The Diversity of Fungi Involved in Damage to Japanese Quince
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mierina, I.; Serzane, R.; Strele, M.; Moskaluka, J.; Seglina, D.; Jure, M. Extracts of Japanese quince seeds -potential source of antioxidants. In Proceedings of the 6th Baltic Conference on Food Science and Technology FOODBALT-2011. Innovations for Food Science and Production, Jelgava, Latvia, 5–6 May 2011; Faculty of Food Technology, Latvia University of Agriculture: Jelgava, Latvia, 2011; pp. 98–103. [Google Scholar]
- Baranowska-Bosiacka, I.; Bosiacka, B.; Rast, J.; Gutowska, I.; Wolska, J.; Rębacz-Maron, E.; Dębia, K.; Janda, K.; Korbecki, J.; Chlubek, D. Macro- and Microelement Content and Other Properties of Chaenomeles japonica L. Fruit and Protective Effects of Its Aqueous Extract on Hepatocyte Metabolism. Biol. Trace Elem. Res. 2017, 178, 327–337. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nahorska, A.; Dzwoniarska, M.; Thiem, B. Fruits of Japanese quince (Chaenomeles japonica (Thunb.) Lindl. Ex Spach) as a source of bioactive compounds. Postępy Fitoter. 2014, 4, 239–246. [Google Scholar]
- Kaufmane, E.; Skrivele, M.; Rubauskis, E.; Strautiņa, S.; Ikase, L.; Lacis, G.; Segliņa, D.; Moročko-Bičevska, I.; Ruisa, S.; Priekule, I. Development of fruit science in Latvia. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 2013, 67, 71–83. [Google Scholar] [CrossRef]
- Rumpunen, K. Chaenomeles: Potential New Fruit Crop for Northern Europe. In Trends in New Crops and New Uses; Whipkey, J., Janick, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 385–392. [Google Scholar]
- Repnau, A. Jaapani Ebaküdoonia (Chaenomeles japonica Thunb.) Erinevate Sortide Kasvatamise Perspektiivsus Eesti Tingimustes. Master’s Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2020. [Google Scholar]
- Rumpunen, K.; Trajkovski, V.; Bartish, I.; Garkava, L.; Nybom, H.; Laencina, J.; Ros, J.M.; Jordan, M.J.; Hellin, P.; Tigerstedt, P.M.A.; et al. Domestication of Japanese quince (Chaenomeles japonica). Acta Hortic. 2000, 538, 345–348. [Google Scholar] [CrossRef]
- Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The Effect of storage and Pprocessing on vitamin C content in Japanese quince fruit. Folia Hortic. 2017, 29, 83–93. [Google Scholar] [CrossRef]
- Mihova, T.; Kondakova, V.; Mondeshka, P. Investigations of Chaenomeles japonica (Thunb.) Lindl. in the Region of Central Balkans. Banat. J. Biotechnol. 2012, 2, 43–48. [Google Scholar] [CrossRef]
- Клименкo, C.B.; Недвига, O.H. Хенoмелес: интрoдукция, сoстoяние и перспективы культуры. Інтрoдукція рoслин 1999, 3–4, 125–134. [Google Scholar]
- Panteev, A.V.; Batchilo, A.I.; Grakovich, Z.V. The breeding of Chaenomeles japonica Lindl. (Japanese quince), Cerasus tomentosa Wall. (Felt cherry), and Viburnum opulus L. (Snowball tree) in the Republic of Belarus. Acta Hortic. 1995, 390, 133–136. [Google Scholar] [CrossRef]
- Fedulova, Y.A.; Skripnikova, M.K.; Mezhenskiĭ, V.N. Biological features and economic value of Japanese quince. Sadovod. Vinograd. 2009, 1, 2–3. [Google Scholar]
- Фирсoва, C.B.; Русинoв, A.A. Изучение Айвы япoнскoй в Кирoвскoй oбласти. Аграрная Наука Еврo-Северo-Вoстoка 2013, 1, 19–22. [Google Scholar]
- Jakobija, I.; Bankina, B. Incidence of fruit rot on Japanese quince (Chaenomeles japonica) in Latvia. Res. Rural Dev. 2018, 2, 83–89. [Google Scholar] [CrossRef]
