Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plants Dataset Selection
2.2. Legumes Featuring Reports with Bacterial Taxonomy Characterization
2.3. Bacterial Symbionts in Nodules Reported for Legumes Included in the Sardinia List
2.4. Bacterial Endophytes in Nodules Reported for Legumes Included in the Sardinia List
2.5. Bacterial Endophytes Reported as Occurring in Other Plant Portions for Legumes Included in the Sardinia List
2.6. Most Promiscuous Plants in Terms of Symbionts or Endophytes Content
2.7. Most Promiscuous Bacteria in Terms of Plant Nodulation or Endophytic Infection
2.8. BOTABASE KEYS: An Interactive File and Customizable Model Tool for Plant Determination
- (1)
- It does not necessarily require a professional knowledge in botany and can be managed by users across different levels of education, upon becoming familiar with some anatomical words for which, if necessary, they can consult a glossary of botanical terms, among the several freely available web pages that can be found by search engines.
- (2)
- The end user will just require a personal computer, in which the process runs as a simple Microsoft Excel spreadsheet. This offers the added advantage of most users being already familiar with the required interface. Unlike other tools using answers for narrowing down the number of species in biological determinations, this one does not require a dedicated software.
- (3)
- The plant identification at species level is achieved in few sequential and rapid steps that filter off progressively larger groups of plants from the initial full database and can lead to a single entry even before the grid of answers is completed, or at least to few possibilities, out of which the correct one can be, in most cases, easily chosen by looking at plant pictures from the web upon searching the plant species name in Google search engine and asking for images. As many biometric data are used, very often the level of information contained in the spreadsheet for each single plant is overly redundant, and classification to the single species can be achieved even by answering only half of the questions or less.
- (4)
- The user works by subtractive keys. The identification principle is parallel rather than serial, i.e., one can proceed even in the absence of some of the data (e.g., the fruit is not available or the plant has not even flowered yet). Questions of uncertain answer can be skipped at any step without preventing the process from reaching completion. Such a feature is an advantage when compared to standard methods of classification which follow a single path of binary keys, where a missing element can stop the process or a wrong answer at any fork can lead to a wrong identification.
- (5)
- The keys are designed in a such a way that enables them to be “flexible and forgiving”, which matches one of the inherent qualities of any biological array: the plasticity and variability of life. The process avoids the most commonly occurring determination errors encountered with other methods by applying two practices: (a) choosing “loose borders” around values, i.e., using thresholds that extend above and below the confidence boundaries for any of the observable variables (thus avoiding excluding false negatives), and (b) enabling to skip questions on which the answer is uncertain or not possible due to a missing element (e.g., the fruit). These non-restrictive principles are compensated by the multiple questions of the whole procedure that ensure a sharp final accuracy level.
- (6)
- The database of plants can be easily implemented whenever new species should be found in a range (adding new rows), or new convenient traits for the determination need to be added (adding new columns), or any data need to be corrected or updated. Such features can even be performed by the end user, leading to a full customization of the tool.
- (7)
- Visual satisfaction and transparent appreciation of the procedure accompanies the identification. Unlike other query-based computer methods in which the procedure is blind, the user of Botabase Keys starts with a spreadsheet in which the full array of species is visible in the rows. Then, proceeding across columns and answering the questions by applying the simple filter function of Microsoft Excel, the list is trimmed down at each step (seeing the table being cropped over and over and watching the rows disappear at every further click of the mouse is, moreover, a pleasing game-like effect that makes the process rather entertaining, which is envisaged as a way to attract people to the study of botany). The possibility of skipping columns of uncertain answer or starting from any point of the path eliminates the possible frustration that occurs in classical dichotomy-based error-prone methods.
- (8)
- The program is free to use and share and users are encouraged to implement it, update it, correct possible errors, and customize it to suit their needs in the study of different plants families, regions, and parts of the world, or by creating an upper key to family determination as well as any improvement that they can envisage.
