Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Phenolic Compounds Using UHPLC-ESI-MS/MS
2.2. Determination of Antioxidant Activity and Correlation with TPC
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Sample Preparation
3.4. Determination of Total Phenolic Content and Quantitative Composition by UHPLC-ESI-MS/MS Technique
3.5. Determination of Antioxidant Activity
3.5.1. DPPH• Free Radical Scavenging Assay
3.5.2. CUPRAC Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- González-Burgos, E.; Liaudanskas, M.; Viškelis, J.; Žvikas, V.; Janulis, V.; Gómez-Serranillos, M.P. Antioxidant Activity, Neuroprotective Properties and Bioactive Constituents Analysis of Varying Polarity Extracts from Eucalyptus globulus Leaves. J. Food Drug Anal. 2018, 26, 1293–1302. [Google Scholar] [CrossRef]
- Olas, B. Berry Phenolic Antioxidants—Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Sinelli, N.; Spinardi, A.; Egidio, V.D.; Mignani, I.; Casiraghi, E. Evaluation of Quality and Nutraceutical Content of Blueberries (Vaccinium corymbosum L.) by near and Mid-Infrared Spectroscopy. Postharvest Biol. Technol. 2008, 50, 31–36. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Oszmiański, J.; Golis, T. Phytochemical Compounds and Biological Effects of Actinidia Fruits. J. Funct. Foods 2017, 30, 194–202. [Google Scholar] [CrossRef]
- Inil, L.; Sungbin, I.; Cheng-Ri, J.; Jin, H.H.; Youn-Sup, C.; Moo-Yeol, B.; Dae-Ok, K. Effect of Maturity Stage at Harvest on Antioxidant Capacity and Total Phenolics in Kiwifruits (Actinidia Spp.) Grown in Korea. Hortic. Environ. Biotechnol. 2015, 56, 841–848. [Google Scholar] [CrossRef]
- An, X.; Lee, S.G.; Kang, H.; Heo, H.J.; Cho, Y.S.; Kim, D.O. Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells. J. Microbiol. Biotechnol. 2016, 26, 1367–1374. [Google Scholar] [CrossRef]
- Henare, S.J. The Nutritional Composition of Kiwifruit (Actinidia spp.). In Nutritional Composition of Fruit Cultivars; Simmonds, S.J.M., Preedy, R.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 337–370. ISBN 978-0-12-408117-8. [Google Scholar]
- Yong-Seo, P.; Jacek, N.; Kann, V.; Hanna, L.; Maria, L.; Dinorah, B.; Alina, N.; Simon, T.; Shela, G. Bioactive Compounds and the Antioxidant Capacity in New Kiwi Fruit Cultivars. Food Chem. 2014, 165, 354–361. [Google Scholar] [CrossRef]
- Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L. Antioxidant Capacity, Ascorbic Acid, Total Phenols and Carotenoids Changes during Harvest and after Storage of Hayward Kiwifruit. Food Chem. 2008, 107, 282–288. [Google Scholar] [CrossRef]
- Latocha, P.; Wołosiak, R.; Worobiej, E.; Krupa, T. Clonal Differences in Antioxidant Activity and Bioactive Constituents of Hardy Kiwifruit (Actinidia arguta) and Its Year-to-Year Variability. J. Sci. Food Agric. 2013, 93, 1412–1419. [Google Scholar] [CrossRef]
- Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y.S.; Katrich, E.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and Nutritional Properties of Hardy Kiwi Fruit Actinidia arguta in Comparison with Actinidia deliciosa ‘Hayward’ and Actinidia Eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Dong, E.J.; Seon, K.P.; Chang, H.P.; Tae, W.S.; Heo, H. Nutritional Compositions of Three Traditional Actinidia (Actinidia arguta) Cultivars Improved in Korea. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1942–1947. [Google Scholar] [CrossRef]
- Zuo, L.-L.; Wang, Z.-Y.; Fan, Z.-L.; Tian, S.-Q.; Liu, J.-R. Evaluation of Antioxidant and Antiproliferative Properties of Three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) Extracts in Vitro. Int. J. Mol. Sci. 2012, 13, 5506–5518. [Google Scholar] [CrossRef] [Green Version]
- Latocha, P.; Łata, B.; Stasiak, A. Phenolics, Ascorbate and the Antioxidant Potential of Kiwiberry vs. Common Kiwifruit: The Effect of Cultivar and Tissue Type. J. Funct. Foods 2015, 19, 155–163. [Google Scholar] [CrossRef]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P. Kiwifruit Leaves (Actinidia arguta): An Extraordinary Source of Value-Added Compounds for Food Industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Li, J.; Liang, Y.; Yang, R.; Liu, J.; Ma, Z.; Wu, L. Evaluation of Biochemical Components and Antioxidant Capacity of Different Kiwifruit (Actinidia spp.) Genotypes Grown in China. Biotechnol. Biotechnol. Equip. 2018, 32, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Latocha, P.; Krupa, T.; Wołosiak, R.; Worobiej, E.; Wilczak, J. Antioxidant Activity and Chemical Difference in Fruit of Different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D. Characteristics and Pro-Health Properties of Mini Kiwi (Actinidia arguta). Hortic. Environ. Biotechnol. 2019, 60, 217–225. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Oliveras, M.J.; Quesada, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship between Composition and Bioactivity of Persimmon and Kiwifruit. Food Res. Int. 2018, 105, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Beppu, K.; Kataoka, I. Varietal Differences in Phenolic Content and Astringency in Skin and Flesh of Hardy Kiwifruit Resources in Japan. Sci. Hortic. 2009, 120, 551–554. [Google Scholar] [CrossRef]
- Babenko, L.; Smirnov, O.; Romanenko, K.O.; Trunova, O.; Kosakivska, I.V. Phenolic Compounds in Plants: Biogenesis and Functions. Ukr. Biochem. J. 2019, 19, 5–18. [Google Scholar] [CrossRef]
- Król, A.; Amarowicz, R.; Weidner, S. Changes in the Composition of Phenolic Compounds and Antioxidant Properties of Grapevine Roots and Leaves (Vitis vinifera L.) under Continuous of Long-Term Drought Stress. Acta Physiol. Plant. 2014, 36, 1491–1499. [Google Scholar] [CrossRef] [Green Version]
