Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture
Abstract
:1. Introduction
2. Lamiaceae in Brief
3. Allelopathy of Major Lamiaceae Genera
3.1. Salvia (Sage)
3.2. Nepeta
3.3. Ocimum
3.4. Lavandula (Lavender)
3.5. Mentha
3.6. Thyme
3.7. Hyptis
3.8. Leucas
3.9. Leonurus
3.10. Origanum
3.11. Rosmarinus (Rosemary)
3.12. Hyssopus (Hyssop)
3.13. Orthosiphon
3.14. Tectona
3.15. Satureja (Savory)
3.16. Conradina
3.17. Coleus
3.18. Calamintha
4. Knowledge Gaps and Future Prospects
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, E.L. Allelopathy; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Weir, T.L.; Park, S.W.; Vivanco, J.M. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Mirmostafaee, S.; Azizi, M.; Fujii, Y. Study of allelopathic interaction of essential oils from medicinal and aromatic plants on seed germination and seedling growth of lettuce. Agronomy 2020, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Putnam, A.R.; Tang, C.S. Allelopathy: State of the science. In The Science of Allelopathy; Putnam, A.R., Tang, C.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1986; pp. 1–19. [Google Scholar]
- Islam, A.K.M.M.; Yeasmin, S.; Qasem, J.R.S.; Juraimi, A.S.; Anwar, M.P. Allelopathy of medicinal plants: Current status and future prospects in weed management. Agric. Sci. 2018, 9, 1569–1588. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Anwar, M.P.; Islam, A.K.M.M.; Gurung, T.; Dhakal, S.; Tanveer, A.; Javaid, M.M.; Nadeem, M.; Ikram, N.A. Weed science as a new discipline and its status in some South Asian universities and colleges: Examples from Bangladesh, Bhutan, Nepal and Pakistan. CAB Rev. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Pub. Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Kortekamp, A. Unexpected side effects of herbicides: Modulation of plant-pathogen interactions. In Herbicides and Environment; Kortekamp, A., Ed.; Intech: London, UK, 2011; pp. 85–104. [Google Scholar] [CrossRef] [Green Version]
- Marin-Morales, M.A.; Ventura-Camargo, B.C.; Hoshina, M.M. Toxicity of herbicides: Impact on aquatic and soil biota and human health. In Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 399–443. [Google Scholar] [CrossRef] [Green Version]
- Heap, I. The International Herbicide-Resistant Weed Database. 2022. Available online: www.weedscience.org (accessed on 15 February 2022).
- Sparks, T.C.; Hahn, D.R.; Garizi, N.V. Natural products, their derivatives, mimics and synthetic equivalents: Role in agrochemical discovery. Pest Manag. Sci. 2017, 73, 700–715. [Google Scholar] [CrossRef]
- Das, C.; Dey, A.; Bandyopadhyay, A. Allelochemicals: An emerging tool for weed management. In Evidence based Validation of Traditional Medicines; Mandal, S.C., Chakraborty, R., Sen, S., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Widhalm, J.R. Agricultural uses of juglone: Opportunities and challenges. Agronomy 2020, 10, 1500. [Google Scholar] [CrossRef]
- Nieto, G. Biological activities of three essential oils of the Lamiaceae family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.M.; Stefanescu, R.; Bild, V.; Melnic, S.; et al. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manag. 2018, 2018, 7801543. [Google Scholar] [CrossRef] [Green Version]
- Rendle, A.B. Volume II Dicotyledonous. In The Classification of Flowering Plants; Cambridge University Press: Cambridge, UK, 1959. [Google Scholar]
- Stankovic, M. Lamiaceae Species; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Chancellor, R.J. Experiments on the chemical control of emergent water plants. In Proceedings of the 5th British Weed Control Conference, Brighton, UK, 7–11 November 1960; p. 9. [Google Scholar]
- Volf, F. Weed associations in Western Bohemia. In Sbornik Vysoka Skala Zemedeloka v Praze Provozne Ekonomicke Faculty v Ceskych Budejovicich Biologicka Rada; FAO: Rome, Italy, 1965; pp. 27–35. [Google Scholar]
- Farnsworth, N.R.; Blomster, R.N.; Quimby, M.W.; Schermerhorn, J.W. A Bibliography of Phytochemistry. The Lynn Index, Monograph VI; University of Pittsburgh: Pittsburgh, PA, USA, 1969. [Google Scholar]