3. Materials and Methods
3.1. Data Collection and Elaboration
3.2. Plant Determination File (BOTABASE KEYS)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonelli, A.; Fry, C.; Smith, R.J.; Simmonds, M.S.J.; Kersey, P.J.; Pritchard, H.W.; Abbo, M.S.; Acedo, C.; Adams, J.; Ainsworth, A.M.; et al. State of the World’s Plants and Fungi 2020; Royal Botanic Gardens, Kew: Richmond, UK, 2020. [Google Scholar]
- Lewis, G.P. Legumes of the World; Royal Botanic Gardens, Kew: Richmond, UK, 2005. [Google Scholar]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa Magnolia Press 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia, 2nd ed.; Edagricole: Bologna, Italy, 2017–2019; Volume I–IV. [Google Scholar]
- Guarino, R.; Addamiano, S.; La Rosa, M.; Pignatti, S. “Flora Italiana Digitale”: An Interactive Identification Tool for the Flora of Italy. In Tools for Identifying Biodiversity: Progress and Problems; Nimis, P.L., Lebbe, R.V., Eds.; EUT Edizioni: Trieste, Italy, 2010; pp. 157–162. [Google Scholar]
- Fois, M.; Farris, E.; Calvia, G.; Campus, G.; Fenu, G.; Porceddu, M.; Bacchetta, G. The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status. Plants 2022, 11, 601. [Google Scholar] [CrossRef]
- Van Rhijn, P.; Vanderleyden, J. The Rhizobium-plant symbiosis. Microbiol. Rev. 1995, 59, 124–142. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- LPWG (The Legume Phylogeny Working Group); Azani, M.; Babineau, C.D.; Bailey, H.; Banks, A.R.; Barbosa, R.B.; Pinto, J.S.; Boatwright, L.M.; Borges, G.K.; Brown, A.; et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef] [Green Version]
- Lerouge, P.; Roche, P.; Faucher, C.; Maillet, F.; Truchet, G.; Promé, J.C.; Dénarié, J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990, 19, 781–784. [Google Scholar] [CrossRef]
- Truchet, G.; Barker, D.G.; Camut, S.; de Billy, F.; Vasse, J.; and Huguet, T. Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet. 1989, 219, 65–68. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.d.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 18, 92–99. [Google Scholar] [CrossRef]
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R.; et al. Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvira-Recuenco, M.; van Vuurde, J.W.L. Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can. J. Microbiol. 2000, 46, 1036–1041. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Hartmann, M. Networking in the Plant Microbiome. PLoS Biol. 2016, 14, e1002378. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhagwat, T.; Webster, T.J. Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health. In Current Trends in Microbial Biotechnology for Sustainable Agriculture, Environmental and Microbial Biotechnology; Yadav, A.N., Singh, J., Singh, C., Yadav, N., Eds.; Springer: Singapore, 2021; p. 245. [Google Scholar]