- Rehman, F.; Khan, F.; Badruddin, S. Role of Phenolics in Plant Defense against Insect Herbivory. In Chemistry of Phytopotentials: Health, Energy and Environmental Perspective; Khemani, L., Srivastava, M., Srivastava, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Weidner, S.; Karamać, M.; Amarowicz, R.; Szypulska, E.; Gołgowska, A. Changes in Composition of Phenolic Compounds and Antioxidant Properties of Vitis amurensis Seeds Germinated under Osmotic Stress. Acta Physiol. Plant. 2007, 29, 283–290. [Google Scholar] [CrossRef]
- Huang, H. Kiwifruit: The Genus Actinidia; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 45–167. ISBN 978-0-12-803066-0. [Google Scholar]
- Cesoniene, L. Content of Biochemical Components in Berries of Kolomikta Kiwi (Actinidia kolomikta). Acta Hortic. Regiotect. 2007, 10, 24–27. [Google Scholar]
- Latocha, P. The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta)—A Review. Plant Foods Hum. Nutr. 2017, 72, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Marangi, F.; Pinto, D.; de Francisco, L.; Alves, R.C.; Puga, H.; Sut, S.; Dall’Acqua, S.; Rodrigues, F.; Oliveira, M.B.P. Hardy Kiwi Leaves Extracted by Multi-Frequency Multimode Modulated Technology: A Sustainable and Promising by-Product for Industry. Food Res. Int. 2018, 112, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Changhua, T.; Zhigang, W.; Xiuli, F.; Muhammad, I.; Liu, C. Identification of Bioactive Compounds in Leaves and Fruits of Actinidia arguta Accessions from Northeastern China and Assessment of Their Antioxidant Activity with a Radical-Scavenging Effect. Biotechnol. Biotechnol. Equip. 2021, 35, 593–607. [Google Scholar] [CrossRef]
- Suray, P.F.; Benadé, A.J.S.; Speake, B. Natural Antioxidants in Land- and Marine-Based Wild-Type Food. In Wild-Type Food in Health Promotion and Disease Prevention: The Columbus Concept; De Meester, F., Watson, R.R., Eds.; Humana Press: Totowa, NJ, USA, 2008; ISBN 978-1-58829-668-9. [Google Scholar]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, G.; Heidi, H.; Karl, S. Phloridzin: Biosynthesis, Distribution and Physiological Relevance in Plants. Phytochemistry 2010, 71, 838–843. [Google Scholar] [CrossRef]
- Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Discovery of Galangin as a Potential DPP-4 Inhibitor That Improves Insulin-Stimulated Skeletal Muscle Glucose Uptake: A Combinational Therapy for Diabetes. Int. J. Mol. Sci. 2019, 20, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikami-Konishide, I.; Murakami, S.; Nakanishi, K.; Takahashi, Y.; Yamaguchi, M.; Shioya, T.; Watanabe, J.; Hino, A. Antioxidant capacity and polyphenol content of extracts from crops cultivated in Japan, and the effect of cultivation environment. Food Sci. Technol. Res. 2013, 19, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Balciunaitiene, A.; Viskelis, P.; Viskelis, J.; Streimikyte, P.; Liaudanskas, M.; Bartkiene, E.; Zavistanaviciute, P.; Zokaityte, E.; Starkute, V.; Ruzauskas, M.; et al. Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Process 2021, 9, 1304. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of Total Phenolics, Anthocyanins, Ellagic Acid and Radical Scavenging Capacity in Various Raspberry (Rubus spp.) Cultivars. Food Chem. 2012, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Phenolic Compound, µg/g | Cultivar of A. kolomikta | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Flavan-3-ols | ||||||||||||
