Seasonal Xylem Sap Acidification Is Governed by Tree Phenology, Temperature and Elevation of Growing Site
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Site and Plant Material
4.2. Temperature Conditions
4.3. Xylem Sap Collection
4.4. pH Measurements
4.5. Tree Phenology
4.6. Statistical Data Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teskey, R.O.; Saveyn, A.; Steppe, K.; McGuire, M.A. Origin, fate and significance of CO² in tree stems. New Phytol. 2008, 177, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Felle, H.H. pH: Signal and messenger in plant cells. Plant Biol. 2001, 3, 577–591. [Google Scholar] [CrossRef]
- Essiamah, S.K. Spring sap of trees. Ber. Deut. Bot. Ges. 1980, 93, 257–267. [Google Scholar]
- Ferguson, A.R.; Eiseman, J.A.; Leonard, J.A. Xylem sap from Actinidia chinensis—Seasonal changes in composition. Ann. Bot. 1983, 51, 823–833. [Google Scholar] [CrossRef]
- Sauter, J.J.; Ambrosius, T. Changes in the partitioning of carbohydrates in the wood during bud break in Betula pendula Roth. J. Plant Physiol. 1986, 124, 31–43. [Google Scholar] [CrossRef]
- Sauter, J.J. Seasonal changes in the efflux of sugars from parenchyma cells into the apoplast in poplar stems (Populus x canadensis "robusta"). Trees Struct. Funct. 1988, 2, 242–249. [Google Scholar] [CrossRef]
- Glavac, V.; Koenies, H.; Ebben, U. Seasonal variation of calcium, magnesium, potassium, and manganese contents in xylem sap of beech (Fagus sylvatica L.) in a 35-year-old limestone beech forest stand. Trees Struct. Funct. 1990, 4, 75–80. [Google Scholar] [CrossRef]
- Fromard, L.; Babin, V.; Fleuratlessard, P.; Fromont, J.C.; Serrano, R.; Bonnemain, J.L. Control of vascular sap pH by vessel-associated cells in woody species—Physiological and immunological studies. Plant Physiol. 1995, 108, 913–918. [Google Scholar] [CrossRef] [Green Version]
- Erda, F.G.; Bloemen, J.; Steppe, K. Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees. Plant Biol. 2014, 16, 43–48. [Google Scholar] [CrossRef]
- Alves, G.; Ameglio, T.; Guillot, A.; Fleurat-Lessard, G.; Lacointe, A.; Sakr, S.; Petel, G.; Julien, J.L. Winter variation in xylem sap pH of walnut trees: Involvement of plasma membrane H+-ATPase of vessel-associated cells. Tree Physiol. 2004, 24, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S. PH as a stress signal. Plant Growth Regul. 1999, 29, 87–99. [Google Scholar] [CrossRef]
- Arend, M.; Weisenseel, M.H.; Brummer, M.; Osswald, W.; Fromm, J.H. Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants. Plant Physiol. 2002, 129, 1651–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schell, J. Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. Tree Physiol. 1997, 17, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerendas, J.; Schurr, U. Physicochemical aspects of ion relations and pH regulation in plants—A quantitative approach. J. Exp. Bot. 1999, 50, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Liu, F.L.; Jensen, C.R. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes. J. Exp. Bot. 2012, 63, 1907–1917. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, D.P.; Boyles, J.G.; Krysinsky, L.S.; Teskey, R.O. Spatial and temporal patterns of xylem sap pH derived from stems and twigs of Populus deltoides L. Environ. Exp. Bot. 2011, 71, 376–381. [Google Scholar] [CrossRef]
- Losso, A.; Nardini, A.; Damon, B.; Mayr, S. Xylem sap chemistry: Seasonal changes in timberline conifers Pinus cembra, Picea abies, and Larix decidua. Biol. Plant. 2018, 62, 157–165. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 1997, 113, 559–573. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.; Corlett, J.E.; Oger, L.; Davies, W.J. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves—A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol. 1998, 117, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Gloser, V.; Korovetska, H.; Martin-Vertedor, A.I.; Hajickova, M.; Prokop, Z.; Wilkinson, S.; Davies, W. The dynamics of xylem sap pH under drought: A universal response in herbs? Plant Soil 2016, 409, 259–272. [Google Scholar] [CrossRef]
- Pitann, B.; Kranz, T.; Zorb, C.; Walter, A.; Schurr, U.; Muhling, K.H. Apoplastic pH and growth in expanding leaves of Vicia faba under salinity. Environ. Exp. Bot. 2011, 74, 31–36. [Google Scholar] [CrossRef]
- Geilfus, C.M.; Muhling, K.H. Transient alkalinization in the leaf apoplast of Vicia faba L. depends on NaCl stress intensity: An in situ ratio imaging study. Plant Cell Environ. 2012, 35, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.B.; Saker, L.R.; Crisp, C.M.; Else, M.A.; Janowiak, F. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant Soil 2003, 253, 103–113. [Google Scholar] [CrossRef]
- Else, M.A.; Taylor, J.M.; Atkinson, C.J. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA. J. Exp. Bot. 2006, 57, 3349–3357. [Google Scholar] [CrossRef] [Green Version]
- Felle, H.H.; Herrmann, A.; Huckelhoven, R.; Kogel, K.H. Root-to-shoot signalling: Apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma 2005, 227, 17–24. [Google Scholar] [CrossRef]
- Felle, H.H.; Herrmann, A.; Schaefer, P.; Hueckelhoven, R.; Kogel, K.H. Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. J. Plant Physiol. 2008, 165, 52–59. [Google Scholar] [CrossRef]