- Lovett, J.V.; Weerakoon, W.L. Weed characteristics of the Labiatae, with special reference to allelopathy. Biol. Agric. Hortic. 1983, 1, 145–158. [Google Scholar] [CrossRef]
- Islam, M.A.; Ahmed, F.; Das, A.K.; Bachar, S.C. Analgesic and anti-Inflammatory activity of Leonurus sibiricus. Fitoterapia 2005, 76, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Rahmatullah, M.; Das, A.K.; Mollik, M.A.H.; Jahan, R.; Khan, M.; Rahman, T.; Chowdhury, M.H. An ethno medicinal survey of Dhamrai sub-district in Dhaka district, Bangladesh. Am.-Eurasian J. Sustain. Agric. 2009, 3, 881–888. [Google Scholar]
- Moreira, A.C.P.; de Lima, E.O.; Wanderley, P.A.; Carmo, E.S.; de Souza, E.L. Chemical composition and antifungal activity of Hyptis suaveolens L. Poit. leaves essential oil against Aspergillus species. Braz. J. Microbiol. 2010, 41, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajapati, M.; Patel, J.; Modi, K.; Shah, M. Leucas aspera: A review. Pharmacogn. Rev. 2010, 4, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.G.; Pancho, J.V.; Herberger, J.P.; Plucknett, D.L. A Geographical Atlas of World Weeds; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Muller, W.H.; Lorber, P.; Haley, B.; Johnson, K. Volatile growth inhibitors produced by Salvia leucophylla: Effect on oxygen uptake by mitochondrial suspensions. Bull. Torrey Bot. Club 1969, 96, 89–96. [Google Scholar] [CrossRef]
- Benchaa, S.; Hazzit, M.; Nadjia, Z.; Abdelkrim, H. Chemical composition and herbicidal activity of essential oils from two Labiatae species from Algeria. J. Essent. Oil Res. 2019, 31, 335–346. [Google Scholar] [CrossRef]
- Araniti, F.; Lupini, A.; Mercati, F.; Statti, G.A.; Abenavoli, M.R. Calamintha nepeta L. (Savi) as source of phytotoxic compounds: Bio-guided fractionation in identifying biological active molecules. Acta Physiol. Plant. 2013, 35, 1979–1988. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Ohno, O.; Suenaga, K.; Kato-Noguchi, H. Two novel phytotoxic substances from Leucas aspera. J. Plant Physiol. 2014, 171, 877–883. [Google Scholar] [CrossRef]
- De Mastro, G.; Fracchiolla, M.; Verdini, L.; Montemurro, P. Oregano and its potential use as bioherbicide. Acta Hortic. 2006, 723, 335–346. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Ohno, O.; Suenaga, K.; Kato-Noguchi, H. Suaveolic acid: A potent phytotoxic substance of Hyptis Suaveolens. Sci. World J. 2014, 2014, 425942. [Google Scholar] [CrossRef] [Green Version]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Saharkhiz, M.J.; Moein, M.; Khoshghalb, H. Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatal. Agric. Biotechnol. 2018, 13, 204–212. [Google Scholar] [CrossRef]
- Kordali, S.; Tazegul, A.; Cakir, A. Phytotoxic effects of Nepeta meyeri Benth. extracts and essential oil on seed germinations and seedling growths of four weed species. Rec. Nat. Prod. 2015, 9, 404–418. [Google Scholar]
- Alipour, M.; Saharkhiz, M.J. Phytotoxic activity and variation in essential oil content and composition of Rosemary (Rosmarinus officinalis L.) during different phenological growth stages. Biocatal. Agric. Biotechnol. 2016, 7, 271–278. [Google Scholar] [CrossRef]
- Atak, M.; Mavi, K.; Uremis, I. Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds. Rom. Biotechnol. Lett. 2016, 21, 11149–11158. [Google Scholar]
- Alipour, M.; Saharkhiz, M.J.; Niakousari, M.; Seidi, D.M. Phytotoxicity of encapsulated essential oil of rosemary on germination and morphophysiological features of amaranth and radish seedlings. Sci. Hortic. 2019, 243, 131–139. [Google Scholar] [CrossRef]
- El Mahdi, J.; Tarraf, W.; Ruta, C.; Piscitelli, L.; Aly, A.; De Mastro, G. Bio-herbicidal potential of the essential oils from different Rosmarinus officinalis L. chemotypes in laboratory assays. Agronomy 2020, 10, 775. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Phytotoxic substances involved in Teak allelopathy and agroforestry. Appl. Sci. 2021, 11, 3314. [Google Scholar] [CrossRef]
