Effect of Lippia alba (Mill.) N.E. Brown Essential Oil on the Human Umbilical Artery
Abstract
:1. Introduction
2. Results
2.1. Effect of the Essential Oil of Lippia alba on Basal Vascular Tone in Human Umbilical Artery
2.2. Relaxant Effect of EOLa on Contractions Induced by KCl (60 mM), 5-HT (10 µM), and HIST (10 µM) in HUA
2.3. Relaxant Effect of EOLa on High Conductance K+ Channels Activated by Ca2+ (BKCa), Voltage-Operated K+ Channels (Kv) and ATP-Sensitive K+ Channels (KATP)
2.4. Effect of EOLa on Voltage-Operated Ca2+ Channels (VOCCs)
3. Discussion
4. Materials and Methods
4.1. Solutions and Drugs
4.2. Lippia alba (Mill.) N.E. Brown Essential Oil
4.3. Tissue Preparation and Isolation
4.4. Determination of Tension Exerted on the HUA Rings
Experimental Series
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology and Applications, 1st ed.; CRC Press: London, UK; Taylor and Francis: London, UK, 2010; pp. 1–949. [Google Scholar]
- Malik, S.; Odeyemi, S.; Pereira, G.C.; Junior, L.M.F.; Abdul-Hamid, H.; Atabaki, N.; Makhzoum, A.; Bezerra de Almeida, E., Jr.; Dewar, J.; Abiri, R. New insights into the biotechnology and therapeutic potential of Lippia alba (Mill.) N.E.Br. ex P. Wilson. J. Essent. Oil Res. 2021, 33, 523–535. [Google Scholar] [CrossRef]
- Matos, F.J.A. Medicinal Plants: Selection Chart and Employment Plants Used in Phytotherapy in Northeast Brazil, 2nd ed.; University Press: Fortaleza, Bazil, 2000; pp. 1–346. [Google Scholar]
- Pascual, M.E.; Slowing, K.; Carretero, E.; Mata, D.S.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 2001, 76, 201–214. [Google Scholar] [CrossRef]
- Porfírio, E.M.; Melo, H.M.; Pereira, A.M.G.; Cavalcante, T.T.A.; Gomes, G.A.; De Carvalho, M.G.; Costa, R.A.; Júnior, F.E.A.C. In Vitro Antibacterial and Antibiofilm Activity of Lippia alba Essential Oil, Citral, and Carvone against Staphylococcus aureus. Sci. World J. 2017, 2017, 2496–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira de Oliveira, G.; Ferreira, J.M.S.; Lima, W.G.; Alves, L.F.; Duarte-Almeida, J.M.; Lima, L.A.R.D.S. Phytochemical characterisation and bioprospection for antibacterial and antioxidant activities of Lippia alba Brown ex Britton & Wilson (Verbenaceae). Nat. Prod. Res. 2018, 32, 723–731. [Google Scholar] [PubMed]
- Mamun-Or-Rashid, A.N.M.; Islam, M.R.; Dash, B.K. In vitro Antibacterial Effect of Bushy Matgrass (Lippia alba Mill.) Extracts. Res. J. Med. Plant 2012, 6, 334–340. [Google Scholar]
- Singh, G.; Rao, G.P.; Kapoor, P.S. Chemical constituents and antifungal activity of Lippia alba Mill. Leaf essential oil. JMAPS 2000, 22, 701–703. [Google Scholar]
- Tomazoni, E.Z.; Pansera, M.R.; Pauletti, G.F.; Moura, S.; Ribeiro, R.T.; Schwambach, J. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates. An. Acad. Bras. Ciências 2016, 88, 999–1010. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.T.; Ferreira, J.M.; Rosa, L.H.; Siqueira, E.P.; Johann, S.; Lima, L.A. In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae) against clinically important yeast species. Rev. Soc. Bras. Med. Trop. 2014, 47, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Sales, G.; Medeiros, S.; Soares, I.; Sampaio, T.; Bandeira, M.; Nogueira, N.; Queiroz, M. Antifungal and Modulatory Activity of Lemon Balm (Lippia alba (MILL.) N. E. BROWN) Essential Oil. Sci. Pharm. 2022, 90, 31. [Google Scholar] [CrossRef]
