Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.)
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Chemical Composition
2.2. Soil Chemical Composition
2.3. Effectiveness of EOs in Non-Contact Germination Test (Filter Paper Substrate)
2.4. Effectiveness of EOs in Non-Contact Germination Test (Soil Substrate)
2.5. Effectiveness of EO in Contact Germination Test (Filter Paper Substrate)
2.6. Effectiveness of EO Vapor Phase in Contact Germination Test (Soil Substrate)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Solid-Phase Microextraction (SPME)
4.3. Gas Chromatography/Mass Spectrometry (GC/MS)
4.4. Phytotoxic Studies
4.4.1. Non-Contact Germination Test with EOs
4.4.2. Contact Germination Test with EOs
4.5. Data Analysis
- Germination percentage (G) = Germinated seed number)/(Seed total number) × 100;
- Coefficient of Velocity of Germination (CVG) = N1 + N2 + … + Ni/100 × N1T1 + … + NiTi, where N is the number of seeds germinated every day; T is the number of days from seeding corresponding to N [62];
- Mean Germination Time (MGT) = (∑D × Germinated seed number)/(∑Germinated seed number), where D is the number of days from the beginning of germination, plus the number of seeds germinated on day D [63];
- Seedling Vigor Index (SVI) = (Mean Root length + Mean Shoot length) × Germination %. [64].
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebman, M.; Mohler, C.L.; Staver, C.P. (Eds.) Ecological Management of Agricultural Weeds; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Chauhan, B.S. Grand challenges in weed management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Dayan, F.E. Current status and future prospetcs in herbicide discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tataridas, A.; Kanatas, P.; Chatzigeorgiou, A.; Zannopoulos, S.; Travlos, I. Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. Agronomy 2022, 12, 589. [Google Scholar] [CrossRef]
- Ibáñez, M.D.; Blázquez, M.A. Phytotoxic effects of commercial essential oils on selected vegetable crops: Cucumber and tomato. Sustain. Chem. Pharm. 2020, 15, 100209. [Google Scholar] [CrossRef]
- Ahuja, N.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci. 2015, 88, 209–218. [Google Scholar] [CrossRef]
- Scognamiglio, M.; D’Abrosca, B.; Esposito, A.; Pacifico, S.; Monaco, P.; Fiorentino, A. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochem. Rev. 2013, 12, 803–830. [Google Scholar] [CrossRef]
- Ishii-Iwamoto, E.L.; Pergo Coelho, E.M.; Reis, B.; Moscheta, I.S.; Moacir Bonato, C. Effects of monoterpenes on physiological processes during seed germination and seedling growth. Curr. Bioact. Compd. 2012, 8, 50–64. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.P.; Kohli, R.K.; Batish, D.R.; Kaushal, P.S. Allelopathy of gymnospermous trees. J. For. Res. 1999, 4, 245–254. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Karimi, J.; Mohsenzadeh, S.; Dobránszki, J. Allelopathic potential of select gymnospermous trees. J. For. Sci. 2015, 31, 109–118. [Google Scholar]
- Young, G.P.; Bush, J.K. Assessment of the allelopathic potential of Juniperus ashei on germination and growth of Bouteloua curtipendula. J. Chem. Ecol. 2009, 35, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Lamia, H.; Hanana, M.; Jamoussi, B. Chemical composition of Juniperus oxycedrus L. subsp. macrocarpa essential oil and study of their herbicidal effects on germination and seedling growth of weeds. Asian J. Appl. Sci. 2011, 4, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, L.; Taheri, P.; Ghasemi Pirbalouti, A.; Moghaddam, M. Phytotoxicity and antifungal properties of the essential oil from the Juniperus polycarpos var. turcomanica (B. Fedsch.) R.P. Adams leaves. Physiol. Mol. Biol. Plants 2020, 26, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Li, B.N.; Liu, G.P.; Wang, X.S.; Wu, B.G. Effect of volatile substances of larch on the growth of ash in a mixed forest plantation. J. Northeast For. Univ. 2000, 28, 25–28. [Google Scholar]