- Jakobija, I.; Bankina, B.; Klūga, A. Leaf spot diseases as an emerging problem in Chaenomeles japonica plantations. In Proceedings of the 3rd International Scientific Virtual Conference, AgroEco 2020 Programme and Abstracts, Kaunas, Lithuania, 2–3 December 2020; Vytautas Magnus University: Lithuania, Kaunas, 2020; p. 27. [Google Scholar]
- Norin, I.; Rumpunen, K. Pathogens on Japanese quince (Chaenomeles japonica) plants. In Japanese Quince—Potential Fruit Crop for Northern Europe.; Rumpunen, K., Ed.; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 37–54. [Google Scholar]
- Grigaliūnaitė, B.; Žilinskaitė, S.; Radaitienė, D. Japoninio svarainio (Chaenomeles japonica) fitosanitarinė būklė Vilniaus Universiteto Botanikos sode. Optim. Ornam. Gard. Plant Assortment Technol. Environ. Sci. Artic. 2012, 3, 25–29. [Google Scholar]
- Fedulova, Y.; Kuklina, A.; Sorokopudov, V.; Sorokopudova, O.; Shlapakova, S.; Lukashov, Y. Screening of phytopathogens and phytopathoges on Chenomeles (Chaenomeles Lindl.) cultivars. In Proceedings of the BIO Web of Conferences, Online, 28 February 2020; EDP Sciences: Les Ulis, France, 2000; Volume 17, pp. 1–4. [Google Scholar] [CrossRef][Green Version]
- Moral, J.; Muñoz-Díez, C.; Cabello, D.; Arquero, O.; Lovera, M.; Benítez, M.J.; Trapero, A. Characterization of Monilia disease caused by Monilinia linhartiana on quince in Southern Spain. Plant Pathol. 2011, 60, 1128–1139. [Google Scholar] [CrossRef]
- Hong, C.X.; Michailides, T.J.; Holtz, B.A. Mycoflora of stone fruit mummies in California orchards. Plant Dis. 2000, 84, 417–422. [Google Scholar] [CrossRef][Green Version]
- Thomma, B.P.H.J. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Børve, J.; Røen, D.; Stensvand, A. Harvest time influences incidence of storage diseases and fruit quality in organically grown “Aroma” apples. Eur. J. Hortic. Sci. 2013, 78, 232–238. [Google Scholar]
- Weber, R.W.S.; Dralle, N.; Jork, O.; Niedersachsen, L. Fungi associated with blossom-end rot of apples in Germany. Eur. J. Hortic. Sci. 2013, 78, 97–105. [Google Scholar]
- Muñoz, M.; Faust, J.E.; Schnabel, G. Characterization of Botrytis cinerea from commercial cut flower roses. Plant Dis. 2019, 103, 1577–1583. [Google Scholar] [CrossRef]
- Tanovic, B.; Hrustic, J.; Mihajlovic, M.; Grahovac, M.; Delibasic, G. Botrytis cinerea in raspberry in Serbia I: Morphological and molecular characterization. Pestic. Fitomedicina 2014, 29, 237–247. [Google Scholar] [CrossRef]
- Grantina-Ievina, L. Fungi causing storage rot of apple fruit in Integrated Pest Management system and their sensitivity to fungicides. Rural Sustain. Res. 2015, 34, 2–11. [Google Scholar] [CrossRef]
- Rasiukevičiūtė, N.; Moročko-Bičevska, I.; Sasnauskas, A. Characterisation of growth variability and mycelial compatibility of Botrytis cinerea isolates originated from apple and strawberry in Lithuania. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 2017, 71, 217–224. [Google Scholar] [CrossRef]
- Rivera, Y.; Zeller, K.; Srivastava, S.; Sutherland, J.; Galvez, M.; Nakhla, M.; Poniatowska, A.; Schnabel, G.; Sundin, G.; Abad, Z.G. Draft genome resources for the phytopathogenic fungi Monilinia fructicola, M. fructigena, M. polystroma, and M. laxa, the causal agents of brown rot. Phytopathology 2018, 108, 1141–1142. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Dambrauskienė, E.; Viškelis, P.; Valiuškaitė, A. Biocontrol of strawberry pathogen Botrytis cinerea using plant extracts and essential oils. Zemdirbyste 2020, 107, 147–152. [Google Scholar] [CrossRef]