- Hatano, V.Y.; Torricelli, A.S.; Giassi, A.C. Anxiolytic effects of repeated treatment with an essential oil from Lippia alba end (R)-(-)-carvone in the elevated T-maze. Braz. J. Med. Biol. Res. 2012, 3, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Viana, G.S.; Vale, T.G.; Silva, C.M.; Matos, F.J. Anticonvulsant activity of essential oils and active principles from chemotypes of Lippia alba (Mill.) N.E. Brown. Biol. Pharm. Bull. 2000, 23, 1314–1317. [Google Scholar]
- Kampke, E.H.; Barroso, M.E.S.; Marques, F.M.; Fronza, M.; Scherer, R.; Lemos, M.F.; Campagnaro, B.P.; Gomes, L.C. Genotoxic effect of Lippia alba (Mill.) N. E. Brown essential oil on fish (Oreochromis niloticus) and mammal (Mus musculus). Environ. Toxicol. Pharmacol. 2018, 59, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.D.F.; Baldissera, M.D.; Bianchini, A.E.; Silva, E.G.; Mourão, R.H.V.; Silva, L.V.F.; Schmidt, D.; Heinzmann, B.M.; Baldisserotto, B. Citral and linalool chemotypes of Lippia alba essential oil as anesthetics for fish: A detailed physiological analysis of side effects during anesthetic recovery in silver catfish (Rhamdia quelen). Fish Physiol. Biochem. 2018, 44, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.G.; Sousa, S.D.; Silva, R.E.; Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; Kerntopf, M.R.; Menezes, I.R.; Leal-Cardoso, J.H.; Barbosa, R. Essential oil of Lippia alba and its main constituent citral block the excitability of rat sciatic nerves. Braz. J. Med. Biol. Res. 2015, 48, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.M.M.; Macêdo, C.A.F.; Ribeiro, T.F.; Silva, A.A.; Da Silva, R.E.R.; de Morais, L.P.; Kerntopf, M.R.; Menezes, I.R.A.; Barbosa, R. Effect of the Lippia alba (Mill.) N.E. Brown essential oil and its main constituents, citral and limonene, on the tracheal smooth muscle of rats. Biotechnol. Rep. 2018, 17, 31–34. [Google Scholar] [CrossRef]
- Blanco, M.A.; Colareda, G.A.; Baren, C.V.; Bandoni, A.L.; Ringuelet, A.E.; Consolini, A.E. Antispasmodic effects and composition of the essential oils from two South American chemotypes of Lippia alba. J. Ethnopharmacol. 2013, 149, 803–809. [Google Scholar] [CrossRef]
- Pereira-de-Morais, L.; Silva, A.A.; Da Silva, R.E.R.; Costa, R.H.S.; Monteiro, A.B.; Santos, C.R.; Amorim, T.S.; Menezes, I.R.A.; Kerntopf, M.R.; Barbosa, R. Tocolytic activity of the Lippia alba essential oil and its major constituents, citral and limonene, on the isolated uterus of rats. Chem.-Biol. Interact. 2019, 297, 155–159. [Google Scholar] [CrossRef]
- Silva, R.E.R.; De Morais, L.P.; Silva, A.A.; Bastos, C.M.S.; Gonçalves, A.P.; Kerntopf, M.R.; Menezes, I.R.A.; Leal-Cardoso, J.H.; Barbosa, R. Vasorelaxant effect of the Lippia alba essential oil and its major constituent, citral, on the contractility of isolated rat aorta. Biomed Pharm. 2018, 108, 792–798. [Google Scholar] [CrossRef]
- Hennebelle, T.; Sahpaz, S.; Joseph, H.; Bailluel, F. Ethnopharmacology of Lippia alba. J. Ethnopharmacol. 2008, 116, 211–222. [Google Scholar] [CrossRef]
- Hennebelle, T.; Sahpaz, S.; Gressier, B. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba. Phytother. Res. 2008, 22, 256–258. [Google Scholar] [CrossRef]