- Fen, H.A.N.; Hui, W.; Yin-Xia, B.; Yong-Bing, L.I. Chemical components and their allelopathic effects of the volatiles from Larix principis-rupprechtii leaves and branches. Chin. J. Appl. Ecol. 2008, 19, 2327–2332. [Google Scholar]
- Yun, M.S.; Cho, H.M.; Yeon, B.-R.; Choi, J.S.; Kim, S. Herbicidal activities of essential oils from pine, nut pine, larch and khingan fir in Korea. Weed Turf. Sci. 2013, 2, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, K.; Islam, M.T.; Jayasena, V.; Sharma, B.; Sharma, S.; Sharma, P.; Kuča, K.; Bhardwaj, P. Review on essential oils, chemical composition, extraction, and utilization of some conifers in Northwestern Himalayas. Phyther. Res. 2020, 34, 2889–2910. [Google Scholar] [CrossRef]
- Bali, A.S.; Batish, D.R.; Singh, H.P. Allelopathic effect of aromatic plants: Role of volatile essential oils. J. Global. Biosci. 2016, 5, 4386–4395. [Google Scholar]
- Visan, D.-C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.-A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original contributions to the chemical composition, microbicidal, virulence-arresting and antibiotic-enhancing activity of essential oils from four coniferous species. Pharmaceuticals 2021, 14, 1159. [Google Scholar] [CrossRef]
- Sahin, H.T.; Yalcin, O.U. Chemical Composition and Utilization of Conifer Needles-A Review. J. Appl. Life Sci. Int. 2017, 14, 1–11. [Google Scholar] [CrossRef]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Karalija, E.; Dahija, S.; Parić, A.; Zeljković, S.Ć. Phytotoxic potential of selected essential oils against Ailanthus altissima (Mill.) Swingle, an invasive tree. Sustain. Chem. Pharm. 2020, 15, 100219. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Cantrell, C.L.; Semerdjieva, I.; Radoukova, T.; Stoyanova, A.; Maneva, V.; Kačániová, M.; Astatkie, T.; Borisova, D.; Dincheva, I.; et al. Essential oil composition and bioactivity of two juniper species from Bulgaria and Slovakia. Molecules 2021, 26, 3659. [Google Scholar] [CrossRef] [PubMed]
- Holm, Y.; Laakso, I.; Hiltunen, R. Variation and inheritance of monoterpenes in Larix species. Flavour Fragr. J. 1997, 12, 335–339. [Google Scholar] [CrossRef]
- Doi, M.; Toeda, K.; Myoda, T.; Hashidoko, Y.; Fujimori, T. Seasonal fluctuations of aroma components of essential oils from Larix leptolepis. J. Oleo Sci. 2019, 68, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Statti, G.A.; Menichini, F. Chemical composition and antimicrobial activity of essential oils from Pinus brutia (calabrian pine) growing in Lebanon. Chem. Nat. Compd. 2008, 44, 6. [Google Scholar] [CrossRef]
- Thai, T.H.; Hien, N.T.; Cuong, N.; Casanova, J.; Tomi, F.; Paoli, M. Chemical composition of essential oils isolated from leaves, twigs, roots and cones of Vietnamese Keteleeria evelyniana Mast. J. Essent. Oil Res. 2022, 34, 148–154. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, B.K.; Kim, J.H.; Lee, S.H.; Hong, S.K. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Höferl, M.; Stoilova, I.; Schmidt, E.; Wanner, J.; Jirovetz, L.; Trifonova, D.; Krastev, L.; Krastanov, A. Chemical composition and antioxidant properties of juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants 2014, 3, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Cabral, C.; Francisco, V.; Cavaleiro, C.; Gonçalves, M.J.; Cruz, M.T.; Sales, F.; Batista, M.T.; Salguerio, L. Essential oil of Juniperus communis subsp. alpina (Suter) Čelak needles: Chemical composition, antifungal activity and cytotoxicity. Phytother. Res. 2012, 26, 1352–1357. [Google Scholar] [CrossRef]