- Qiu, Z.; Wang, J.; Delgado-Baquerizo, M.; Trivedi, P.; Egidi, E.; Chen, Y.M.; Zhang, H.; Singh, B.K. Plant Microbiomes: Do Different Preservation Approaches and Primer Sets Alter Our Capacity to Assess Microbial Diversity and Community Composition? Front. Plant. Sci. 2020, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Muresu, R.; Sulas, L.; Polone, E.; Squartini, A. PCR primers based on different portions of insertion elements can assist phylogeny studies, strain fingerprinting and species identification in rhizobia. FEMS Microbiol. Ecol. 2005, 54, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Muresu, R.; Polone, E.; Sulas, L.; Baldan, B.; Tondello, A.; Delogu, G.; Cappuccinelli, P.; Alberghini, S.; Benhizia, Y.; Benhizia, H.; et al. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 2008, 63, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Muresu, R.; Polone, E.; Cappuccinelli, P.; Delogu, G.; Scarpa, A.M.; Squartini, A. Wild legume root nodules as a potential reservoir for human pathogenic bacteria. Ann. Microbiol. 2009, 59, 97. [Google Scholar]
- Muresu, R.; Maddau, G.; Delogu, G.; Cappuccinelli, P.; Squartini, A. Bacteria colonizing root nodules of wild legumes exhibit virulence-associated properties of mammalian pathogens. Antonie Van Leeuwenhoek 2010, 97, 143–153. [Google Scholar] [CrossRef]
- Muresu, R.; Polone, E.; Sorbolini, S.; Squartini, A. Characterization of endophytic and symbiotic bacteria within plants of the endemic association Centaureetum horridae. Plant Biosyst. 2011, 145, 478–484. [Google Scholar] [CrossRef]
- Muresu, R.; Tondello, A.; Polone, E.; Sulas, L.; Baldan, B.; Squartini, A. Antioxidant treatments counteract the non-culturability of bacterial endophytes isolated from legume nodules. Arch. Microbiol. 2013, 195, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Benhizia, Y.; Benhizia, H.; Benguedouar, A.; Muresu, R.; Giacomini, A.; Squartini, A. Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst. Appl. Microbiol. 2004, 27, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Djedidi, S.; Yokoyama, T.; Ohkama-Ohtsu, N.; Risal, C.P.; Abdelly, C.; Sekimoto, H. Stress tolerance and symbiotic and phylogenic features of root nodule bacteria associated with Medicago species in different bioclimatic regions of Tunisia. Microbes Environ. 2011, 26, 36–45. [Google Scholar] [CrossRef]
- Ruiz-Díez, B.; Fajardo, S.; Puertas-Mejía, M.A.; de Felipe, M.d.R.; Fernández-Pascual, M. Stress tolerance, genetic analysis and symbiotic properties of root-nodulating bacteria isolated from Mediterranean leguminous shrubs in Central Spain. Arch. Microbiol. 2009, 191, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, A.; Matsushita, N.; Hougetsu, T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst. Appl. Microbiol. 2010, 33, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Khan, S.; Naveed, M.; Mustafa, G.; Bashir, T.; Mumtaz, A.S. The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes. Arch. Microbiol. 2013, 195, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Ruiz, W.F.; Valdez-Nuñez, R.A.; Bedmar, E.J.; Castellano-Hinojosa, A. Utilization of Endophytic Bacteria Isolated from Legume Root Nodules for Plant Growth Promotion; Maheshwari, D.K., Dheeman., S., Eds.; Field Crops: Sustainable Management by Pgpr; Springer: Berlin/Heidelberg, Germany, 2019; pp. 145–176. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982; Volumes 1–3. [Google Scholar]