- De Pasquale, C.; La Bella, S.; Cammalleri, I.; Gennaro, M.C.; Licata, M.; Leto, C.; Tuttolomondo, T. Agronomical and postharvest evaluation of the essential oils of Sicilian rosemary (Rosmarinus officinalis L.) biotypes. Acta Hortic. 2019, 1255, 139–144. [Google Scholar] [CrossRef]
- De Mastro, G.; Tarraf, W.; Verdini, L.; Brunetti, G.; Ruta, C. Essential oil diversity of Origanum vulgare L. populations from Southern Italy. Food Chem. 2017, 235, 1–6. [Google Scholar] [CrossRef]
- Carrubba, A.; Abbate, L.; Sarno, M.; Sunseri, F.; Mauceri, A.; Lupini, A.; Mercati, F. Characterization of 549 Sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach. Planta 2020, 251, 37. [Google Scholar] [CrossRef] [PubMed]
- Baricevic, D.; Sosa, S.; Della, L.R.; Tubaro, A.; Simonovska, B.; Krasna, A.; Zupancic, A. Topical anti-inflammatory activity of Salvia officinalis L. leaves: The relevance of ursolic acid. J. Ethnopharmacol. 2001, 75, 125–132. [Google Scholar] [CrossRef]
- Delamare, A.P.L.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Bouajaj, S.; Benyamna, A.; Bouamama, H.; Romane, A.; Falconieri, D.; Piras, A.; Marongiu, B. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the atlas mountains of Morocco. Nat. Prod. Res. 2013, 27, 1673–1676. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef]
- Jamila, N.; Ullah, R.; Alwahsh, M.A.A.; Haider, S.; Wong, K.C.; Ullah, Z. Secondary metabolites from Nepeta juncea. Afri. J. Biotechnol. 2011, 10, 17884–17886. [Google Scholar] [CrossRef]
- Bhat, A.H.; Alia, A.; Kumar, B.; Mubashir, S. Phytochemical Constituents of Genus Nepeta. Res. Rev. J. Chem. 2018, 7, 31–37. [Google Scholar]
- Shakeri, A.; Khakdan, F.; Soheili, V.; Sahebkar, A.; Rassam, G.; Asili, J. Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. Kopetdaghensis. Ind. Crops Prod. 2014, 58, 315–321. [Google Scholar] [CrossRef]
- Skorić, M.; Gligorijević, N.; Čavić, M.; Todorović, S.; Janković, R.; Ristić, M.; Mišić, D.; Radulović, S. Cytotoxic activity of Nepeta rtanjensis Diklić & Milojević essential oil and its mode of action. Ind. Crops Prod. 2017, 100, 163–170. [Google Scholar] [CrossRef]
- Süntar, I.; Nabavi, S.M.; Barreca, D.; Fischer, N.; Efferth, T. Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent. Phytother. Res. 2018, 32, 185–198. [Google Scholar] [CrossRef]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramírez-Alarcón, K.; Stojanović-Radić, Z.Z.; Antolak, H.; Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M.; et al. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018, 80, 104–122. [Google Scholar] [CrossRef]
- Pattanayak, P.; Behera, P.; Das, D.; Panda, S. Ocimum Sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacog. Rev. 2010, 4, 95–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothari, S.K.; Bhattacharya, A.K.; Ramesh, S. Essential oil yield and quality of methyl eugenol rich Ocimum tenuiflorum L.f. (syn. O. sanctum L.) grown in south India as influenced by method of harvest. J. Chromatogr. A 2004, 1054, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kothari, S.K.; Bhattacharya, A.K.; Ramesh, S.; Garg, S.N.; Khanuja, S.P.S. Volatile constituents in oil from different plant parts of methyl eugenol-rich Ocimum tenuiflorum L.F. (Syn. O. sanctum L.) grown in south India. J. Essent. Oil Res. 2005, 17, 656–658. [Google Scholar] [CrossRef]
- Koulivand, P.H.; Ghadiri, M.K.; Gorji, A. Lavender and the Nervous System. Evid. Based Complement. Altern. Med. 2013, 2013, 681304. [Google Scholar] [CrossRef] [Green Version]
- Détár, E.; Németh, É.Z.; Gosztola, B.; Demján, I.; Pluhár, Z. Effects of variety and growth year on the essential oil properties of lavender (Lavandula angustifolia Mill.) and Lavandin (Lavandula x Intermedia Emeric Ex Loisel.). Biochem. Syst. Ecol. 2020, 90, 104020. [Google Scholar] [CrossRef]