- Zheljazkov, D.; Astatkie, T.; Jeliazkova, E.A.; Heidel, B.; Ciampa, L. Essential oil content, composition and bioactivity of Juniper species in Wyoming, United States. Nat. Prod. Commun. 2017, 12, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holubová, V.; Hrdlicka, P.; Kubán, V. Age and space distributions of monoterpenes in fresh needles of Picea abies (L) Karst. determined by gas chromatography-mass spectrometry. Phytochem. Anal. 2001, 12, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kupcinskiene, E.; Stikliene, A.; Judzentiene, A. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ. Pollut. 2008, 155, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Arlinda, A.; Kadiasi, N.; Alban, I. Effect of soil composition elements on essential oils content of Juniperus communis L. berries in north populations in Albania. Int. J. Curr. Res. 2021, 13, 19794–19797. [Google Scholar]
- Hajdari, A.; Mustafa, B.; Nebija, D.; Miftari, E.; Quave, C.L.; Novak, J. Chemical Composition of Juniperus communis L. Cone Essential Oil and Its Variability among Wild Populations in Kosovo. Chem. Biodivers. 2015, 12, 1706–1717. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Russo, M.T.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J. Agric. Food Chem. 2003, 7, 3073–3078. [Google Scholar] [CrossRef]
- Koukos, P.K.; Papadopoulou, K.I. Essential oil of Juniperus communis L. grown in Northern Greece: Variation of fruit oil yield and composition. J. Essent. Oil Res. 1997, 9, 35–39. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Dehsheikh, A.B.; Sourestani, M.M.; Dehsheikh, P.B.; Mottaghipisheh, J.; Vitalini, S.; Iriti, M. Monoterpenes: Essential oil components with valuable features. Mini Rev. Med. Chem. 2020, 20, 958–974. [Google Scholar] [CrossRef]
- Abrahim, D.; Francischini, A.C.; Pergo, E.M.; Kelmer-Bracht, A.M.; Ishii-Iwamoto, E.L. Effects of α-pinene on the mitochon-drial respiration of maize seedlings. Plant Physiol. Biochem. 2003, 41, 985–991. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Arora, K.; Kohli, R.K. alpha-Pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 2006, 98, 1261–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Martino, L.; Mancini, E.; De Almeda, L.F.R.; De Feo, V. The antigerminative activity of twenty seven monoterpenes. Molecules 2010, 15, 6630–6637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrianjafinandrasana, S.N.; Andrianoelisoa, H.S.; Jeanson, M.L.; Ramonta, I.R.; Danthu, P. Allelopathic effects of volatile compounds of essential oil from Ravensara aromatica Sonnerat chemotypes. Allelopathy J. 2013, 31, 333–344. [Google Scholar]
- Wright, C.; Chhetri, B.K.; Setzer, W.N. Chemical composition and phytotoxicity of the essential oil of Encelia farinosa growing in the sonoran desert. Am. J. Essent. Oils Nat. Prod. 2013, 1, 18–22. [Google Scholar]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Verma, S.K.; Iqbal, H.; Chanda, D.; Verma, K.; Darokar, M.P.; et al. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J. Sci. Food Agric. 2018, 98, 321–327. [Google Scholar] [CrossRef]
- Scognamiglio, M.; Schneider, B. Identification of potential allelochemicals from donor plants and their synergistic effects on the metabolome of Aegilops geniculata. Front. Plant Sci. 2020, 11, 1046. [Google Scholar] [CrossRef]
- Tahir, A.; Jilani, M.I.; Khera, R.A.; Nadeem, F. Juniperus communis: Biological activities and therapeutic potentials of a medicinal plant—A comprehensive study. Int. J. Chem. Biochem. Sci. 2016, 9, 85–91. [Google Scholar]
- Süntar, I.; Tumen, I.; Ustün, O.; Keleş, H.; Küpeli Akkol, E. Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. J. Ethnopharmacol. 2012, 139, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Masci, V.L.; Caradonna, V.; Tiezzi, A.; Giacomello, P.; Ovidi, E. Liquid and vapor Phase of four conifer-derived essential oils: Comparison of chemical compositions and antimicrobial and antioxidant properties. Pharmaceuticals 2021, 14, 134. [Google Scholar] [CrossRef]