- Tran, T.T.; Li, H.; Nguyen, D.Q.; Sivasithamparam, K.; Jones, M.G.K.; Wylie, S.J. Comparisons between genetic diversity, virulence and colony morphology of Monilinia fructicola and Monilinia laxa isolates. J. Plant Pathol. 2020, 102, 743–751. [Google Scholar] [CrossRef]
- Sholberg, P.L.; Harlton, C.; Haag, P.; Lévesque, C.A.; O’Gorman, D.; Seifert, K. Benzimidazole and diphenylamine sensitivity and identity of Penicillium spp. that cause postharvest blue mold of apples using β-tubulin gene sequences. Postharvest Biol. Technol. 2005, 36, 41–49. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, S.W.; Choi, K.H.; Kim, D.A.; Uhm, J.Y. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 2006, 22, 375–380. [Google Scholar] [CrossRef]
- Havenga, M.; Gatsi, G.M.; Halleen, F.; Spies, C.F.J.; van der Merwe, R.; Mostert, L. Canker and wood rot pathogens present in young apple trees and propagation material in the Western Cape of South Africa. Plant Dis. 2019, 103, 3129–3141. [Google Scholar] [CrossRef]
- Muñoz, G.; Hinrichsen, P.; Brygoo, Y.; Giraud, T. Genetic characterisation of Botrytis cinerea populations in Chile. Mycol. Res. 2002, 106, 594–601. [Google Scholar] [CrossRef]
- Mazzola, M. Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soils. Phytopathology 1997, 87, 582–587. [Google Scholar] [CrossRef]
- Tewoldemedhin, Y.T.; Mazzola, M.; Botha, W.J.; Spies, C.F.J.; McLeod, A. Characterization of fungi (Fusarium and Rhizoctonia) and oomycetes (Phytophthora and Pythium) associated with apple orchards in South Africa. Eur. J. Plant Pathol. 2011, 130, 215–229. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Seth, C.A.; Sharma, M.; Sharma, A.; Mahajan, R.; Chauhan, A. Biology and control of Rosellinia necatrix causing white root rot disease: A Review. J. Pure Appl. Microbiol. 2014, 8, 1803–1814. [Google Scholar]
- Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Gareth Jones, E.B.; Tibpromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018, 89, 1–236. [Google Scholar] [CrossRef]
- Ten Hoopen, G.M.; Krauss, U. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: A Review. Crop Prot. 2006, 25, 89–107. [Google Scholar] [CrossRef]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [Google Scholar] [CrossRef]
- De Carvalho, J.O.; Broll, V.; Martinelli, A.H.S.; Lopes, F.C. Endophytic fungi: Positive association with plants. In Molecular Aspects of Plant Beneficial Microbes in Agriculture; Sharma, V., Salwan, R., Al-Ani, L.K.T., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 321–332. [Google Scholar] [CrossRef]
- Hao, Y.; Aluthmuhandiram, J.V.S.; Chethana, K.W.T.; Manawasinghe, I.S.; Li, X.; Liu, M.; Hyde, K.D.; Phillips, A.J.L.; Zhang, W. Nigrospora species associated with various hosts from Shandong Peninsula, China. Mycobiology 2020, 48, 169–183. [Google Scholar] [CrossRef]
- Sun, Z.B.; Li, S.D.; Ren, Q.; Xu, J.L.; Lu, X.; Sun, M.H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef]
- Grantina-Ievina, L.; Stanke, L. Incidence and severity of leaf and fruit diseases of plums in Latvia. Commun. Agric. Appl. Biol. Sci. 2015, 80, 421–433. [Google Scholar]