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Herba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Woronuk, G.; Demissie, Z.; Rheault, M.; Mahmoud, S. Biosynthesis and therapeutic properties of Lavandula essential oil constituents. Planta Med. 2011, 77, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Wunderlin, R.P.; Hansen, B.F. Atlas of Florida Vascular Plants; University of South Florida: Tampa, FL, USA, 2008. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens. Int. J. Food Microbiol. 2010, 143, 205–210. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Med. Ther. 2010, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perveen, K.; Haseeb, A.; Shukla, P.K. Effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in plants of Mentha arvensis. Saudi J. Biol. Sci. 2010, 17, 291–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.A.; Khan, F.; Ahmed, M.; Shah, A.S.; Khan, N.A.; Khan, M.R.; Shah, M.S. Phytotoxic and antibacterial assays of crude methanolic extract of Mentha longifolia (Linn.). Afr. J. Pharm. Pharmacol. 2011, 5, 1530–1533. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Insecticidal properties of mentha Species: A review. Ind. Crops Prod. 2011, 34, 802–817. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, Y.W.; Yang, G.L.; Husaini, A.M.; Wu, W. Variation of essential oil of Mentha haplocalyx Briq. and Mentha spicata L. from China. Ind. Crops Prod. 2013, 42, 251–260. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- Mandal, S.; DebMandal, M. Thyme (Thymus vulgaris L.) oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 825–834. [Google Scholar]
- Purcell, S.C.; Pande, P.; Lin, Y.; Rivera, E.J.; Latisha, P.U.; Smallwood, L.M.; Kerstiens, G.A.; Armstrong, L.B.; Robak, M.T.; Baranger, A.M.; et al. Extraction and antibacterial properties of Thyme leaf extracts: Authentic practice of green chemistry. J. Chem. Educ. 2016, 93, 1422–1427. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.E.L.; Bachiri, A. Chemical composition and antimicrobial activity of essential oil of Thyme (Thymus Vulgaris) from Eastern Morocco Synthèse et Caracterisation Des Nouveaux Hydrogels à Base de La Cellulose Pour l Encapsulation de La Curcumine View Project Valorisation of Ar. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Jarić, S.; Mitrović, M.; Pavlović, P. Review of ethnobotanical, phytochemical, and pharmacological study of Thymus serpyllum L. Evid. Based Complement. Altern. Med. 2015, 2015, 101978. [Google Scholar] [CrossRef] [Green Version]
- Afolayan, A. Germination and growth features of seed of different sizes in Hyptis suaveolens (L.) Poit. Range Manag. Agrofor. 1993, 14, 139–145. [Google Scholar]
- Barbosa, L.C.A.; Martins, F.T.; Teixeira, R.R.; Polo, M.; Montanari, R.M. Chemical variability and biological activities of volatile oils from Hyptis suaveolens (L.) Poit. Agric. Conspec. Sci. 2013, 78, 1–10. [Google Scholar]
- Padalia, H.; Kudrat, M.; Sharma, K.P. Mapping sub-pixel occurrence of an alien invasive Hyptis suaveolens (L.) Poit. Using spectral unmixing technique. Int. J. Remote Sens. 2013, 34, 325–340. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: Could allelopathy be a cause? Em. J. Food Agric. 2013, 25, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Das, S.N.; Patro, V.J.; Dinda, S.C. A review: Ethnobotanical survey of genus Leucas. Pharmacog. Rev. 2012, 6, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Nirmala, K.A.; Kanchana, M. Leucas aspera—A review of its biological activity. Syst. Rev. Pharm. 2018, 9, 41–44. [Google Scholar] [CrossRef]
- Tasdemir, D.; Wright, A.D.; Sticher, O.; Linden, A. Detailed 1H-and 13C-NMR investigations of some diterpenes isolated from Leonurus perszcus. J. Nat. Prod. 1995, 58, 543. [Google Scholar] [CrossRef]
- Ahmed, F.; Islam, M.A.; Rahman, M.M. Antibacterial activity of Leonurus sibiricus aerial parts. Fitoterapia 2006, 77, 316–317. [Google Scholar] [CrossRef]
- Shin, H.Y.; Kim, S.H.; Kang, S.M.; Chang, I.J.; Kim, S.Y.; Jeon, H.; Leem, K.H.; Park, W.H.; Lim, J.P.; Shin, T.Y. Anti-inflammatory activity of motherwort (Leonurus sibiricus L.). Immunopharmacol. Immunotoxicol. 2009, 31, 209–213. [Google Scholar] [CrossRef]