- Hong, E.J.; Na, K.J.; Choi, I.G.; Choi, K.C.; Jeung, E.B. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 2004, 27, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Biological and nonbiological antioxidant activity of some essential oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.A.; Javadi, B.; Hassanzadeh, M.K. Antioxidant activity of the essential oils of different parts of Juniperus communis subsp. hemisphaerica. and Juniperus oblonga. Pharm. Biol. 2007, 4, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.A.; Sadeghi-aliabadi, H.; Saeidi, M.; Jafarian, A. Cytotoxic evaluations of Iranian conifers on cancer cells. Pharm. Biol. 2005, 43, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi Hoai, N.; Viet Duc, H.; Thi Thao, D.; Orav, A.; Raa, A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells. Pharmacogn. Mag. 2015, 11, S290. [Google Scholar]
- Maurya, A.K.; Devi, R.; Kumar, A.; Kundal, R.; Thakur, S.; Sharma, A.; Kumar, R.; Padwad, Y.S.; Chand, G.; Singh, B.; et al. Chemical composition, cytotoxic and antibacterial activities of essential oils of cultivated clones of Juniperus communis and wild Juniperus species. Chem. Biodivers. 2018, 15, e1800183. [Google Scholar] [CrossRef]
- Wedge, D.; Tabanca, N.; Sampson, B.; Werle, C.; Demirci, B.; Can Baser, K.H.; Nan, P.; Duan, J.; Liu, Z. Antifungal and insecticidal activity of two Juniperus essential oils. Nat. Prod. Commun. 2009, 4, 123–127. [Google Scholar]
- Semerdjieva, I.; Atanasova, D.; Maneva, V.; Zheljazkov, V.; Radoukova, T.; Astatkie, T.; Dincheva, I. Allelopathic effects of Juniper essential oils on seed germination and seedling growth of some weed seeds. Ind. Crops Prod. 2022, 180, 114768. [Google Scholar] [CrossRef]
- Ismail, A.; Lamia, H.; Mohsen, H.; Bassem, J. Herbicidal potential of essential oils from three mediterranean trees on different weeds. Curr. Bioact. Compd. 2012, 8, 3–12. [Google Scholar] [CrossRef]
- Muller, C.H.; del Moral, R. Soil toxicity induced by terpenes from Salvia leucophylla. Bull. Torrey Bot. Club. 1966, 93, 130–137. [Google Scholar] [CrossRef]
- Vitalini, S.; Iriti, M.; Garzoli, S. GC-MS and SPME-GC/MS Analysis and bioactive potential evaluation of essentia oils from two Viola species belonging to the V. calcarata complex. Separations 2022, 9, 39. [Google Scholar] [CrossRef]
- Al-Mudaris, M. Notes on various parameters recording the speed of seed germination. Der. Trop. 1998, 99, 147–154. [Google Scholar]
- Ellis, R.A.; Roberts, E.H. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 1981, 9, 373–409. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigour determination in soybean seed by multiple criteria. Crop Sci. 1973, 1, 630–633. [Google Scholar] [CrossRef]
N° | Component 1 | LRI 2 | LRI 3 | Juniperus communis EO 4 | Juniperus communis EO 5 | Larix decidua EO 6 | Larix decidua EO 7 |
---|---|---|---|---|---|---|---|
1 | α-thujene | 821 | 823 | 4.2 ± 0.02 | 4.9 ± 0.06 | 0.3 ± 0.02 | 0.5 ± 0.03 |
2 | α-pinene | 942 | 943 | 19.0 ± 0.04 | 10.3 ± 0.03 | 51.0 ± 0.05 | 63.3 ± 0.03 |
3 | camphene | 945 | 946 | 0.2 ± 0.02 | - | 1.4 ± 0.02 | 1.2 ± 0.01 |
4 | dehydrosabinene | 960 | 956 | - | - | - | 0.4 ± 0.02 |
5 | sabinene | 976 | 972 | 37.5 ± 0.03 | 34.5 ± 0.02 | 0.8 ± 0.02 | 1.0 ± 0.03 |
6 | β-pinene | 985 | 978 | 3.0 ± 0.04 | 12.6 ± 0.03 | 2.3 ± 0.02 | 7.9 ± 0.02 |
7 | β-myrcene | 990 | 987 | 1.1 ± 0.03 | - | 9.7 ± 0.03 | 6.2 ± 0.02 |
8 | α-phellandrene | 1007 | 1005 | 0.7 ± 0.03 | 1.4 ± 0.03 | 0.3 ± 0.03 | 0.2 ± 0.07 |
9 | 3-carene | 1010 | 1008 | - | 0.9 ± 0.03 | - | - |
10 | α-terpinene | 1012 | 1010 | 2.4 ± 0.06 | 5.8 ± 0.03 | - | - |
11 | p-cymene | 1020 | 1016 | 1.2 ± 0.02 | 7.5 ± 0.05 | 1.1 ± 0.03 | 1.1 ± 0.01 |