- Castillo, H.; Rojas, R.; Villalta, M. Gliocladium sp., agente biocontrolador con aplicaciones prometedoras. Rev. Tecnol. Marcha 2016, 29, 65. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Sutton, J.C.; Li, D.W.; Peng, G.; Yu, H.; Zhang, P.; Valdebenito-Sanhueza, R.M. Gliocladium roseum: A versatile adversary of Botrytis cinerea in crops. Plant Dis. 1997, 81, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.M.; Zhang, X.; Zhang, N.N.; Naklumpa, W.; Zhao, W.Y.; Liang, X.F.; Zhang, R.; Sun, G.Y.; Gleason, M.L. Genera Acremonium and Sarocladium cause brown spot on bagged apple fruit in China. Plant Dis. 2019, 103, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.H.; Kirschner, R. Sarocladium spinificis, a new endophytic species from the coastal grass Spinifex littoreus in Taiwan. Bot. Stud. 2014, 55, 25. [Google Scholar] [CrossRef]
- Liu, X. Sarocladium brachiariae Sp. Nov., an endophytic fungus isolated from Brachiaria brizantha. Mycosphere 2017, 8, 827–834. [Google Scholar] [CrossRef]
- Giraldo, A.; Gené, J.; Sutton, D.A.; Madrid, H.; de Hoog, G.S.; Cano, J.; Decock, C.; Crous, P.W.; Guarro, J. Phylogeny of Sarocladium (Hypocreales). Persoonia Mol. Phylogeny Evol. Fungi 2015, 34, 10–24. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, W.; Lin, R.; Yao, Y.; Yu, S.; Zhou, Z.; Zhang, X.; Gao, Y.; Huai, W. Fusarium species in declining wild apple forests on the Northern slope of the Tian Shan Mountains in North-Western China. For. Pathol. 2019, 49, e12542. [Google Scholar] [CrossRef]
- Racedo, J.; Salazar, S.M.; Castagnaro, A.P.; Díaz Ricci, J.C. A Strawberry disease caused by Acremonium strictum. Eur. J. Plant Pathol. 2013, 137, 649–654. [Google Scholar] [CrossRef]
- Papavasileiou, A.; Madesis, P.B.; Karaoglanidis, G.S. Identification and differentiation of Monilinia species causing brown rot of pome and stone fruit using High-resolution melting (HRM) analysis. Phytopathology 2016, 106, 1055–1064. [Google Scholar] [CrossRef]
- Madbouly, A.K.; Abo Elyousr, K.A.M.; Ismail, I.M. Biocontrol of Monilinia fructigena, causal agent of brown rot of apple fruit, by using endophytic yeasts. Biol. Control 2020, 144, 104239. [Google Scholar] [CrossRef]
- Hortova, B.; Novotny, D.; Erban, T. Physiological characteristics and pathogenicity of eight Neofabraea isolates from apples in Czechia. Eur. J. Hortic. Sci. 2014, 79, 327–334. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Köhn, H.-F.; Hubert, L.J. Hierarchical Cluster Analysis. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 1–13. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakobija, I.; Bankina, B.; Klūga, A.; Roga, A.; Skinderskis, E.; Fridmanis, D. The Diversity of Fungi Involved in Damage to Japanese Quince. Plants 2022, 11, 2572. https://doi.org/10.3390/plants11192572
Jakobija I, Bankina B, Klūga A, Roga A, Skinderskis E, Fridmanis D. The Diversity of Fungi Involved in Damage to Japanese Quince. Plants. 2022; 11(19):2572. https://doi.org/10.3390/plants11192572
Chicago/Turabian StyleJakobija, Inta, Biruta Bankina, Alise Klūga, Ance Roga, Edmunds Skinderskis, and Dāvids Fridmanis. 2022. "The Diversity of Fungi Involved in Damage to Japanese Quince" Plants 11, no. 19: 2572. https://doi.org/10.3390/plants11192572
APA StyleJakobija, I., Bankina, B., Klūga, A., Roga, A., Skinderskis, E., & Fridmanis, D. (2022). The Diversity of Fungi Involved in Damage to Japanese Quince. Plants, 11(19), 2572. https://doi.org/10.3390/plants11192572