(−)-Epicatechin | 21.81 ef | 478.56 b | 39.49 e | 566.72 a | 2.01 f | 8.86 f | 138.08 d | 110.79 c | 141.85 d | 40.38 e | 17.03 ef | 151.33 d |
(+)-Catechin | 88.16 d | 516.65 a | 30.25 fg | 197.61 b | 7.71 gh | - | 163.93 c | 39.96 ef | 59.59 e | 10.87 gh | - | 110.65 d |
Procyanidin C1 | 766.59 ef | 3888.09 ef | 430.94 h | 4168.91 a | 473.16 h | 870.36 e | 1254.90 d | 669.08 fg | 1443.84 c | 540.26 gh | 514.95 h | 796.95 ef |
Flavones | ||||||||||||
Acacetin | - | 8.90 a | 3.27 c | - | 2.38 d | - | - | - | - | - | - | 5.98 b |
Apigenin | 0.65 c | - | 0.03 f | 0.45 d | 0.28 e | 0.49 d | 0.28 e | - | 0.83 b | 0.45 d | 0.31 e | 0.90 a |
Phenolic acids | ||||||||||||
Caffeic acid | - | - | - | 8.37 b | - | 1.94 c | - | - | - | - | - | 9.80 a |
Chlorogenic acid | 72.24 d | 435.17 a | 144.10 c | 36.5 f | 44.33 ef | 15.74 g | 11.64 g | 15.17 g | 55.23 e | 224.27 b | 153.51 c | 58.43 de |
Neochlorogenic acid | 101.37 e | 758.44 a | 16.87 g | 450.52 c | 8.64 g | 71.12 f | 114.24 e | 99.36 ef | 576.96 b | 35.64 g | 35.22 g | 360.25 d |
Flavonols | ||||||||||||
Kaempherol | 121.95 e | 193.84 d | 214.47 cd | 460.19 a | 220.45 c | 190.61 d | 35.27 f | 135.68 e | 373.36 b | 471.56 a | 470.34 a | 222.81 c |
Kaempherol-3-O-glucoside | 344.32 g | 902.35 c | 439.04 f | 1119.18 b | 221.24 i | 825.13 d | 783.29 d | 256.86 hi | 1309.04 a | 604.09 e | 305.23 gh | 550.80 e |
Quercetin | 35.80 i | 108.77 d | 47.96 h | 209.17 a | 59.65 fg | 55.37 fgh | 11.66 j | 63.75 f | 79.52 e | 144.67 b | 121.14 c | 54.41 gh |
Galangin | - | 3.55 a | - | - | - | - | - | - | - | - | - | - |
Phloridzin | - | - | - | - | - | - | - | - | - | - | 1.68 a | - |
Quercitrin | 2.80 e | 0.87 h | 14.12 a | 2.84 e | 5.05 c | 2.37 f | 1.41 g | 1.76 g | 2.8 e | 1.74 g | 11.2 b | 3.53 d |
Rutin | 29.87 d | 67.52 a | 52.58 b | 24.72 e | 8.97 h | 5.50 i | 17.52 g | 15.72 g | 32.66 c | 23.88 ef | 21.58 f | 18.25 g |
Isorhamnetin | 291.57 c | 317.02 c | 168.13 f | 311.99 c | 366.56 b | 348.73 b | 96.04 g | 254.19 d | 207.19 e | 351.35 b | 432.77 a | 298.72 c |
Isorhamnetin-3-O-rutinoside | 0.57 b | - | - | - | - | - | - | - | - | 0.70 a | - | - |
Phenolic Compound, µg/g | Cultivar of A. kolomikta | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Flavan-3-ols | ||||||||||||
(−)-Epicatechin | 178.21 b | 96.75 g | 117.44 de | - | 100.05 fg | 125.96 d | 106.92 f | 124.83 d | 147.21 c | 109.81 ef | 107.78 ef | 204.44 a |
(+)-Catechin | 9.64 f | - | 4.12 i | - | 5.59 h | 14.92 de | 13.89 e | 15.63 cd | 16.10 c | 17.54 b | 6.76 g | 27.17 a |
