Salvia cadmica: Phenolic composition and biological activity. Ind. Crops Prod. 2016, 85, 204–212. [Google Scholar] [CrossRef]
- Phromnoi, K.; Suttajit, M.; Saenjum, C.; Limtrakul Dejkriengkraikul, P. Inhibitory Effect of a Rosmarinic Acid-Enriched Fraction Prepared from Nga-Mon (Perilla frutescens) Seed Meal on Osteoclastogenesis through the RANK Signaling Pathway. Antioxidants 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Andrade, J.C.; Ozer, M.S.; de Lima Silva, J.M.F.; Ceylan, O.; de Sousa, E.O.; Coutinho, H.D.M. LC-MS/MS profiles and interrelationships between the enzyme inhibition activity, total phenolic content and antioxidant potential of Micromeria nervosa extracts. Food Chem. 2020, 328, 126930. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Sarikurkcu, C.; Uyar, P.; Aktumsek, A.; Uysal, S.; Kocak, M.S.; Ceylan, R. Crepis foetida L. subsp. rhoeadifolia (Bieb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation. J. Funct. Foods 2015, 17, 698–708. [Google Scholar] [CrossRef]
- Ko, M.-J.; Nam, H.-H.; Chung, M.-S. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 10890. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Tepe, B.; Kocak, M.S.; Uren, M.C. Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem. 2015, 175, 549–555. [Google Scholar] [CrossRef]
Root Extract | Leaf Extract | |
---|---|---|
TPC (mg GAE/g) | 14.38 ± 0.21 | 13.03 ± 0.11 |
TFC (mg CE/g) | 2.45 ± 0.33 *** | 0.69 ± 0.22 |
FRAP (mg GAE/g) | 20.47 ± 1.59 *** | 10.07 ± 2.30 |
TAC (mg TE/g) | 203.39 ± 8.11 *** | 101.60 ± 13.72 |
R.T (min) | Compounds | Leaf Extract (%) | Root Extract (%) |
---|---|---|---|
10.626 | 2,3-Butanediol | 1.69 ± 0.04 | - |
16.850 | Diethylacetic acid | 1.64 ± 0.07 | - |
20.621 | Butyl isobutyrate | 0.67 ± 0.09 | - |
21.089 | Hexyl isobutyrate | 0.39 ± 0.04 | - |
21.478 | Terpinolene | - | 0.05 ± 0.01 |
24.727 | p-Cymen-8-ol | 0.19 ± 0.02 | 0.08 ± 0.01 |
26.385 | Linalyl acetate | - | 0.12 ± 0.01 |
27.542 | 1-Methylbicyclo[4.1.0]-heptane | 0.06 ± 0.01 | - |
27.633 | Isobornyl acetate | - | 0.03 ± 0.01 |
27.939 | Trans-pinocarvyl acetate | - | 0.05 ± 0.001 |
29.11 | Isojasmone | - | 0.03 ± 0.02 |
29.323 | Terpinyl acetate | - | 0.14 ± 0.01 |
29.746 | Alpha-Longipinene | - | 0.01 ± 0.01 |
30.336 | Copaene | 0.12 ± 0.02 | - |
30.382 | 1-Tetradecene | - | 0.03 ± 0.01 |
30.612 | Calarene | 0.14 ± 0.04 | - |
30.619 | Beta-Elemene | - | 0.23 ± 0.01 |
31.164 | Aromadendrene | - | 0.03 ± 0.01 |
31.247 | Cyperene | - | 0.04 ± 0.001 |
31.506 | 1-Methoxy-1,3-cyclohexadiene | 0.25 ± 0.01 | - |
31.612 | Caryophyllene | 1.48 ± 0.28 | 0.11 ± 0.01 |
31.709 | Dihydro-beta-ionone | - | 0.03 ± 0.01 |
31.863 | Alpha-Guaiene | - | 0.02 ± 0.02 |
32.006 | Cis- Beta-Farnesene | 0.12 ± 0.02 | 0.08 ± 0.02 |