12 | limonene | 1026 | 1023 | 5.8 ± 0.03 | 14.0 ± 0.07 | 3.9 ± 0.06 | 4.5 ± 0.02 |
13 | β-ocimene | 1029 | 1024 | - | - | 10.2 ± 0.04 | 10.2 ± 0.02 |
14 | 1,8-cineole | 1030 | 1025 | - | - | 3.2 ± 0.06 | 1.9 ± 0.05 |
15 | γ-terpinene | 1053 | 1054 | 5.0 ± 0.04 | 1.0 ± 0.02 | 0.5 ± 0.03 | 0.3 ± 0.02 |
16 | terpinolene | 1082 | 1080 | 2.6 ± 0.03 | 4.3 ± 0.06 | 1.0 ± 0.04 | 0.5 ± 0.03 |
17 | p-cymenene | 1093 | 1091 | - | - | 0.3 ± 0.02 | 0.1 ± 0.01 |
18 | α-campholenal | 1127 | 1125 | - | - | 0.3 ± 0.03 | - |
19 | trans-pinocarveol | 1137 | 1134 | - | - | 1.1 ± 0.02 | 0.3 ± 0.03 |
20 | pinocarvone | 1149 | 1145 | - | - | 0.2 ± 0.02 | - |
21 | borneol | 1160 | 1155 | - | - | 0.2 ± 0.03 | - |
22 | terpinen-4-ol | 1165 | 1160 | 4.2 ± 0.02 | 2.7 ± 0.02 | 0.8 ± 0.02 | 0.1 ± 0.02 |
23 | α-terpineol | 1182 | 1183 | 0.2 ± 0.01 | - | 0.4 ± 0.02 | - |
24 | carveol | 1202 | 1201 | - | - | - | 0.1 ± 0.02 |
25 | cuminal | 1215 | 1211 | - | - | 0.1 ± 0.01 | - |
26 | phellandral | 1255 | 1249 | - | - | 0.1 ± 0.04 | - |
27 | bornyl acetate | 1294 | 1290 | 0.3 ± 0.02 | - | 2.6 ± 0.07 | 0.1 ± 0.01 |
28 | 4-terpinenyl acetate | 1307 | 1304 | 0.1 ± 0.01 | - | 0.8 ± 0.02 | - |
29 | α-terpinyl acetate | 1336 | 1333 | 0.4 ± 0.03 | - | - | - |
30 | α-cubebene | 1352 | 1348 | 0.2 ± 0.03 | - | - | - |
31 | copaene | 1390 | 1385 | 0.3 ± 0.02 | - | 0.1 ± 0.02 | - |
32 | β-elemene | 1408 | 1406 | 1.8 ± 0.05 | - | 0.1 ± 0.02 | - |
33 | longifolene | 1410 | 1408 | - | - | 0.2 ± 0.02 | tr |
34 | β-caryophyllene | 1427 | 1424 | 1.3 ± 0.03 | - | 2.2 ± 0.07 | tr |
35 | cis-thujopsene | 1438 | 1435 | 2.1 ± 0.03 | - | - | - |
36 | humulene | 1471 | 1465 | 0.8 ± 0.04 | - | 0.7 ± 0.03 | - |
37 | γ-muurolene | 1490 | 1486 | 0.5 ± 0.02 | - | 0.3 ± 0.02 | - |
38 | germacrene D | 15,001 | 1500 | 0.1 ± 0.02 | - | 0.5 ± 0.05 | - |
39 | α-muurolene | 1507 | * | 1.0 ± 0.02 | - | 0.5 ± 0.02 | - |
40 | guaia-1(10), 11-diene | 1509 | 1505 | 0.3 ± 0.02 | - | - | - |
41 | δ-cadinene | 1533 | 1530 | 2.4 ± 0.03 | - | - | - |
42 | α-cadinene | 1539 | * | - | - | 0.1 ± 0.02 | - |
43 | α-calacorene | 1541 | 1539 | - | - | 0.1 ± 0.02 | - |
44 | spathulenol | 1576 | 1571 | 0.1 ± 0.02 | - | - | - |
45 | caryophyllene oxide | 1616 | 1613 | 0.1 ± 0.02 | - | 0.2 ± 0.02 | - |
46 | epicubenol | 1620 | 1618 | 0.1 ± 0.02 | - | - | - |
47 | humulene epoxide II | 1622 | * | - | - | 0.1 ± 0.02 | - |
48 | δ-cadinol | 1627 | * | - | - | 0.2 ± 0.01 | - |
49 | τ-cadinol | 1630 | 1625 | - | - | 0.1 ± 0.02 | - |
50 | τ-muurolol | 1641 | 1639 | 0.6 ± 0.02 | - | - | - |
51 | α-cadinol | 1678 | 1676 | 0.4 ± 0.03 | - | - | - |
SUM | 100.0 | 99.9 | 97.9 | 99.9 | |||
Terpenoids | 87.6 | 99.9 | 89.6 | 99.7 | |||
Sesquiterpenoids | 11.8 | - | 5.1 | - | |||
Others | 0.6 | - | 3.2 | 0.2 |
N° | Component 1 | LRI 2 | LRI 3 | Soil 4 | Soil 5 | Soil 6 | Soil 7 |
---|---|---|---|---|---|---|---|
1 | α-thujene | 821 | 823 | 4.2 ± 0.02 | 0.1 ± 0.02 | 4.0 ± 0.03 | 3.7 ± 0.03 |
2 | α-pinene | 942 | 943 | 19.0 ± 0.05 | 0.4 ± 0.02 | 20.4 ± 0.02 | 1.2 ± 0.02 |
3 | Sabinene | 976 | 972 | 2.5 ± 0.02 | - | 3.2 ± 0.02 | 3.2 ± 0.02 |
4 | α-terpinene | 1012 | 1010 | 5.1 ± 0.02 | 0.3 ± 0.02 | 4.5 ± 0.02 | 6.0 ± 0.06 |
5 | p-cymene | 1020 | 1016 | 9.0 ± 0.02 | 0.6 ± 0.03 | 4.8 ± 0.04 | 6.5 ± 0.03 |
6 | Limonene | 1026 | 1023 | 4.9 ± 0.02 | 0.3 ± 0.02 | 2.9 ± 0.02 | 4.6 ± 0.02 |
7 | γ-terpinene | 1053 | 1054 | 6.3 ± 0.02 | 0.3 ± 0.04 | 6.5 ± 0.02 | 7.8 ± 0.02 |
8 | Terpinolene | 1082 | 1080 | 2.2 ± 0.02 | 1.0 ± 0.06 | - | - |
9 | α-cubebene | 1352 | 1348 | - | 2.3 ± 0.02 | 0.5 ± 0.03 | 2.1 ± 0.01 |
10 | Copaene | 1390 | 1385 | 0.3 ± 0.02 | 2.8 ± 0.02 | 0.9 ± 0.02 | 3.2 ± 0.02 |
11 | β-elemene | 1408 | 1406 | 9.7 ± 0.02 | 12.9 ± 0.02 | 7.1 ± 0.02 | 13.7 ± 0.02 |
12 | β-caryophyllene | 1427 | 1424 | 1.6 ± 0.02 | 4.2 ± 0.03 | 2.1 ± 0.02 | 4.4 ± 0.01 |