- Sitarek, P.; Rijo, P.; Garcia, C.; Skała, E.; Kalemba, D.; Białas, A.J.; Szemraj, J.; Pytel, D.; Toma, M.; Wysokińska, H.; et al. Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition. Oxidative Med. Cell. Longev. 2017, 2017, 7384061. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Fronczek, F.R.; Ferreira, D.; Burandt, C.L.; Zjawiony, J.K. Labdane diterpenoids from Leonurus sibiricus. J. Nat. Prod. 2011, 74, 831–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef] [PubMed]
- García-Beltrán, J.M.; Esteban, M.A. Properties and applications of plants of Origanum Sp. Genus. SM J. Biol. 2016, 2, 1006. [Google Scholar]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxidative Med. Cell. Longev. 2016, 2016, 1404505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Peng, S.; Chen, B.; Ni, G.; Liao, H. Allelopathic potential and volatile compounds of Rosmarinus officinalis L. against weeds. Allelopath. J. 2013, 32, 57–66. [Google Scholar]
- Caputo, L.; Trotta, M.; Romaniello, A.; De Feo, V. Chemical composition and phytotoxic activity of Rosmarinus officinalis essential oil. Nat. Prod. Commun. 2018, 13, 1367–1370. [Google Scholar] [CrossRef] [Green Version]
- Turrill, W.B. The Genus Rosmarinus. Bull. Misc. Inform. 1920, 1920, 105–108. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. Subsp. Pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407. [Google Scholar] [CrossRef]
- Alinezhad, H.; Azimi, R.; Zare, M.; Ebrahimzadeh, M.A.; Eslami, S.; Nabavi, S.F.; Nabavi, S.M. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. Angustifolius. Int. J. Food Prop. 2013, 16, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Fathiazad, F.; Hamedeyazdan, S. A review on Hyssopus officinalis L.: Composition and biological activities. Afr. J. Pharm. Pharmacol. 2011, 5, 1959–1966. [Google Scholar] [CrossRef]
- Hikal, W.M.; Said-Al Ahl, H.A.H. Anti-Leishmanial activity of Hyssopus Officinalis: A review. Int. J. Environ. Plan. Manag. 2017, 3, 10–15. [Google Scholar]
- Tahir, M.; Khushtar, M.; Fahad, M.; Rahman, M.A. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.). J. Appl. Pharm. Sci. 2018, 8, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Venditti, A.; Bianco, A.; Frezza, C.; Conti, F.; Bini, L.M.; Giuliani, C.; Bramucci, M.; Quassinti, L.; Damiano, S.; Lupidi, G.; et al. Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. Aristatus (Godr.) Nyman from Central Italy. Ind. Crops Prod. 2015, 77, 353–363. [Google Scholar] [CrossRef]
- Adam, Y.; Somchit, M.N.; Sulaiman, M.R.; Nasaruddin, A.A.; Zuraini, A.; Bustamam, A.A.; Zakaria, Z.A. Diuretic properties of Orthosiphon stamineus Benth. J. Ethnopharmacol. 2009, 124, 154–158. [Google Scholar] [CrossRef]
- Ameer, O.Z.; Salman, I.M.; Asmawi, M.Z.; Ibraheem, Z.O.; Yam, M.F. Orthosiphon Stamineus: Traditional uses, phytochemistry, pharmacology, and toxicology. J. Med. Food 2012, 15, 678–690. [Google Scholar] [CrossRef]
- Singh, M.K.; Gidwani, B.; Gupta, A.; Dhongade, H.; Kaur, C.D.; Kashyap, P.P.; Tripathi, D.K. A review of the medicinal plants of genus Orthosiphon (Lamiaceae). Int. J. Biol. Chem. 2015, 9, 318–331. [Google Scholar] [CrossRef] [Green Version]
- Tezuka, Y.; Stampoulis, P.; Banskota, A.H.; Awale, S.; Tran, K.Q.; Saiki, I.; Kadota, S. Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chem. Pharm. Bull. 2000, 48, 1711–1719. [Google Scholar] [CrossRef] [Green Version]
- Bitchagno, G.T.M.; Sama Fonkeng, L.S.; Kopa, T.K.; Tala, M.F.; Wabo, H.K.; Tume, C.B.; Tane, P.; Kuiate, J.R. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement. Med. Ther. 2015, 15, 265. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, B.N.; Mahalakshmi, A.M. Pharmacology of Tectona grandis Linn.: Short review. Int. J. Pharmacog. Phytochem. Res. 2014, 6, 86–90. [Google Scholar]