Species | n | Species | n | Species | n |
Anagyris | 4 | Lens | 4 | Pisum | 31 |
Anagyris foetida | 4 | Lens culinaris | 4 | Pisum sativum | 31 |
Astragalus | 32 | Lotus | 53 | Robinia | 19 |
Astragalus boeticus | 1 | Lotus angustissimus | 1 | Robinia pseudoacacia | 19 |
Astragalus hamosus | 1 | Lotus conimbricensis | 1 | ||
Astragalus pelecinus | 16 | Lotus corniculatus | 21 | Scorpiurus | 12 |
Astragalus terraccianoi | 14 | Lotus cytisoides | 1 | Scorpiurus muricatus | 11 |
Lotus edulis | 1 | Scorpiurus vermiculatus | 1 | ||
Bituminaria | 4 | Lotus maritimus | 1 | ||
Bituminaria bituminosa | 4 | Lotus ornithopodioides | 1 | Spartium | 3 |
Lotus parviflorus | 11 | Spartium junceum | 3 | ||
Ceratonia | 3 | Lotus subbiflorus | 1 | ||
Ceratonia siliqua | 3 | Lotus tenuis | 3 | Sulla | 33 |
Lotus tetragonolobus | 10 | Sulla capitata | 10 | ||
Cicer | 18 | Lotus uliginosus | 1 | Sulla coronaria | 7 |
Cicer arietinum | 18 | Sulla spinosissima | 16 | ||
Lupinus | 14 | ||||
Colutea | 8 | Lupinus luteus | 1 | Trifolium | 50 |
Colutea arborescens | 8 | Lupinus albus | 3 | Trifolium campestre | 1 |
Lupinus angustifolius | 4 | Trifolium diffusum | 1 | ||
Coronilla | 1 | Lupinus micranthus | 6 | Trifolium dubium | 1 |
Coronilla valentina | 1 | Trifolium fragiferum | 4 | ||
Medicago | 50 | Trifolium nigrescens | 1 | ||
Cytisus | 31 | Medicago arabica | 1 | Trifolium ornithopodioides | 1 |
Cytisus laniger | 9 | Medicago ciliaris | 1 | Trifolium pratense | 22 |
Cytisus scoparius | 16 | Medicago doliata | 1 | Trifolium repens | 13 |
Cytisus spinosus | 3 | Medicago hispida | 7 | Trifolium strictum | 1 |
Cytisus villosus | 3 | Medicago intertexta | 1 | Trifolium suffocatum | 1 |
Medicago litoralis | 1 | Trifolium tomentosum | 4 | ||
Dorycnium | 1 | Medicago lupulina | 1 | ||
Dorycnium hirsutum | 1 | Medicago murex | 1 | Trigonella | 11 |
Medicago orbicularis | 3 | Trigonella elegans | 1 | ||
Ervilia | 9 | Medicago praecox | 1 | Trigonella marítima | 1 |
Ervilia hirsuta | 9 | Medicago rigidula | 1 | Trigonella monspeliaca | 1 |
Medicago rugosa | 2 | Trigonella officinalis | 1 | ||
Ervum | 3 | Medicago sativa | 21 | Trigonella sicula | 1 |
Ervum tetraspermum | 3 | Medicago scutellata | 1 | Trigonella smalii | 6 |
Medicago tenoreana | 1 | ||||
Genista | 1 | Medicago tornata | 1 | Vicia | 30 |
Genista monspessulana | 1 | Medicago truncatula | 4 | Vicia disperma | 1 |
Medicago turbinata | 1 | Vicia faba | 19 | ||
Glycyrrhiza | 6 | Vicia lathyroides | 2 | ||
Glycyrrhiza glabra | 6 | Melilotus | 1 | Vicia leucantha | 1 |
Melilotus italicus | 1 | Vicia nigricans | 2 | ||