13 | cis-thujopsene | 1438 | 1435 | 30.2 ± 0.02 | 26.7 ± 0.04 | 40.5 ± 0.03 | 32.2 ± 0.02 |
14 | Humulene | 1471 | 1465 | 1.5 ± 0.02 | 2.1 ± 0.02 | 1.0 ± 0.05 | 3.0 ± 0.02 |
15 | γ-muurolene | 1490 | 1486 | - | 4.9 ± 0.04 | - | - |
17 | α-muurolene | 1507 | * | - | 1.9 ± 0.04 | - | - |
16 | δ-cadinene | 1533 | 1530 | 0.6 ± 0.04 | 10.6 ± 0.02 | 0.3 ± 0.02 | 2.6 ± 0.01 |
18 | τ-muurolol | 1641 | 1639 | - | 0.9 ± 0.02 | - | - |
19 | α-cadinol | 1678 | 1676 | 2.9 ± 0.02 | 27.7 ± 0.04 | 1.2 ± 0.02 | 5.6 ± 0.02 |
SUM | 100.0 | 100.0 | 99.9 | 99.8 | |||
Terpenoids | 53.2 | 3.0 | 46.3 | 33.0 | |||
Sesquiterpenoids | 46.5 | 94.2 | 52.7 | 63.6 | |||
Others | 0.3 | 2.8 | 0.9 | 3.2 |
N° | Component 1 | LRI 2 | LRI 3 | Soil 4 | Soil 5 | Soil 6 | Soil 7 |
---|---|---|---|---|---|---|---|
1 | α-pinene | 942 | 943 | 87.7 ± 0.05 | 37.8 ± 0.03 | 72.5 ± 0.03 | 66.7 ± 0.05 |
2 | β-pinene | 985 | 978 | 4.6 ± 0.02 | 3.3 ± 0.02 | 2.8 ± 0.03 | 7.1 ± 0.02 |
3 | β-myrcene | 990 | 987 | 7.7 ± 0.02 | 10.2 ± 0.03 | 12.6 ± 0.03 | 19.1 ± 0.02 |
4 | β-ocimene | 1029 | 1024 | - | 13.8 ± 0.03 | 7.7 ± 0.02 | 4.6 ± 0.02 |
5 | β-caryophyllene | 1427 | 1424 | - | 34.9 ± 0.04 | 4.4 ± 0.02 | 2.5 ± 0.03 |
SUM | 100.0 | 100.0 | 100.0 | 100.0 |
N° | Component 1 | LRI 2 | LRI 3 | Soil 4 | Soil 5 | Soil 6 | Soil 7 |
---|---|---|---|---|---|---|---|
1 | α-thujene | 821 | 823 | - | 100.0 ± 0.02 | 42.2 ± 0.03 | 87.9 ± 0.03 |
2 | β-elemene | 1408 | 1406 | - | - | 17.4 ± 0.02 | 12.1 ± 0.02 |
3 | cis-thujopsene | 1438 | 1435 | - | - | 40.4 ± 0.03 | - |
SUM | 100.0 | 100.0 | 100.0 |
N° | Component 1 | LRI 2 | LRI 3 | Soil 4 | Soil 5 | Soil 6 | Soil 7 |
---|---|---|---|---|---|---|---|
1 | α-pinene | 942 | 943 | 96.4 ± 0.05 | 93.7 ± 0.03 | 88.9 ± 0.03 | 81.8 ± 0.05 |
2 | β-pinene | 985 | 978 | 3.6 ± 0.02 | 4.7 ± 0.02 | 11.1 ± 0.03 | 18.2 ± 0.02 |
3 | β-myrcene | 990 | 987 | - | 1.6 ± 0.03 | - | - |
SUM | 100.0 | 100.0 | 100.0 | 100.0 |
Target Species | EO (µL) | G (%) | CVG | MGT | SVI | Root (mm) | Shoot (mm) |
---|---|---|---|---|---|---|---|
Juniperus communisvar. saxatilis | |||||||
Lolium multiflorum | 0 | 93.3 ± 5.3 a | 89.8 ± 9.0 a | 5.1 ± 0.1 a | 11,064 ± 306 a | 72.3 ± 6.5 a | 46.6 ± 2.0 a |
2 | 80.3 ± 9.4 b | 67.7 ± 6.6 b | 5.1 ± 0.1 a | 5129 ± 720 b | 41.5 ± 4.5 b | 22.3 ± 3.2 b | |
20 | 35.0 ± 8.5 c | 21.5 ± 7.0 c | 5.4 ± 0.2 b | 772 ± 314 c | 15.7 ± 3.6 c | 5.8 ± 0.7 c | |
50 | 0.0 ± 0.0 d | n.d. | n.d. | n.d. | n.d. | n.d. | |
F | 154.856 | 157.288 | 1721.960 | 580.626 | 214.413 | 476.953 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 83.3 ± 8.7 a | 102.6 ± 13.9 a | 4.3 ± 0.1 a | 4522 ± 301 a | 30.9 ± 2.5 a | 23.6 ± 1.6 a |
2 | 78.5 ± 8.3 a | 89.9 ± 13.1 a | 4.3 ± 0.1 a | 3711 ± 354 b | 29.3 ± 3.2 a | 18.1 ± 1.6 b | |
20 | 70.0 ± 8.5 a | 85.7 ± 15.8 a | 4.4 ± 0.1 a | 2195 ± 120 c | 18.6 ± 3.3 b | 13.0 ± 0.9 c | |
50 | 35.0 ± 6.3 b | 26.8 ± 3.0 b | 4.8 ± 0.2 b | 349 ± 99 d | 3.0 ± 0.6 c | 6.8 ± 0.9 d | |
F | 29.702 | 28.903 | 9.183 | 225.386 | 96.659 | 121.614 | |
p-value | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | |
Interaction species × treatment | |||||||
F | 20.398 | 10.168 | 749.786 | 209.782 | 68.815 | 150.270 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Larix decidua | |||||||
0 | 90.0 ± 3.5 a | 92.0 ± 3.2 a | 5.0 ± 0.2 a | 10,450 ± 116 a | 68.6 ± 1.4 a | 47.5 ± 3.4 a | |
Lolium multiflorum | 2 | 63.0 ± 8.2 b | 46.8 ± 6.9 b | 5.2 ± 0.1 ab | 2662 ± 590 b | 20.0 ± 1.6 b | 21.9 ± 3.1 b |
20 | 54.0 ± 15.4 b | 28.3 ± 9.9 c | 5.5 ± 0.3 b | 907 ± 366 c | 3.6 ± 1.3 c | 13.0 ± 1.5 c | |
50 | 0.0 ± 0.0 c | n.d. | n.d. | n.d. | n.d. | n.d. | |
F | 71.962 | 151.869 | 814.006 | 731.639 | 2514.839 | 275.249 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 83.3 ± 11.6 a | 106.0 ± 17.6 a | 4.3 ± 0.1 a | 3440 ± 891 a | 20.0 ± 4.3 a | 20.9 ± 3.5 a |
2 | 81.8 ± 6.7 a | 101.0 ± 13.9 a | 4.4 ± 0.0 b | 2734 ± 537 a | 18.2 ± 5.4 a | 15.5 ± 2.2 b | |