- Vyas, P.; Yadav, D.K.; Khandelwal, P. Tectona grandis (Teak)—A review on its phytochemical and therapeutic potential. Nat. Prod. Res. 2019, 33, 2338–2354. [Google Scholar] [CrossRef]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A critical overview on the pharmacological and clinical aspects of popular Satureja species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustaiyan, A.; Feizbakhsh, A.; Masoudi, S.; Ameri, N. Comparison of the volatile oils of Satureja atropatana Bung. and Satureja mutica Fisch. et C.A. Mey. from Iran. J. Essent. Oil Res. 2004, 16, 594–596. [Google Scholar] [CrossRef]
- Taban, A.; Saharkhiz, M.J.; Hadian, J. Allelopathic potential of essential oils from four Satureja spp. Biol. Agric. Hortic. 2013, 29, 244–257. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Moriarity, D.M.; Setzer, W.N. Phytochemical and biological investigations of Conradina canescens. Nat. Prod. Commun. 2016, 11, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Dosoky, N.S.; Setzer, W.N. The genus Conradina (Lamiaceae): A review. Plants 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- CSIR. The Useful Plants of India Industrial Research; CSIR: New Delhi, India, 1992. [Google Scholar]
- Khory, N.R.; Katrak, N.N. Materia Medica of India and Their Therapeutics; BDH Printers: New Delhi, India, 1999; p. 380. [Google Scholar]
- Kumaran, A.; Karunakaran, R.J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Khatun, S.; Chatterjee, N.C.; Cakilcioglu, U. Antioxidant activity of the medicinal plant Coleus forskohlii Briq. Afr. J. Biotechnol. 2011, 10, 2530–2535. [Google Scholar] [CrossRef]
- Morton, J.F. Country borage (Coleus ambonicus Lour.): A potent flavoring and medicinal plant. J. Herbs Spices Med. Plants 1992, 1, 77. [Google Scholar] [CrossRef]
- Paton, A.J.; Mwanyambo, M.; Govaerts, R.H.A.; Smitha, K.; Suddee, S.; Phillipson, P.B.; Wilson, T.C.; Forster, P.I.; Culham, A. Nomenclatural changes in Coleus and Plectranthus (Lamiaceae): A tale of more than two genera. PhytoKeys 2019, 129, 1–158. [Google Scholar] [CrossRef]
- Wadikar, D.D.; Patki, P.E. Coleus aromaticus: A therapeutic herb with multiple potentials. J. Food Sci. Technol. 2016, 53, 2895–2901. [Google Scholar] [CrossRef] [Green Version]
- Božović, M.; Ragno, R. Calamintha nepeta (L.) Savi and its main essential oil constituent pulegone: Biological activities and chemistry. Molecules 2017, 22, 290. [Google Scholar] [CrossRef] [PubMed]
- Khodja, N.K.; Boulekbache, L.; Chegdani, F.; Dahmani, K.; Bennis, F.; Madani, K. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L. J. Complement. Integr. Med. 2018, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Willis, R.J. The History of Allelopathy; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Muller, C.H.; Muller, W.H.; Haines, B.L. Volatile growth inhibitors produced by shrubs. Science 1964, 143, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.H. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 1966, 93, 332–351. [Google Scholar] [CrossRef]
- Bisio, A.; Fraternale, D.; Giacomini, M.; Giacomelli, E.; Pivetti, S.; Russo, E.; Caviglioli, G.; Romussi, G.; Ricci, D.; De Tommasi, D. Phytotoxicity of Salvia spp. exudates. Crop Prot. 2010, 29, 1434–1446. [Google Scholar] [CrossRef]
- Rodríguez-Hahn, L.; Esquivel, B.; Cárdenas, J.; Ramamoorthy, T.P. The distribution of diterpenoids in Salvia. In Advances in Labiatae Science; Harley, R.M., Reynolds, T., Eds.; The Royal Botanic Gardens: Richmond, UK, 1992; pp. 335–347. [Google Scholar]
- Erez, M.E.; Fidan, M. Allelopathic effects of Sage (Salvia macrochlamys) extract on germination of Portulaca oleracea seeds. Allelopath. J. 2015, 35, 285–296. [Google Scholar]
- Bisio, A.; Damonte, G.; Fraternale, D.; Giacomelli, E.; Salis, A.; Romussi, G.; Cafaggi, S.; Ricci, D.; De Tommasi, N. Phytotoxic clerodane diterpenes from Salvia miniata Fernald (Lamiaceae). Phytochemistry 2011, 72, 265–275. [Google Scholar] [CrossRef]
- Martino, L.D.; Roscigno, G.; Mancini, E.; De Falco, E.; De Feo, V. Chemical composition and antigerminative activity of the essential oils from five Salvia species. Molecules 2010, 15, 735–746. [Google Scholar] [CrossRef]
- Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. [Google Scholar] [CrossRef]