Procyanidin C1 | 832.34 b | 729.8 c | 708.89 c | - | 567.27 d | 577.97 d | 316.04 f | 563.67 d | 840.5 b | 409.61 e | 548.15 d | 1236.66 a |
Flavones | ||||||||||||
Apigenin | 0.07 e | 0.05 f | - | - | 0.22 b | 0.33 a | 0.02 g | - | 0.09 d | 0.14 c | - | 0.09 d |
Phenolic acids | ||||||||||||
Caffeic acid | - | - | - | - | - | 2.62 a | - | - | - | - | - | - |
Chlorogenic acid | 54.49 ef | 62.37 d | 75.71 c | - | 23.72 g | 21.6 g | 14.48 h | 88.24 b | 52.08 f | 84.46 b | 125.92 a | 58.36 de |
Neochlorogenic acid | - | - | - | - | - | - | - | - | - | - | - | 0.57 a |
Flavonols | ||||||||||||
Kaempherol | 29.32 c | 35.25 a | - | - | 31.46 b | - | 25.45 d | 10.25 f | 3.63 g | 19.86 e | 3.44 g | 4.74 g |
Kaempherol-3-O-glucoside | 97.83 h | 380.98 b | 401.75 b | - | 228.64 e | 479.49 a | 197.17 f | 275.1 d | 351.48 c | 129.98 g | 179.11 f | 91.86 h |
Quercetin | 67.79 b | 7.1 e | 1.27 f | - | 4.46 e | 82.54 a | 4.33 e | 24.23 c | 13.17 d | 5.45 e | - | 4.46 e |
Quercitrin | 1.8 a | 1.75 ab | 1.4 c | - | 0.89 e | 1.38 c | 0.66 f | 1.47 c | 1.67 b | 0.73 f | 1.0 e | 1.2 d |
Rutin | 24.29 b | 7.76 gh | 9.47 efg | 0 | 7.7 h | 9.77 ef | 10.44 e | 13.63 d | 15.46 c | 2.69 i | 8.33 fgh | 54.94 a |
Isorhamnetin | 20.32 c | 42.82 a | - | - | 15.16 d | 15.83 d | 31.26 b | - | 9.74 e | - | 4.12 f | - |
Cultivar/Clone | Part of Plant | Total Flavan-3-Ols | Total Flavones | Total Phenolic Acids | Total Flavonols | ∑ Phenolic Compounds |
---|---|---|---|---|---|---|
‘Anykšta’ | BERRIES | 1020.18 ± 23.9 b | 0.07 ± 0 e | 54.49 ± 0.98 ef | 241.35 ± 8.42 f | 1316.09 ± 33.05 c |
‘Aromatnaja’ | 826.55 ± 31.77 c | 0.05 ± 0 f | 62.37 ± 2.12 d | 475.67 ± 16.38 b | 1364.64 ± 50.12 bc | |
‘Krupnoplodnaja’ | 830.46 ± 18.6 c | 0 ± 0 h | 75.71 ± 2.7 c | 413.89 ± 8 c | 1320.06 ± 29.25 c | |
‘Laiba’ | - | - | - | - | - | |
‘Landė’ | 672.9 ± 17.97 d | 0.22 ± 0.01 b | 23.72 ± 0.77 g | 288.31 ± 8.34 e | 985.15 ± 26.97 e | |
‘Lankė’ | 718.85 ± 17.15 d | 0.33 ± 0.01 a | 24.23 ± 0.78 g | 589.01 ± 17.49 a | 1332.42 ± 34.95 c | |
‘Matovaja’ | 436.84 ± 16.62 f | 0.02 ± 0 g | 14.48 ± 0.44 h | 269.31 ± 6.14 ef | 720.64 ± 23.12 f | |
‘Paukštės Šakarva’ | 704.13 ± 13.87 d | 0 ± 0 h | 88.24 ± 2.64 b | 324.68 ± 12.02 d | 1117.05 ± 28.21 d | |
‘Pavlovskaja’ | 1003.81 ± 35.22 b | 0.09 ± 0 d | 52.08 ± 1.13 f | 395.15 ± 13.05 c | 1451.13 ± 49.11 b | |
‘Sentiabrskaja’ | 536.97 ± 10.09 e | 0.14 ± 0.01 c | 84.46 ± 3.37 b | 158.72 ± 6.05 h | 780.29 ± 19.49 f | |
‘VIR-1’ | 662.69 ± 26.95 d | 0 ± 0 h | 125.92 ± 2.19 a | 196 ± 8.12 g | 984.61 ± 37.23 e | |
‘VIR-2’ | 1468.26 ± 39.18 a | 0.09 ± 0 d | 58.92 ± 0.96 de | 157.21 ± 3.24 h | 1684.48 ± 43.35 a | |
‘Anykšta’ | LEAVES | 876.55 ± 31.77 cd | 0.65 ± 0.02 ef | 173.61 ± 4.51 f | 826.87 ± 31 gh | 1877.7 ± 67.1 ef |
‘Aromatnaja’ | 4883.3 ± 131.11 a | 8.9 ± 0.33 a | 1193.61 ± 37.21 a | 1593.91 ± 38.43 c | 7679.72 ± 206.67 a | |
‘Krupnoplodnaja’ | 500.67 ± 16.79 e | 3.31 ± 0.1 c | 160.96 ± 2.86 fg | 936.29 ± 33.58 fg | 1601.23 ± 53.08 fg | |