20 | 71.8 ± 11.5 a | 72.3 ± 16.1 b | 4.8 ± 0.0 c | 2444 ± 525 a | 17.5 ± 0.9 a | 16.4 ± 2.3 b | |
50 | 0.0 ± 0.0 b | n.d. | n.d. | n.d. | n.d. | n.d. | |
F | 81.159 | 50.067 | 6953.429 | 26.377 | 28.495 | 59.168 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Interaction species × treatment | |||||||
F | 4.164 | 11.159 | 15.836 | 127.252 | 215.139 | 63.298 | |
p-value | 0.017 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Target Species | EO (µL) | G (%) | CVG | MGT | Shoot (mm) |
---|---|---|---|---|---|
Juniperus communisvar. saxatilis | |||||
Lolium multiflorum | 0 | 86.8 ± 5.3 | 92.0 ± 5.8 a | 4.7 ± 0.1 a | 73.1 ± 2.2 a |
2 | 78.3 ± 6.7 | 82.0 ± 11.6 a | 4.8 ± 0.1 a | 66.6 ± 2.8 b | |
20 | 76.5 ± 4.0 | 71.5 ± 5.3 a | 5.0 ± 0.2 b | 65.6 ± 3.6 b | |
50 | 63.3 ± 20.1 | 46.5 ± 19.2 b | 5.3 ± 0.0 c | 49.0 ± 4.9 c | |
F | 3.073 | 10.652 | 19.886 | 34.017 | |
p-value | 0.069 | 0.001 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 88.5 ± 3.0 a | 101.5 ± 6.5 a | 4.4 ± 0.1 a | 29.8 ± 1.1 a |
2 | 75.3 ± 9.9 b | 75.2 ± 11.2 b | 4.4 ± 0.1 ab | 29.4 ± 1.3 a | |
20 | 65.0 ± 6.3 b | 72.5 ± 1.9 b | 4.6 ± 0.1 ab | 24.5 ± 1.6 b | |
50 | 65.0 ± 6.3 b | 68.6 ± 5.5 b | 4.7 ± 0.1 b | 22.2 ± 1.4 b | |
F | 10.649 | 18.279 | 5.742 | 30.647 | |
p-value | 0.001 * | 0.000 * | 0.011 * | 0.000 * | |
Interaction species × treatment | |||||
F | 0.921 | 3.165 | 4.787 | 15.100 | |
p-value | 0.446 | 0.043 * | 0.009 * | 0.000 * | |
Larix decidua | |||||
Lolium multiflorum | 0 | 88.0 ± 10.0 a | 93.3 ± 12.4 a | 4.9 ± 0.1 a | 72.1 ± 2.8 a |
2 | 86.5 ± 7.5 a | 82.3 ± 16.1 a | 5.0 ± 0.1 a | 69.3 ± 2.8 a | |
20 | 56.8 ± 8.7 b | 55.2 ± 8.1 b | 4.9 ± 0.0 a | 44.4 ± 3.6 b | |
50 | 48.3 ± 5.5 b | 36.6 ± 6.0 b | 5.2 ± 0.2 b | 29.3 ± 3.2 c | |
F | 25.388 | 20.468 | 5.965 | 176.381 | |
p-value | 0.000 * | 0.000 * | 0.010 * | 0.000 * | |
Sinapis alba | 0 | 76.5 ± 7.0 a | 80.5 ± 11.3 a | 4.6 ± 0.1 a | 30.5 ± 1.1 a |
2 | 76.8 ± 8.7 a | 77.8 ± 10.5 a | 4.6 ± 0.0 a | 31.3 ± 0.7 a | |
20 | 68.5 ± 3.0 a | 68.5 ± 6.2 a | 4.7 ± 0.1 a | 23.3 ± 2.0 b | |
50 | 43.5 ± 7.0 b | 32.0 ± 4.9 b | 5.1 ± 0.1 b | 17.5 ± 2.0 c | |
F | 21.634 | 27.273 | 30.000 | 69.892 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Interaction species × treatment | |||||
F | 4.055 | 2.357 | 0.583 | 66.368 | |
p-value | 0.018 * | 0.097 | 0.632 | 0.000 * |
Target Species | EO (µL/mL) | G (%) | CVG | MGT | SVI | Root (mm) | Shoot (mm) |
---|---|---|---|---|---|---|---|
Juniperus communisvar. saxatilis | |||||||
Lolium multiflorum | 0 | 90.0 ± 3.5 a | 84.8 ± 4.6 a | 5.0 ± 0.1 a | 7037 ± 568 a | 42.9 ± 3.3 a | 35.2 ± 0.5 a |
2 | 53.5 ± 13.0 b | 37.1 ± 14.7 b | 5.4 ± 0.1 b | 2632 ± 678 b | 34.9 ± 2.9 b | 14.4 ± 3.8 b | |
5 | 31.8 ± 13.9 c | 17.8 ± 8.9 c | 5.4 ± 0.2 b | 1020 ± 660 c | 20.4 ± 6.7 c | 9.3 ± 2.0 c | |
10 | 0.0 ± 0.0 d | n.d. | n.d. | n.d. | n.d. | n.d. | |
F | 61.330 | 68.439 | 2630.647 | 126.727 | 88.602 | 187.572 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 81.8 ± 6.7 a | 103.8 ± 9.4 a | 4.3 ± 0.1 a | 2780 ± 361 a | 16.8 ± 1.9 a | 17.2 ± 1.7 a |
2 | 49.8 ± 8.3 b | 41.9 ± 9.9 b | 4.5 ± 0.2 ab | 1686 ± 326 b | 20.6 ± 1.9 b | 13.2 ± 0.7 b | |
5 | 39.8 ± 13.5 b | 35.2 ± 3.7 b | 4.9 ± 0.3 b | 705 ± 165 c | 7.7 ± 1.2 c | 10.4 ± 2.1 b | |
10 | 38.3 ± 3.5 b | 31.6 ± 16.9 b | 5.0 ± 0.2 b | 683 ± 155 c | 7.3 ± 2.3 c | 10.5 ± 1.1 b | |
F | 21.253 | 37.024 | 7.728 | 55.029 | 51.470 | 17.225 | |
p-value | 0.000 * | 0.000 * | 0.004 * | 0.000 * | 0.000 * | 0.000 * | |
Interaction species × treatment | |||||||
F | 10.297 | 2.403 | 460.778 | 48.706 | 39.572 | 79.502 | |
p-value | 0.000 * | 0.092 | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Larix decidua | |||||||
0 | 91.5 ± 3.0 a | 84.0 ± 8.3 a | 5.2 ± 0.1 a | 8338 ± 714 a | 49.4 ± 3.6 a | 41.7 ± 3.9 a | |