- Sakai, A.; Yoshimura, H. Monoterpenes of Salvia leucophylla. Curr. Bioact. Compd. 2012, 8, 90–100. [Google Scholar] [CrossRef]
- Khan, T.; Zahid, M.; Asim, M.; Shahzad-ul-Hussan; Iqbal, Z.; Choudhary, M.I.; Ahmad, V.U. Pharmacological activities of crude acetone extract and purified constituents of Salvia moorcraftiana Wall. Phytomedicine 2002, 9, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Súćur, J.; Popović, A.; Petrović, M.; Anačkov, G.; Malenčić, D.; Prvulović, D. Allelopathic effects and insecticidal activity of Salvia sclarea L. Studia UBB Chem. LX 2015, 1, 253–264. [Google Scholar]
- Šućur, J.; Prvulović, D.; Anačkov, G.; Malenčić, Đ. Oxidative stress in bromus (Bromusmollis L.) seedlings treated with clary sage (Salvia sclarea L.) aqueous extract. Biol. Nyssana 2016, 7, 141–144. [Google Scholar] [CrossRef]
- Rowshan, V.; Karimi, S. Essential oil composition and allelopathic affect of Salvia macrosiphon BOISS. on Zea mays L. Int. J. Agric. 2013, 3, 788. [Google Scholar]
- Bajalan, I.; Zand, M.; Rezaee, S. Allelopathic effects of aqueous extract from Salvia officinalis L. on seed germination of barley and purslane. Int. J. Agric. Crop Sci. 2013, 5, 802–805. [Google Scholar]
- Dragoeva, A.; Stoyanova, Z.; Koleva, V.; Dragolova, D. Allelopathic activity of Nepeta nuda L. subsp. nuda water extracts. Acta Sci. Nat. 2017, 4, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, S.; Atici, O. Allelopathic effect of Nepeta meyeri Benth. extracts on seed germination and seedling growth of some crop plants. Acta Physiol. Plant. 2009, 31, 89–93. [Google Scholar] [CrossRef]
- Jahan, N.; Israr, M.; Mansoor, A.; Yousafzai, A. Phytotoxicity of Acropitilon repens (Asteraceae) and Nepeta pretervisa (Laminaceae). J. Appl. Emerg. Sci. 2006, 1, 164–166. [Google Scholar]
- Verma, S.K.; Kumar, S.; Pandey, V.; Verma, R.K.; Patra, D.D. Phytotoxic effects of sweet basil (Ocimum basilicum L.) extracts on germination and seedling growth of commercial crop plants. Eur. J. Exp. Biol. 2012, 2, 2310–2316. [Google Scholar]
- Dafaallah, A.B.; Ahmed, S.A. Allelopathic effects of sweet Basil (Ocimum basilicum L.) on seed germination and seedling growth of some Poaceous crops. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2629–2635. [Google Scholar] [CrossRef]
- Ahmad, K.; Khalil, A.T.; Somayya, R. Antifungal, phytotoxic and hemagglutination activity of methanolic extracts of Ocimum basilicum. J. Trad. Chin. Med. 2016, 36, 794–798. [Google Scholar] [CrossRef]
- Mekky, M.S.; Hassanien, A.M.A.; Kamel, E.M.; Ismail, A.E.A. Allelopathic effect of Ocimum basilicum L. extracts on weeds and some crops and its possible use as new crude bio-herbicide. Ann. Agric. Sci. 2019, 64, 211–221. [Google Scholar] [CrossRef]
- Dafaallah, A.B.; Ahmed, S.A. Phytotoxic effects of Basil (Ocimum basilicum L.) aqueous extract on seed germination of some cereal crops. Libyan J. Agric. 2019, 24, 63–72. [Google Scholar]
- Islam, A.K.M.M.; Kato-Noguchi, H. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species. Sci. World J. 2014, 2014, 676242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, S.; Pandya, N. Allelopathic activity of Ocimum sanctum L. and Tephrosia purpurea (L.) Pers. leaf extracts on few common legumes and weeds. Int. J. Res. Plant Sci. 2013, 3, 5–9. [Google Scholar]
- Akbarzadeh, M.; Bajalan, I.; Qalayi, E. Allelopathic effect of lavender (Lavandula officinalis) on seed germination of velvet flower and purslane. Int. J. Agron. Plant Prod. 2013, 4, 1285–1289. [Google Scholar]
- Živković, M. Alelopatski Utjecaj Vodenih Ekstrakata Lavandina (Lavandula X Intermedia). Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, University of Osijek, Osijek, Croatia, 2017. [Google Scholar]
- Haig, T.J.; Haig, T.J.; Seal, A.N.; Pratley, J.E.; An, M.; Wu, H. Lavender as a source of novel plant compounds for the development of a natural herbicide. J. Chem. Ecol. 2009, 35, 1129–1136. [Google Scholar] [CrossRef]