Hippocrepis | 6 | Vicia peregrina | 1 | ||
Hippocrepis multisiliquosa | 2 | Ononis | 4 | Vicia sativa | 1 |
Hippocrepis unisiliquosa | 4 | Ononis natrix | 1 | Vicia sepium | 2 |
Ononis ornithopodioides | 1 | Vicia villosa | 1 | ||
Hymenocarpos | 1 | Ononis spinosa | 2 | ||
Hymenocarpos circinnatus | 1 | Vigna | 28 | ||
Ornithopus | 16 | Vigna unguiculata | 28 | ||
Lathyrus | 13 | Ornithopus compressus | 5 | ||
Lathyrus aphaca | 1 | Ornithopus perpusillus | 6 | ||
Lathyrus clymenum | 1 | Ornithopus pinnatus | 5 | ||
Lathyrus latifolius | 6 | ||||
Lathyrus pratensis | 5 | Phaseolus | 43 | ||
Phaseolus vulgaris | 43 |
Species | n | Species | n | Species | n |
Rhizobium | 82 | Mesorhizobium | 62 | Bradyrhizobium | 45 |
R. leguminosarum | 21 | Mesorhizobium sp. | 16 | Bradyrhizobium sp. | 17 |
Rhizobium sp. | 20 | M. loti | 10 | B. canariense | 8 |
R. etli | 4 | M. ciceri | 4 | B. japonicum | 7 |
R. laguerreae | 4 | M. huakuii | 4 | B. elkanii | 4 |
R. anhuiense | 3 | M. chacoense | 3 | B. cytisi | 2 |
R. phaseoli | 3 | M. mediterraneum | 3 | B. liaoningense | 2 |
R. pisi | 3 | M. tianshanense | 3 | B. lupini | 2 |
R. acidisoli | 2 | M. amorphae | 2 | B. rifense | 2 |
R. gallicum | 3 | M. japonicum | 2 | B. yuanmingense | 1 |
R. hidalgonense | 2 | M. temperatum | 2 | ||
R. indigoferae | 2 | M. abyssinicae | 1 | Sinorhizobium | 32 |
R. sophorae | 2 | M. albiziae | 1 | S. meliloti | 20 |
R. sullae | 2 | M. australicum | 1 | S. medicae | 5 |
R. aethiopicum | 1 | M. erdmani | 1 | Sinorhizobium sp. | 4 |
R. cellulosilyticum | 1 | M. intechi | 1 | S. fredii | 3 |
R. chutanense | 1 | M. jarvisii | 1 | ||
R. indicum | 1 | M. muleiense | 1 | Neorhizobium | 6 |
R. leucaenae | 1 | M. opportunistum | 1 | N. galegae | 2 |
R. lusitanum | 1 | M. plurifarium | 1 | N. huautlense | 2 |
R. mesosinicum | 1 | M. robiniae | 1 | Neorhizobium sp. | 2 |
R. multihospitium | 1 | M. shonense | 1 | ||
R. rhizogenes | 1 | M. thiogangeticum | 1 | Phyllobacterium | 3 |
R. ruizarguesonis | 1 | M. wenxinie | P. myrsinacearum | 2 | |
R. tropici | 1 | Phyllobacterium sp. | 1 | ||
R. vallis | 1 | Agrobacterium | 2 | ||
Agrobacterium sp. | 1 | Burkholderia | 1 | ||
Ensifer | 2 | A. tumefaciens | 1 | Burkholderia sp. | 1 |
Ensifer sp. | 2 | ||||
Paenibacillus | 1 | ||||
Microvirga | 2 | Paenibacillus sp. | 1 | ||
Microvirga sp. | 2 | ||||
Pseudomonas | 1 | ||||
Pararhizobium | 2 | Pseudomonas sp. | 1 | ||
P. giardinii | 2 |
Species | n. | Species | n. | Species | n. |
Pseudomonas sp. | 16 | Bacillus circulans | 1 | Micromonospora ureilytica | 1 |
Bacillus sp. | 12 | Bacillus flexus | 1 | Micromonospora vinacea | 1 |
Paenibacillus sp. | 10 | Bacillus insolitus | 1 | Mucilaginibacter sp. | 1 |
Bacillus megaterium | 9 | Bacillus kochii | 1 | Mycobacterium sp. | 1 |
Enterobacter sp. | 7 | Bacillus mojavensis | 1 | Novosphingobium sp. | 1 |
Bacillus simplex | 6 | Bacillus pumilus | 1 | Ochrobactrum ciceri | 1 |