32.252 | Selina-5,11-diene | - | 0.07 ± 0.01 |
32.540 | Humulene | 0.27 ± 0.05 | 0.05 ± 0.01 |
32.882 | Gamma-Selinene | - | 0.23 ± 0.01 |
32.937 | Alpha-Bergamotene | 1.54 ± 0.20 | 0.17 ± 0.02 |
33.307 | Valencene | - | 0.81 ± 0.03 |
33.162 | Germacrene D | 6.44 ± 0.90 | 0.04 ± 0.01 |
33.312 | Alpha-Farnesene | 1.74 ± 0.19 | - |
33.401 | Eremophilene | 0.23 ± 0.03 | - |
33.405 | Beta-Selinene | - | 0.44 ± 0.02 |
33.462 | Gamma-Muurolene | 0.30 ± 0.03 | - |
33.517 | Bicyclogermacrene | 0.62 ± 0.08 | 0.41 ± 0.02 |
33.929 | Delta-Cadiene | 1.11 ± 0.12 | - |
34.161 | Alpha-Maalliene | - | 0.03 ± 0.01 |
34.326 | Gamma-Cadinene | 0.13 ± 0.02 | 0.18 ± 0.01 |
34.431 | Alpha-Cadinene | 0.12 ± 0.01 | - |
34.668 | Gamma-Guaiene | - | 0.03 ± 0.03 |
34.730 | Nerolidol | 1.57 ± 0.16 | - |
34.917 | 1(10),11-Eremophiladien-9-ol | - | 0.04 ± 0.04 |
35.046 | 1,9-Aristoladiene | - | 0.06 ± 0.06 |
35.493 | Germacrene D-4-ol | 1.24 ± 0.09 | - |
35.541 | Beta-Spathulenol | - | 0.11 ± 0.01 |
35.738 | Caryophyllene oxide | 0.18 ± 0.02 | - |
36.144 | Beta-Oplopenone | 0.16 ± 0.14 | - |
36.186 | 5-epi-7-epi-alpha-Eudesmol | - | 0.17 ± 0.01 |
36.682 | Epi-gamma-Eudesmol | - | 1.13 ± 0.03 |
36.822 | Eudesm-5-en-11-ol | - | 2.78 ± 0.06 |
36.901 | 2-[(1aS,4aS,7R)-4a-methyldecahydrocyclopropa[d]naphthalen-7-yl]-2-propanol | - | 0.29 ± 0.01 |
36.961 | Tau-Cadinol | 0.33 ± 0.02 | - |
37.014 | Spirojatamol | 0.59 ± 0.04 | - |
37.196 | Beta-Gurjunene | - | 0.06 ± 0.06 |
37.292 | Alpha-Cadinol | 0.89 ± 0.05 | - |
37.372 | Cyclotridecane | 0.33 ± 0.01 | - |
37.475 | 7-Methoxy-1H-indole-5-carboxylic acid | 0.60 ± 0.08 | - |
37.491 | 1,2,5-Trimethylpyrrole | - | 10.67 ± 0.36 |
37.680 | Beta-Maaliene | 2.15 ± 0.24 | 0.06 ± 0.01 |
37.696 | Beta-Neoclovene | - | 1.46 ± 0.03 |
37.870 | (E)-3-(1-Phenylprop-1′-en-2′-yl))-pentane-2,4-dione | - | 2.65 ± 0.48 |
38.141 | Cyercene 1 | - | 0.28 ± 0.02 |
38.285 | 6,7-dimethoxy-3,4-dihydroisoquinoline | 5.42 ± 0.06 | - |
38.508 | (3E,5E,8Z)-3,7,11-trimethyldodeca-1,3,5,8,10 pentaene | - | 0.53 ± 0.01 |
39.219 | Eremophilone | - | 0.21 ± 0.01 |
39.463 | 2,3-Dihydro-1H-cyclonona[def]biphenylene | - | 0.59 ± 0.01 |
39.534 | 1-(2-Methoxyphenyl)-5-methyl-4-hexene-1-one | - | 0.16 ± 0.001 |
39.606 | n-Cetyl alcohol | 1.54 ± 0.07 | - |
39.619 | 1-Hexadecanol | - | 0.82 ± 0.02 |
40.630 | 1-Cyanoacetylpiperidine | - | 1.08 ± 0.03 |
40.805 | Neophytadiene | 3.84 ± 0.43 | - |
40.920 | 3,7,11,15-tetramethylhexadec-2-ene | 0.51 ± 0.06 | - |
40.964 | Bakkenolid A | 0.33 ± 0.02 | 3.75 ± 0.05 |
41.301 | (Z)-1,3-Phytadiene | 0.31 ± 0.27 | |
41.364 | 3-phenylbenzothieno[3,2-e]-1,2,4-triazine | - | 0.09 ± 0.08 |
41.528 | 4-methylcyclohex-3-enecarbaldehyde | - | 6.16 ± 0.38 |