- Borges, M.S.; Dars, M.F.; Silva, P.C.; Citadini-Zanette, V.; Dal, S.B.; Amaral, P.A. Ethnobotanical study of selected medicinal plants used for the treatment of respiratory diseases in Southern Brazil. J. Med. Plants Res. 2021, 15, 22–34. [Google Scholar]
- Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, 745–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; Costa, F.D.S.; Von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raia-Barjat, T.; Osasere, E.; Ainle, F.N. Preeclampsia and Venous Thromboembolism: Pathophysiology and Potential Therapy. Front. Cardiovasc. Med. 2022, 9, 856–923. [Google Scholar] [CrossRef]
- Wilkerson, R.G.; Ogunbodede, A.C. Hypertensive Disorders of Pregnancy. Emerg. Med. Clin. N. Am. 2019, 37, 301–316. [Google Scholar] [CrossRef]
- Silva, R.E.R.; Silva, A.D.A.; Pereira-De-Morais, L.; Almeida, N.D.S.; Iriti, M.; Kerntopf, M.R.; Menezes, I.R.A.; Coutinho, H.D.M.; Barbosa, R. Relaxant Effect of Monoterpene (-)-Carveol on Isolated Human Umbilical Cord Arteries and the Involvement of Ion Channels. Molecules 2020, 25, 2681. [Google Scholar]
- Speroni, F.; Rebolledo, A.; Salemme, S.; Roldán-Palomo, R.; Rimorini, L.; Añón, M.C.; Spinillo, A.; Tanzi, F.; Milesi, V. Genistein effects on Ca2+ handling in human umbilical artery: Inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels. J. Physiol. Biochem. 2009, 65, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.Q.; Zhou, H.B.; Shen, Y.L.; Chen, X.Z.; Wang, L.L. A comparison study on the responses of umbilical arteries and thoracic aortics to the adrenergic receptor agonists. Cell Biol. Int. 2008, 32, 55. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M.T.; Jacobo-Albavera, L. Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: A review. Appl. Sci. 2020, 10, 938. [Google Scholar] [CrossRef] [Green Version]
- Maynard, L.G.; Santos, K.C.; Cunha, P.S.; Barreto, A.S.; Peixoto, M.G.; Arrigoni-Blank, F.; Blank, A.F.; Alves, P.B.; Bonjardin, L.R.; Santos, M.R. Chemical composition and vasorelaxant effect induced by the essential oil of Lippia alba (Mill.) N.E. Brown. (Verbenaceae) in rat mesenteric artery. Indian J. Pharmacol. 2011, 43, 694–698. [Google Scholar]
- Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 2005, 57, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ragnarsson, L.; Lewis, R.J. T-type Calcium Channels in Health and Disease. Curr. Med. Chem. 2020, 27, 3098–3122. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.; Mathie, A.; Peters, J.A. Guide to Receptors and Channels (GRAC). Br. J. Pharmacol. 2007, 150, 1–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.J.; Li, C.C.; Bangalore, R.; Benson, T.; Kass, R.S.; Hinkle, P.M. Inhibition of L-type calcium-channel activity by thapsigargin and 2,5-t-butylhydroquinone, but not by cyclopiazonic acid. Biochem. J. 1994, 302, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Gollasch, M.; Nelson, M.T. Voltage-dependent Ca2+ channels in arterial smooth muscle cells. Kidney Blood Press. Res. 1997, 20, 355–371. [Google Scholar] [CrossRef]
- Seres-Bokor, A.; Kemény, K.K.; Taherigorji, H.; Schaffer, A.; Kothencz, A.; Gáspár, R.; Ducza, E. The Effect of Citral on Aquaporin 5 and Trpv4 Expressions and Uterine Contraction in Rat—An Alternative Mechanism. Life 2021, 11, 897. [Google Scholar] [CrossRef]