Mesorhizobium sp. | 6 | Bacillus sporothermodurans | 1 | Ochrobactrum sp. | 1 |
Phyllobacterium sp. | 6 | Bordetella avium | 1 | Oerskovia sp. | 1 |
Erwinia persicina | 4 | Bosea sp. | 1 | Ornithinicoccus sp. | 1 |
Pantoea ananatis | 4 | Brevibacillus agris | 1 | Paenibacillus sp. | 1 |
Streptomyces sp. | 4 | Burkholderia sp. | 1 | Paenibacillus endophyticum | 1 |
Acinetobacter sp. | 3 | Buttiauxella sp. | 1 | Paenibacillus kribbensis | 1 |
Agrobacterium sp. | 3 | Caulobacter sp. | 1 | Paenibacillus lupini | 1 |
Agrobacterium tumefaciens | 3 | Chitinophaga sp. | 1 | Paenibacillus polymixa | 1 |
Ancylobacter sp. | 3 | Chryseobacterium sp. | 1 | Paraburkholderia nodosa | 1 |
Enterobacter agglomerans | 3 | Cohnella lupini | 1 | Paracoccus sp. | 1 |
Sphingomonas sp. | 3 | Cupriavidus sp. | 1 | Phyllobacterium endophyticum | 1 |
Staphylococcus pasteuri | 3 | Curtobacterium citreum | 1 | Phyllobacterium ifriquiensis | 1 |
Xanthomonas sp. | 3 | Curtobacterium flaccumfaciens | 1 | Phyllobacterium loti | 1 |
Achromobacter sp. | 2 | Curtobacterium luteum | 1 | P. myrsinacearum | 1 |
Arthrobacter sp. | 2 | Delftia sp. | 1 | Promicromonospora sp. | 1 |
Bacillus subtilis | 2 | Enterobacter cloacae | 1 | Providencia sp. | 1 |
Bacillus thuringiensis | 2 | Fontibacillus phaseoli | 1 | Pseudomonas brassicacearum | 1 |
Brevibacillus sp. | 2 | Herbaspirillum lusitanum | 1 | Pseudomonas brenneri | 1 |
Corynebacterium sp. | 2 | Kaistia sp. | 1 | Pseudomonas corrugata | 1 |
Dyella sp. | 2 | Klebsiella sp. | 1 | Pseudomonas frederiksbergensis | 1 |
Herbaspirillum sp. | 2 | Luteibacter sp. | 1 | Pseudomonas putida | 1 |
Inquilinus sp. | 2 | Lysobacter sp. | 1 | Pseudomonas rhodesiae | 1 |
Kocuria sp. | 2 | Massilia sp. | 1 | Pseudomonas yamanorum | 1 |
Leifsonia sp. | 2 | Micromonospora aurantiaca | 1 | Rahnella aquatilis | 1 |
Lysinibacillus sp. | 2 | Micromonospora carbonacea | 1 | Rahnella sp. | 1 |
Micromonospora lupini | 2 | Micromonospora chokoriensis | 1 | Ralstonia pickettii | 1 |
Micromonospora saelicesensis | 2 | Micromonospora coxiensis | 1 | Rhizobium hidalgonense | 1 |
Pantoea agglomerans | 2 | Micromonospora halophytica | 1 | Rhizobium radiobacter | 1 |
Pantoea sp. | 2 | Micromonospora humi | 1 | Rhizobium vignae | 1 |
Pseudomonas fluorescens | 2 | Micromonospora krabiensis | 1 | Rhodococcus sp. | 1 |
Pseudomonas fragi | 2 | Micromonospora luteifusca | 1 | Serratia liquefaciens | 1 |
Rhizobium leguminosarum | 2 | Micromonospora luteiviridis | 1 | Serratia plymuthica | 1 |
Rhizobium nepotum | 2 | Micromonospora marina | 1 | Serratia proteamaculans | 1 |
Rhizobium sp. | 2 | M. matsumotoense | 1 | Starkeya novella | 1 |
Sphingobacterium sp. | 2 | Micromonospora mirobrigensis | 1 | Stenotrophomonas sp. | 1 |
Staphylococcus epidermidis | 2 | Micromonospora noduli | 1 | Stenotrophomonas maltophilia | 1 |
Staphylococcus sp. | 2 | Micromonospora phytophila | 1 | Streptomyces sp. | 1 |
Stenotrophomonas sp. | 2 | Micromonospora pisi | 1 | Streptomyces ciscaucasicus | 1 |