41.737 | Cetene | 3.51 ± 0.24 | 1.97 ± 0.01 |
42.013 | Cyclocolorenone | 2.37 ± 0.20 | - |
42.112 | 1,2-Benzenediol, o-(3-cyclopentylpropionyl)- | - | 0.53 ± 0.02 |
42.733 | (3Z)-3a,4,5,6-Tetrahydro-1-hydroxy-3-(2-hydroxy-2-ethylbutylidene)azulen-2(1H)-one | - | 1.21 ± 0.21 |
43.762 | E-14-Hexadecenal | 0.63 ± 0.01 | - |
43.784 | 1-Nonadecanol | - | 0.60 ± 0.03 |
43.914 | Ethyl palmitate | - | 0.12 ± 0.001 |
44.221 | 5-Amino-8-cyano-7-methoxy-3,4-dihydro-3-methyl-1,6-naphthyridin-2(1H)-one | 0.83 ± 0.05 | - |
44.386 | 3,4-dihydro-2-(methoxymethyl)-4,4-dimethyl-5-phenyl-2H-Pyran | - | 30.03 ± 0.77 |
44.577 | 1-(7,8-dihydro-3-hydroxy-4-propyl-2-naphthalenyl)-Ethanone | - | 0.72 ± 0.62 |
45.003 | 1-Octadecene | - | 0.05 ± 0.05 |
45.622 | Ligularenolide | - | 0.11 ± 0.02 |
45.695 | (5E)-5-Icosene | 0.25 ± 0.22 | - |
45.762 | Liguhodgsonal | 0.46 ± 0.06 | - |
45.967 | Alpha-Methyl linolenate | 0.42 ± 0.13 | - |
45.993 | Ligularone | - | 2.00 ± 0.13 |
46.171 | Phytol | 11.51 ± 0.57 | - |
46.654 | Drimenol | - | 0.71 ± 0.62 |
46.718 | Linoleic acid | 2.08 ± 2.13 | - |
47.058 | Ethyl linoleate | - | 0.08 ± 0.01 |
48.269 | 13-Oxoellipticine | - | 1.13 ± 0.08 |
52.944 | 2-Monopalmitin | 1.50 ± 0.31 | - |
55.086 | 2-Methyl-5H-dibenzazepine | 0.13 ± 0.11 | - |
55.692 | 1-Monolinolein | 4.72 ± 0.66 | - |
55.829 | 2-Monolinolenin | 4.04 ± 0.46 | - |
57.595 | Squalene | 3.75 ± 0.26 | - |
59.911 | 12-methoxy-18-norpodocarpa-8,11,13-trien-19-ol | - | 5.05 ± 0.27 |
63.885 | 2-(5-methoxy-1-methyl-3-indolyl)acetic acid methyl ester | - | 0.4 ± 0.02 |
64.502 | Alpha-Tocopherol | 0.40 ± 0.05 | 0.08 ± 0.07 |
65.932 | Sesamin | 1.79 ± 0.09 | 0.30 ± 0.02 |
68.779 | Stigmasterol | 5.89 ± 0.02 | - |
70.968 | Gamma-Sitosterol | 6.10 ± 0.39 | - |
72.957 | Beta-Amyrin | 1.11 ± 0.06 | - |
81.239 | 1,2-Benzenediol, 4-(1-methyl-4-piperidinyl)- | - | 0.36 ± 0.31 |
84.315 | 4,5,6,7-tetraphenyl-1H-inden-1-one | - | 0.74 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Truong, V.-L.; Jeong, W.-S. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts. Plants 2022, 11, 3005. https://doi.org/10.3390/plants11213005
Kim T-H, Truong V-L, Jeong W-S. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts. Plants. 2022; 11(21):3005. https://doi.org/10.3390/plants11213005
Chicago/Turabian StyleKim, Tae-Hyu, Van-Long Truong, and Woo-Sik Jeong. 2022. "Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts" Plants 11, no. 21: 3005. https://doi.org/10.3390/plants11213005
APA StyleKim, T. -H., Truong, V. -L., & Jeong, W. -S. (2022). Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Ligularia fischeri Turcz: A Comparison between Leaf and Root Extracts. Plants, 11(21), 3005. https://doi.org/10.3390/plants11213005