- Araújo, I.G.A. Hypotensive and Vasorelaxant Effects of Lippia microphylla Cham Essential Oil and Its Major Constituent Thymol: Involvement of Calcium Channels Blockage. Ph.D. Thesis, Federal University of Paraíba, João Pessoa, Brazil, 2011. [Google Scholar]
- Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.A.; Lamperti, L. Lemon grass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem. 2014, 151, 175–181. [Google Scholar] [CrossRef]
- Lorigo, M.; Quintaneiro, C.; Lemos, M.C.; Martinez-De-Oliveira, J.; Breitenfeld, L.; Cairrão, E. UV-B filter octylmethoxycinnamate induces vasorelaxation by Ca2+ channel inhibition and guanylyl cyclase activation in human umbilical arteries. Int. J. Mol. Sci. 2019, 20, 1376. [Google Scholar] [CrossRef] [Green Version]
- Santos-Silva, A.J.; Cairrão, E.; Verde, I. Study of the mechanisms regulating human umbilical artery contractility. Health 2010, 2, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Mildenberger, E.; Biesel, B.; Siegel, G.; Versmold, H.T. Nitric oxide and endothelin in oxygen-dependent regulation of vascular tone of human umbilical vein. Am. J. Physiol. Circ. Physiol. 2003, 285, 1730–1737. [Google Scholar] [CrossRef] [Green Version]
- Tufan, H.; Ayan-Polat, B.; Tecder-Unal, M.; Polat, G.; Kayhan, Z.; Oğüş, E. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci. 2003, 72, 1321–1329. [Google Scholar] [CrossRef]
- Milesi, V.; Raingo, J.; Rebolledo, A.; Grassi De Gende, A.O. Potassium channels in human umbilical artery cells. J. Soc. Gynecol. Investig. 2003, 10, 339–346. [Google Scholar] [CrossRef]
- Leung, S.W.S.; Quan, A.; Lao, T.T.; Man, R.Y.K. Efficacy of different vasodilators on human umbilical arterial smooth muscle under normal and reduced oxygen conditions. Early Hum. Dev. 2006, 82, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.C.; Van Geijn, H.P.; Dekker, G.A. Management and monitoring of severe preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 96, 8–20. [Google Scholar] [CrossRef]
- Gupta, S.; Hanff, L.M.; Visser, W.; Steegers, E.A.; Saxena, P.R.; Vulto, A.G.; Maassen Van Den Brink, A. Functional reactivity of 5-HT receptors in human umbilical cord and maternal subcutaneous fat arteries after normotensive or pre-eclamptic pregnancy. J. Hypertens. 2006, 24, 1345–1353. [Google Scholar] [CrossRef]
- Knot, H.J.; Zimmermann, P.A.; Nelson, M.T. Extracellular K(+)-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J. Physiol. 1996, 492, 419–430. [Google Scholar] [CrossRef]
- Lin, A.L.; Shangari, N.; Chan, T.S.; Remirez, D.; O’Brien, P.J. Herbal monoterpene alcohols inhibit propofol metabolism and prolong anesthesia time. Life Sci. 2006, 79, 21–29. [Google Scholar] [CrossRef]
- Lorigo, M.; Oliveira, N.; Cairrão, E. Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020, 9, 4–8. [Google Scholar] [CrossRef]
- Macêdo, C.L. Involvement of Potassium Channels in the Spasmolytic Action of 8,12E, 14-Labdatrien-18 Oic Acid (Labdane-302), Obtained from Xylopia langsdorfiana A. St.-Hil. & Tul. on Guinea-Pig Ileum. Master’s Thesis, Federal University of Paraíba, João Pessoa, Brazil, 2008. [Google Scholar]
