Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking
Abstract
:1. Introduction
2. Results
2.1. Metabolomic Analysis
2.2. Phytochemical Analysis
2.3. Biological Activities
2.3.1. 3CL Protease SARS-CoV-2 Activity (MPro Assay)
2.3.2. Human Coronavirus (COVID-19) Antiviral Assay
2.4. Molecular Docking Studies
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.2. Preparation of Extracts
5.3. Metabolomic Analysis
5.4. Phytochemical Study
5.4.1. Instruments and Reagents
5.4.2. Solvent Systems
5.5. Biological Study
5.5.1. 3CL Protease Assay (MPro Assay)
5.5.2. Coronavirus COVID-19 (Genesig® Real-Time PCR Assay)
- -
- Kit Components:
- -
- Genesig® easy RNA internal buffer extraction control
- -
- COVID-19 primer & probe Mix
- -
- Oasig™ resuspension buffer
- -
- Template preparation buffer
- -
- RNase/DNase-free water
- -
- Oasig™ lyophilized OneStep 2X RT-Qpcr Master Mix
- -
- COVID-19 positive control template
- -
- Appropriate nucleic extraction system and/or kit
- -
- Equipment:
- -
- Real-Time PCR including Roche® LightCycler 480 II from life science research, California, United States (software version 1.5), Applied Biosystem® 7500 Real-Time PCR System (software version 2.3) and Detection System of Bio-Rad CFX Connect™ Real-Time PCR (Maestro software version 1.1) with Real-Time PCR System
- -
- White Bio-Rad CFX96 and White Roche® Light Cycler 480.
- -
- Multiwell plate 96, adjustable pipettes, pipette tips with filters, transparent applied biosystems® 7500, PCR hood, benchtop centrifuge, 1.5 mL microcentrifuge tubes, vortex mixer, and disposable gloves.
5.6. Molecular Docking Studies
5.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front Physiol. 2021, 11, 571416. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.worldometers.info/coronavirus/#news (accessed on 12 September 2022).
- Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---13-july-2022 (accessed on 12 September 2022).
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.; Khan, M.A.; Mashwani, Z.U.; Ullah, N.; Nadhman, A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol. 2021, 31, 101890. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, K.R.; Blunt, J.W.; Munro, M.H.G.; Fuller, R.W.; Mckee, T.C.; Cardellina, J.H.; McMahon, J.B.; Cragg, G.M.; Boyd, M.R. The guttiferones, HIV-inhibitory benzophenones from Symphonia globulifera, Garcinia livingstonei, Garcinia ovalifolia and Clusia rosea. Tetrahedron 1992, 48, 10093–10102. [Google Scholar] [CrossRef]
- Espirito Santo, B.; Santana, L.F.; Kato Junior, W.H.; de Araújo, F.O.; Bogo, D.; Freitas, K.C.; Guimarães, R.; Hiane, P.A.; Pott, A.; Filiú, W.; et al. Medicinal Potential of Garcinia Species and their Compounds. Molecules 2020, 25, 4513. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Olajide, O.A.; Iwuanyanwu, V.U.; Lepiarz-Raba, I.; Al-Hindawi, A.A.; Aderogba, M.A.; Sharp, H.L.; Nash, R.J. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother. Res. 2021, 35, 6963–6973. [Google Scholar] [CrossRef] [PubMed]
- AL-Askalany, S.A. Evaluation of Garcinia cambogia plant extracts antifungal, antibacterial and antioxidant. Egypt. J. Agric. Res. 2018, 96, 121–134. [Google Scholar] [CrossRef]
- Ismail, A. Comparative Phytochemical and Biological Study of Some Cycas Spesies Growing in Egypt. Ph.D. Thesis, Fayoum Faculty of Pharmacy, Fayoum, Egypt, 2022. [Google Scholar]