- Davies, W.J.; Wilkinson, S.; Loveys, B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 2002, 153, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.; Davies, W.J. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation. J. Exp. Bot. 2008, 59, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.; Davies, W.J. ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant Cell Environ. 2002, 25, 195–210. [Google Scholar] [CrossRef]
- Sakai, A.; Larcher, W. Frost Survival of Plants. Responses and Adaptation to Freezing Stress; Springer: Berlin/Heidelberg, Germany, 1987; Volume 62, p. 321. [Google Scholar]
- Glavac, V.; Koenies, H.; Ebben, U. Seasonal-variations in mineral concentrations in the trunk xylem sap of beech (Fagus sylvatica L) in a 42-year-old beech forest stand. New Phytol. 1990, 116, 47–54. [Google Scholar] [CrossRef]
- Sharp, R.G.; Davies, W.J. Variability among species in the apoplastic pH signalling response to drying soils. J. Exp. Bot. 2009, 60, 4361–4370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.L.H. Soil nutrients and loblolly pine xylem sap composition. For. Sci. 1965, 11, 216–220. [Google Scholar]
- Beikircher, B.; Mittmann, C.; Mayr, S. Prolonged soil frost affects hydraulics and phenology of apple trees. Front. Plant Sci. 2016, 7, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beikircher, B.; Mayr, S. Annual patterns of xylem embolism in high-yield apple cultivars. Funct. Plant Biol. 2017, 44, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J. Seasonal-variations in the composition of xylem sap of apple with respect to K, Ca, Mg, and N. Z. Pflanzenphysiol. 1979, 94, 189–194. [Google Scholar] [CrossRef]
- Tromp, J.; Ovaa, J.C. Spring composition of xylem sap of apple with respect to amino-nitrogen and mineral elements at two root temperatures. Z. Pflanzenphysiol. 1981, 102, 249–255. [Google Scholar] [CrossRef]
- Osonubi, O.; Oren, R.; Werk, K.S.; Schulze, E.D.; Heilmeier, H. Performance of two Picea abies (L.) Karst. stands at different stages of decline. 4. Xylem sap concentrations of magnesioum, calcium, potassium and nitrogen. Oecologia 1988, 77, 1–6. [Google Scholar] [CrossRef]
- Berger, A.; Oren, R.; Schulze, E.D. Element oncentrations in the xylem sap of Picea abies (L.) Karst. seedlings extracted by various methods under different environmental conditions. Tree Physiol. 1994, 14, 111–128. [Google Scholar] [CrossRef]
- Vitasse, Y.; Baumgarten, F.; Zohner, C.M.; Rutishauser, T.; Pietragalla, B.; Gehrig, R.; Dai, J.; Wang, H.; Aono, Y.; Sparks, T.H. The great acceleration of plant phenological shifts. Nat. Clim. Chang. 2022, 12, 300–302. [Google Scholar] [CrossRef]
- Gollan, T.; Schurr, U.; Schulze, E.D. Stomatal resposnse to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. 1. The concentration of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ. 1992, 15, 551–559. [Google Scholar] [CrossRef]
- Schurr, U.; Schulze, E.D. Effects of drought on nutrient and ABA transport in Ricinus communis. Plant Cell Environ. 1996, 19, 665–674. [Google Scholar] [CrossRef]
- Alves, G.; Decourteix, M.; Fleurat-Lessard, P.; Sakr, S.; Bonhomme, M.; Ameglio, T.; Lacointe, A.; Julien, J.L.; Petel, G.; Guilliot, A. Spatial activity and expression of plasma membrane H+-atpase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol. 2007, 27, 1471–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonhomme, M.; Peuch, M.; Ameglio, T.; Rageau, R.; Guilliot, A.; Decourteix, M.; Alves, G.; Sakr, S.; Lacointe, A. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol. 2010, 30, 89–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teskey, R.O.; McGuire, M.A. Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO² and possible transport of CO² from roots. Plant Cell Environ. 2007, 30, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Etzold, S.; Zweifel, R.; Ruehr, N.K.; Eugster, W.; Buchmann, N. Long-term stem CO² concentration measurements in norway spruce in relation to biotic and abiotic factors. New Phytol. 2013, 197, 1173–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secchi, F.; Zwieniecki, M.A. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. Plant Cell Environ. 2016, 39, 2350–2360. [Google Scholar] [CrossRef]
- Schurr, U. Xylem sap sampling—New approaches to an old topic. Trends Plant Sci. 1998, 3, 293–298. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Vandenboom, T.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth-stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
Species | Air Temperature | Soil Temperature | ||
---|---|---|---|---|
R | p | R | p | |
Malus domestica1 | −0.345 | 0.402 | −0.375 | 0.407 |
Picea abies2 | −0.887 | 0.003 | −0.901 | 0.002 |
Pinus cembra2 | −0.669 | 0.069 | −0.756 | 0.03 |
Picea abies3 | −0.768 | 0.075 | −0.924 | 0.008 |
Pinus cembra3 | −0.660 | 0.153 | −0.826 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramsohler, M.; Lichtenberger, E.; Neuner, G. Seasonal Xylem Sap Acidification Is Governed by Tree Phenology, Temperature and Elevation of Growing Site. Plants 2022, 11, 2058. https://doi.org/10.3390/plants11152058
Pramsohler M, Lichtenberger E, Neuner G. Seasonal Xylem Sap Acidification Is Governed by Tree Phenology, Temperature and Elevation of Growing Site. Plants. 2022; 11(15):2058. https://doi.org/10.3390/plants11152058
Chicago/Turabian StylePramsohler, Manuel, Edith Lichtenberger, and Gilbert Neuner. 2022. "Seasonal Xylem Sap Acidification Is Governed by Tree Phenology, Temperature and Elevation of Growing Site" Plants 11, no. 15: 2058. https://doi.org/10.3390/plants11152058