- Maqoud, F.; Scala, R.; Hoxha, M.; Zappacosta, B.; Tricarico, D. ATP-sensitive Potassium Channel Subunits in Neuroinflammation: Novel Drug Targets in Neurodegenerative Disorders. CNS Neurol. Disord.-Drug Targets 2022, 21, 130–149. [Google Scholar] [CrossRef]
- Scala, R.; Maqoud, F.; Zizzo, N.; Mele, A.; Camerino, G.M.; Zito, F.A.; Ranieri, G.; Mcclenaghan, C.; Harter, T.M.; Nichols, C.G.; et al. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front. Pharmacol. 2020, 11, 604–885. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Maternal Reproductive Toxicity of Some Essential Oils and Their Constituents. Int. J. Mol. Sci. 2021, 22, 2380. [Google Scholar] [CrossRef] [PubMed]
- Seca, A.M.I.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Schor, N.F. Why our patients (and we) need basic science research. Neurology 2013, 80, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Alencar, J.W.; Craveiro, A.A.; Matos, F.J.A.; Machado, M.I.L. Kovats Indices Simulation in Essential Oil Analysis. Química Nova 1990, 13, 282–283. [Google Scholar]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press, Inc.: Waco, TX, USA, 1989. [Google Scholar]
- Stenhagen, E.; Abrahmsson, S.; McLafferty, F.C. Registry of Mass Spectral Data; John Wiley Sons: New York, NY, USA, 1974. [Google Scholar]
- Zechmeister, L. Progress in the Chemistry of Organic Natural Products; Springer: New York, NY, USA, 1979. [Google Scholar]
Substances | EC50 of EOLa | SSIC, Total Relaxation (%) |
---|---|---|
Potassium chloride (60 mM) | 377.0 ± 4.3 µg/mL | 100 µg/mL (p < 0.017), 100% |
Serotonin (10 µM) | 339.8 ± 4.5 µg/mL | 200 µg/mL (p < 0.001), 100% |
Histamine (10 µM) | 277.1 ± 8.5 µg/mL | 200 µg/mL (p < 0.001), 100% |
Tetraethylammonium (1 mM) | 471.2 ± 5.8 µg/mL | 200 µg/mL (p < 0.023), 100% |
Tetraethylammonium (10 mM) | 526.4 ± 4.0 µg/mL | 200 µg/mL (p < 0.017), 100% |
Glibenclamide (10 µM) | 530.8 ± 6.5 µg/mL | 200 µg/mL (p < 0.008), 90,8% |
4-Aminopyridine (1 mM) | 494.0 ± 8.8 µg/mL | 400 µg/mL (p < 0.002), 100% |
Constituent | Content (%) |
---|---|
E-Geranial | 41.81 |
Z-Neral | 34.11 |
Limonene | 9.85 |
Carvone | 8.92 |
Gamma-terpinene | 2.05 |
Benzene-1-methyl-3-(1-methylethyl) 6-methyl-5-hepten-2-one Alpha-humulene | 1.00 0.72 0.58 |
Linalool Beta-pinene | 0.50 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.S.; Bastos, C.M.S.; Dantas, D.M.; Milfont, C.G.B.; Brito, G.M.H.; Pereira-de-Morais, L.; Delmondes, G.A.; da Silva, R.E.R.; Kennedy-Feitosa, E.; Maia, F.P.A.; et al. Effect of Lippia alba (Mill.) N.E. Brown Essential Oil on the Human Umbilical Artery. Plants 2022, 11, 3002. https://doi.org/10.3390/plants11213002
Borges AS, Bastos CMS, Dantas DM, Milfont CGB, Brito GMH, Pereira-de-Morais L, Delmondes GA, da Silva RER, Kennedy-Feitosa E, Maia FPA, et al. Effect of Lippia alba (Mill.) N.E. Brown Essential Oil on the Human Umbilical Artery. Plants. 2022; 11(21):3002. https://doi.org/10.3390/plants11213002
Chicago/Turabian StyleBorges, Alex S., Carla M. S. Bastos, Debora M. Dantas, Cícera G. B. Milfont, Guilherme M. H. Brito, Luís Pereira-de-Morais, Gyllyandeson A. Delmondes, Renata E. R. da Silva, Emanuel Kennedy-Feitosa, Francisco P. A. Maia, and et al. 2022. "Effect of Lippia alba (Mill.) N.E. Brown Essential Oil on the Human Umbilical Artery" Plants 11, no. 21: 3002. https://doi.org/10.3390/plants11213002