‘Laiba’ | 4933.24 ± 164.67 a | 0.45 ± 0.02 fg | 495.4 ± 16.85 c | 2128.08 ± 54.45 a | 7557.17 ± 235.41 a | |
‘Landė’ | 482.89 ± 19.15 e | 2.66 ± 0.06 d | 52.97 ± 1.85 i | 881.91 ± 28.8 fg | 1420.44 ± 49.85 g | |
‘Lankė’ | 879.22 ± 23.82 cd | 0.49 ± 0.02 efg | 88.8 ± 3.81 hi | 1427.71 ± 48.81 d | 2396.21 ± 76.32 cd | |
‘Matovaja’ | 1556.9 ± 32.85 b | 0.28 ± 0.01 gh | 125.88 ± 4.98 gh | 945.2 ± 32.75 f | 2628.27 ± 70.14 c | |
‘Paukštės Šakarva’ | 819.82 ± 19.66 d | 0 ± 0 h | 114.53 ± 3.38 h | 727.96 ± 18.55 h | 1662.32 ± 41.48 fg | |
‘Pavlovskaja’ | 1645.27 ± 38.97 b | 0.83 ± 0.02 e | 632.18 ± 15.91 b | 2004.58 ± 52.9 b | 4282.87 ± 107.28 b | |
‘Sentiabrskaja’ | 591.51 ± 8.96 e | 0.45 ± 0.01 fg | 259.92 ± 9.19 e | 1597.99 ± 46.32 c | 2449.86 ± 64.41 c | |
‘VIR-1’ | 531.98 ± 17.86 e | 0.31 ± 0.01 fgh | 188.73 ± 7.24 f | 1363.94 ± 31.73 d | 2084.96 ± 56.75 de | |
‘VIR-2’ | 1058.93 ± 26.95 c | 6.88 ± 0.27 b | 428.47 ± 14.16 d | 1148.53 ± 43.84 e | 2642.81 ± 85.04 c |
Cultivar | Origin | Berries Analyses | Leaves Analyses | |
---|---|---|---|---|
1 | ‘Anykšta’ | Private collection, Lithuania | + | + |
2 | ‘Aromatnaja’ | Pavlovsk Research Station, Russian Federation | + | + |
3 | ‘Krupnoplodnaja’ | Pavlovsk Research Station, Russian Federation | + | + |
4 | ‘Laiba’ | VMU Agriculture Academy, Lithuania | − | + |
5 | ‘Landė’ | VMU Agriculture Academy, Lithuania | + | + |
6 | ‘Lankė’ | VMU Agriculture Academy, Lithuania | + | + |
7 | ‘Matovaja’ | Pavlovsk Research Station, Russian Federation | + | + |
8 | ‘Paukstės Sakarva’ | VMU Agriculture Academy, Lithuania | + | + |
9 | ‘Pavlovskaja’ | Pavlovsk Research Station, Russian Federation | + | + |
10 | ‘Sentiabrskaja’ | Pavlovsk Research Station, Russian Federation | + | + |
11 | ‘VIR-1’ | Pavlovsk Research Station, Russian Federation | + | + |
12 | ‘VIR-2’ | Pavlovsk Research Station, Russian Federation | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Česonienė, L.; Štreimikytė, P.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Viškelis, J.; Daubaras, R. Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds. Plants 2022, 11, 147. https://doi.org/10.3390/plants11020147
Česonienė L, Štreimikytė P, Liaudanskas M, Žvikas V, Viškelis P, Viškelis J, Daubaras R. Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds. Plants. 2022; 11(2):147. https://doi.org/10.3390/plants11020147
Chicago/Turabian StyleČesonienė, Laima, Paulina Štreimikytė, Mindaugas Liaudanskas, Vaidotas Žvikas, Pranas Viškelis, Jonas Viškelis, and Remigijus Daubaras. 2022. "Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds" Plants 11, no. 2: 147. https://doi.org/10.3390/plants11020147
APA StyleČesonienė, L., Štreimikytė, P., Liaudanskas, M., Žvikas, V., Viškelis, P., Viškelis, J., & Daubaras, R. (2022). Berries and Leaves of Actinidia kolomikta (Rupr. & Maxim.) Maxim.: A Source of Phenolic Compounds. Plants, 11(2), 147. https://doi.org/10.3390/plants11020147