- Ismail, A.S. Phytochemical and Biological Study of Certain Conyza Species Growing in Egypt. Master’s Thesis, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt, 2013. [Google Scholar]
- Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005, 3, e428. [Google Scholar]
- Kaul, R.; Paul, P.; Kumar, S.; Büsselberg, D.; Dwivedi, V.D.; Chaari, A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int. J. Mol. Sci. 2021, 22, 11069. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact. 2020, 328, 109211. [Google Scholar] [CrossRef] [PubMed]
- Goldwasser, J.; Cohen, P.Y.; Lin, W.; Kitsberg, D.; Balaguer, P.; Polyak, S.J. Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J. Hepatol. 2011, 55, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Pohjala, L.; Utt, A.; Varjak, M.; Lulla, A.; Merits, A.; Ahola, T. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS ONE 2011, 6, e28923. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.D.; Jeon, S.; Kim, S.; Lee, S.Y. Drugs repurposed for COVID-19 by virtual screening of 6218 drugs and cell-based assay. Proc. Natl. Acad. Sci. USA 2021, 118, 30. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Moawad, A.S.; Hassan, H.M.; Abdel Fattah, S.M.; Sherif, N.H.; Abdelmohsen, U.R.; Radwan, M.M.; Mostafa, E.R.; Hetta, M.H. Chemical composition and therapeutic potential of three Cycas species in brain damage and pancreatitis provoked by γ-radiation exposure in rats. J. Radiat. Res. Appl. Sci. 2020, 13, 200–214. [Google Scholar] [CrossRef]
- Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun. 2020, 7, 5047. [Google Scholar] [CrossRef] [PubMed]
- MOE 2019.0101 of Chemical Computing Group. Inc. Available online: http://www.chemcomp.com (accessed on 12 September 2022).
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
Compound | Mpro | SD ± |
---|---|---|
Code | SARS-CoV-2 3CL Protease IC50 µg/mL | |
1 | 42.26 | 2.3 |
2 | 73.3 | 3.98 |
3 | 99.75 | 5.42 |
4 | 34.43 | 1.87 |
5 | 16.62 | 0.9 |
6 | 26.2 | 1.42 |
7 | 77.26 | 4.2 |
8 | 30.35 | 1.65 |
Plumbagin | 16.48 | 0.9 |
Sample Code | EC50 (µM) |
---|---|
Compound 5 | 0.0169 |
Remdesivir | 0.0081 |
Compound No | Compound Name | Binding Energy Score | Average Number of Poses per Run * |
---|---|---|---|
1 | Quercetin | −5.542 | 14 |
2 | Amentoflavone | −6.701 | 16 |
3 | Vitexin | −6.171 | 18 |
4 | Rutin | No binding | |
5 | Naringin | −6.729 | 18 |
6 | Catechin | −5.519 | 16 |
7 | P-coumaric acid | −4.553 | 16 |
8 | Gallic acid | −4.410 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aati, H.Y.; Ismail, A.; Rateb, M.E.; AboulMagd, A.M.; Hassan, H.M.; Hetta, M.H. Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking. Plants 2022, 11, 2521. https://doi.org/10.3390/plants11192521
Aati HY, Ismail A, Rateb ME, AboulMagd AM, Hassan HM, Hetta MH. Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking. Plants. 2022; 11(19):2521. https://doi.org/10.3390/plants11192521
Chicago/Turabian StyleAati, Hanan Y., Ahmed Ismail, Mostafa E. Rateb, Asmaa M. AboulMagd, Hossam M. Hassan, and Mona H. Hetta. 2022. "Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking" Plants 11, no. 19: 2521. https://doi.org/10.3390/plants11192521
APA StyleAati, H. Y., Ismail, A., Rateb, M. E., AboulMagd, A. M., Hassan, H. M., & Hetta, M. H. (2022). Garcinia cambogia Phenolics as Potent Anti-COVID-19 Agents: Phytochemical Profiling, Biological Activities, and Molecular Docking. Plants, 11(19), 2521. https://doi.org/10.3390/plants11192521