Variovorax sp. | 2 | M.purpureochromogenes | 1 | Thiobacillus sp. | 1 |
Actinoplanes sp. | 1 | Micromonospora rifamycinica | 1 | Variovorax paradoxus | 1 |
Agrobacterium rhizogenes | 1 | Micromonospora siamesi | 1 | ||
Bacillus brevis | 1 | Micromonospora sp. | 1 |
Species | n. | Species | n. |
Paenibacillus sp. | 3 | Novosphingobium sp. | 1 |
Arthrobacter sp. | 2 | Paenibacillus enshidis | 1 |
Bacillus sp. | 2 | Pantoea agglomerans | 1 |
Actinobacterium sp. | 1 | Pantoea sp. | 1 |
Aerococcus viridans | 1 | Pedobacter panaciterrae | 1 |
Agrobacterium sp. | 1 | Pseudomonas sp. | 1 |
Bosea robiniae | 1 | Rahnella sp. | 1 |
Chryseobacterium sp. | 1 | Rhizobium sp. | 1 |
Curtobacterium sp. | 1 | Shinella sp. | 1 |
Endobacter medicaginis | 1 | Sinorhizobium sp. | 1 |
Herbaspirillum robiniae | 1 | Stenotrophomonas rhizophila | 1 |
Klebsiella sp. | 1 | Stenotrophomonas sp. | 1 |
Leifsonia sp. | 1 | Streptomyces sp. | 1 |
Methylibium sp. | 1 | Tardiphaga robiniae | 1 |
Methylobacterium sp. | 1 | Variovorax sp. | 1 |
Micromonospora sp. | 1 | Xanthomonas sp. | 1 |
Mycobacterium sp. | 1 |
Plant | N. of # Symbiont Taxa | N. of # Endophyte Taxa |
Astragalus terraccianoi | 2 | 12 |
Biserrula pelecinus | 16 | 0 |
Cicer arietinum | 13 | 5 |
Cytisus scoparius | 5 | 10 |
Hedysarum glomeratum | 2 | 7 |
Hedysarum spinosissimum | 2 | 14 |
Lotus corniculatus | 2 | 19 |
Lotus parviflorus | 1 | 10 |
Medicago sativa | 3 | 15 |
Phaseolus vulgaris | 15 | 21 |
Pisum sativum | 7 | 24 |
Robinia pseudoacacia | 8 | 11 |
Trifolium pratense | 8 | 14 |
Vicia faba | 9 | 10 |
Vigna unguiculata | 10 | 13 |
Symbionts | n. of # Plants | Endophytes in Nodules | n. of # Plants |
Sinorhizobium meliloti | 20 | Bacillus megaterium | 9 |
Rhizobium leguminosarum | 16 | Bacillus simplex | 6 |
Mesorhizobium loti | 9 | Erwinia persicina | 4 |
Bradyrhizobium japonicum | 7 | Pantoea ananatis | 4 |
Bradyrhizobium canariense | 6 | Agrobacterium tumefaciens | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muresu, R.; Porceddu, A.; Concheri, G.; Stevanato, P.; Squartini, A. Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination. Plants 2022, 11, 1521. https://doi.org/10.3390/plants11111521
Muresu R, Porceddu A, Concheri G, Stevanato P, Squartini A. Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination. Plants. 2022; 11(11):1521. https://doi.org/10.3390/plants11111521
Chicago/Turabian StyleMuresu, Rosella, Andrea Porceddu, Giuseppe Concheri, Piergiorgio Stevanato, and Andrea Squartini. 2022. "Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination" Plants 11, no. 11: 1521. https://doi.org/10.3390/plants11111521
APA StyleMuresu, R., Porceddu, A., Concheri, G., Stevanato, P., & Squartini, A. (2022). Legumes of the Sardinia Island: Knowledge on Symbiotic and Endophytic Bacteria and Interactive Software Tool for Plant Species Determination. Plants, 11(11), 1521. https://doi.org/10.3390/plants11111521