Lolium multiflorum | 2 | 51.5 ± 12.8 b | 31.2 ± 8.9 b | 5.5 ± 0.1 b | 2227 ± 824 b | 16.6 ± 5.7 b | 36.2 ± 8.2 b |
5 | 0.0 ± 0.0 c | n.d. | n.d. | n.d. | n.d. | n.d. | |
10 | 0.0 ± 0.0 c | n.d. | n.d. | n.d. | n.d. | n.d. | |
F | 183.326 | 169.513 | 15,155.667 | 208.653 | 191.104 | 214.739 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 71.8 ± 6.2 a | 76.3 ± 6.6 a | 4.5 ± 0.2 a | 2892 ± 288 a | 16.9 ± 1.3 a | 23.4 ± 1.8 a |
2 | 66.5 ± 12.2 a | 62.4 ± 21.3 a | 4.9 ± 0.2 b | 2029 ± 461 b | 14.0 ± 2.5 a | 16.3 ± 1.3 ab | |
5 | 64.8 ± 9.9 a | 56.3 ± 11.1 a | 5.0 ± 0.1 b | 1610 ± 315 b | 9.7 ± 2.4 b | 15.3 ± 2.1 b | |
10 | 18.3 ± 6.7 b | 12.8 ± 5.5 b | 5.0 ± 0.2 b | 252 ± 108 c | 9.2 ± 1.9 b | 18.3 ± 6.7 ab | |
F | 29.871 | 18.409 | 7.446 | 47.666 | 12.202 | 3.851 | |
p-value | 0.000 * | 0.000 * | 0.004 * | 0.000 * | 0.001 * | 0.038 * | |
Interaction species × treatment | |||||||
F | 38.219 | 14.891 | 1426.056 | 96.108 | 99.856 | 60.698 | |
p-value | 0.000* | 0.000 * | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Target Species | EO (µL/mL) | G (%) | CVG | MGT | Shoot (mm) |
---|---|---|---|---|---|
Juniperus communisvar. saxatilis | |||||
Lolium multiflorum | 0 | 98.3 ± 3.5 a | 112.8 ± 11.5 a | 4.8 ± 0.1 a | 71.7 ± 3.2 a |
2 | 83.5 ± 4.0 b | 88.8 ± 9.4 b | 4.8 ± 0.1 a | 69.6 ± 3.6 a | |
5 | 56.5 ± 13.8 c | 47.5 ± 18.3 c | 5.2 ± 0.0 a | 66.9 ± 1.3 a | |
10 | 45.3 ± 3.5 c | 26.0 ± 9.2 c | 5.6 ± 0.4 b | 43.0 ± 8.7 b | |
F | 41.002 | 38.913 | 14.510 | 28.223 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Sinapis alba | 0 | 93.3 ± 5.5 a | 115.2 ± 13.7 a | 4.5 ± 0.1 a | 28.3 ± 0.5 a |
2 | 83.5 ± 4.0 ab | 80.0 ± 4.7 b | 4.8 ± 0.1 b | 28.1 ± 3.6 a | |
5 | 70.0 ± 14.1 b | 63.2 ± 13.6 b | 5.0 ± 0.0 c | 22.4 ± 1.9 b | |
10 | 35.0 ± 12.3 c | 25.7 ± 11.0 c | 5.0 ± 0.1 c | 18.3 ± 1.4 c | |
F | 26.273 | 43.250 | 25.826 | 19.860 | |
p-value | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
Interaction species × treatment | |||||
F | 2.655 | 1.436 | 4.688 | 11.654 | |
p-value | 0.071 | 0.257 | 0.010 * | 0.000 * | |
Larix decidua | |||||
Lolium multiflorum | 0 | 90.0 ± 8.5 a | 102.3 ± 19.0 a | 4.7 ± 0.0 a | 72.1 ± 3.4 a |
2 | 71.8 ± 9.9 b | 68.0 ± 3.3 b | 4.9 ± 0.0 ab | 59.6 ± 2.8 b | |
20 | 71.5 ± 3.0 b | 57.1 ± 16.0 bc | 5.2 ± 0.5 ab | 57.0 ± 2.8 b | |
50 | 44.8 ± 9.9 c | 35.0 ± 14.6 c | 5.4 ± 0.1 c | 29.5 ± 11.2 c | |
F | 19.881 | 15.100 | 4.696 | 33.525 | |
p-value | 0.000 * | 0.000 * | 0.022 * | 0.000 * | |
Sinapis alba | 0 | 81.8 ± 3.5 a | 96.0 ± 9.5 a | 4.5 ± 0.1 a | 31.2 ± 2.1 a |
2 | 71.5 ± 8.3 ab | 64.5 ± 11.1 ab | 5.1 ± 0.1 b | 25.9 ± 2.2 b | |
20 | 58.3 ± 17.3 ab | 48.5 ± 25.2 b | 5.1 ± 0.3 b | 20.4 ± 0.7 c | |
50 | 50.0 ± 16.7 c | 40.1 ± 19.1 b | 5.0 ± 0.1 b | 18.7 ± 2.1 c | |
F | 4.799 | 8.060 | 8.892 | 36.371 | |
p-value | 0.020 * | 0.003 * | 0.002 * | 0.000 * | |
Interaction species × treatment | |||||
F | 1.155 | 1.140 | 1.387 | 17.195 | |
p-value | 0.347 | 0.353 | 0.271 | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitalini, S.; Iriti, M.; Vaglia, V.; Garzoli, S. Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.). Plants 2022, 11, 1510. https://doi.org/10.3390/plants11111510
Vitalini S, Iriti M, Vaglia V, Garzoli S. Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.). Plants. 2022; 11(11):1510. https://doi.org/10.3390/plants11111510
Chicago/Turabian StyleVitalini, Sara, Marcello Iriti, Valentina Vaglia, and Stefania Garzoli. 2022. "Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.)" Plants 11, no. 11: 1510. https://doi.org/10.3390/plants11111510
APA StyleVitalini, S., Iriti, M., Vaglia, V., & Garzoli, S. (2022). Chemical Investigation and Dose-Response Phytotoxic Effect of Essential Oils from Two Gymnosperm Species (Juniperus communis var. saxatilis Pall. and Larix decidua Mill.). Plants, 11(11), 1510. https://doi.org/10.3390/plants11111510