- Politi, M.; Menghini, L.; Conti, B.; Bedini, S.; Farina, P.; Cioni, P.L.; Braca, A.; De Leo, M. Reconsidering hydrosols as main products of aromatic plants manufactory: The lavandin (Lavandula × intermedia) case study in Tuscany. Molecules 2020, 25, 2225. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J.; Karami, A. Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Sci. Hortic. 2017, 214, 133–140. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Mentha sylvestris: A potential allelopathic medicinal plant. Int. J. Agric. Biol. 2013, 15, 1313–1318. [Google Scholar]
- Szafraniec, R.; Możdżeń, K.; Barabasz-Krasny, B.; Zandi, P.; Wang, Y. Influence of volatile peppermint (Mentha × piperita L.) compounds on germination and seedling of radish (Raphanus sativus L. var. radicula Pers.) growth. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Üstüner, T.; Kordali, Ş.; Bozhüyük, A.U. Herbicidal and fungicidal effects of Cuminum cyminum, Mentha longifolia and Allium sativum essential oils on some weeds and fungi. Rec. Nat. Prod. 2018, 12, 619–629. [Google Scholar] [CrossRef]
- Maia, J.T.L.S.; Martins, E.R.; Costa, C.A.; Ferraz, E.O.F.; Alvarenga, I.C.A.; Souza Júnior, I.T.; Valadares, S.V. Influência do cultivo em consórcio na produção de fitomassa e óleo essencial de manjericão (Ocimum basilicum L.) ehortelã (Mentha x villosa Huds.). Rev. Bras. Plantas Med. 2009, 11, 137–140. [Google Scholar] [CrossRef]
- Azirak, S.; Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric. Scand. B Soil Plant Sci. 2008, 58, 88–92. [Google Scholar] [CrossRef]
- Ateeq-ur-Rehman; Mannan, A.; Inayatullah, S.; Akhtar, M.Z.; Qayyum, M.; Mirza, B. Biological evaluation of wild thyme (Thymus serpyllum). Pharm. Biol. 2009, 47, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.B.E.H.; Bahri, R.; Chaouachi, M.; Boussaïd, M.; Harzallah-Skhiri, F. Phenolic content, antioxidant and allelopathic activities of various extracts of Thymus numidicus Poir. organs. Ind. Crops Prod. 2014, 62, 188–195. [Google Scholar] [CrossRef]
- Safari, H.; Tavili, A.; Saberi, M. Allelopathic effects of Thymus kotschyanus on seed germination and initial growth of Bromus tomentellus and Trifolium repens. Front. Agric. China 2010, 4, 475–480. [Google Scholar] [CrossRef]
- Al-Hawas, G.H.S.; Azooz, M.M. Allelopathic potentials of Artrmisia monosperma and Thymus vulgaris on growth and physio-biochemical characteristics of pea seedlings. Pak. J. Biol. Sci. 2018, 21, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Lobiuc, A.; Boz, I.; Stratu, A.; Zamfirache, M. Preliminary aspects on the phytotoxicity of some thymus spp. aqueous extracts. Analele Stiintifice ale Universitatii Alexandru Ioan Cuza din Iasi. Sect. II A Genet. Si Biol. Mol. 2017, 18, 111–122. [Google Scholar]
- Linhart, Y.B.; Keefover-Ring, K.; Mooney, K.A.; Breland, B.; Thompson, J.D. A chemical polymorphism in a multitrophic setting: Thyme monoterpene composition and food web structure. Am. Nat. 2005, 166, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Deng, D.Y.; Tang, L.; Yuan, K.; Li, Y.X. Seed-germination and seedling-growth inhibition by aqueous extracts from Hyptis rhomboidea. In Proceedings of the 2015 International Conference on Industrial Technology and Management Science, Tianjin, China, 27–28 March 2015; Atlantis Press: Paris, France, 2015. [Google Scholar]
- Rodrigues, A.C.; Artioli, F.A.; Polo, M.; Barbosa, L.C.A.; Beijo, L.A. Allelopathic effects of leaves of “bamburral” [Hyptis suaveolens (L.) poit.] on the germination of seeds of sorghum (Sorghum vulgare pers.), radish (Raphanus sativus L.) and lettuce (Lactuca sativa L.). Rev. Bras. Plantas Med. 2012, 14, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Patil, B.J.; Madane, A.N. Effect of Hyptis suaveolens (L.) Poit. and Eupatorium odoratum L. leaf extracts on seed mycoflora of legume plants. Bio. Disc. 2014, 5, 237–240. [Google Scholar]
- Kumari, J.A.; Prasad, P. Assessing the allelopathy and autotoxicity effects of Parthenium hysterophorus L., Senna uniflora (Mill.) HS Irwin and Barneby and Hyptis suaveolens (L.) Poit. Russ. J. Biol. Invasions 2018, 9, 290–298. [Google Scholar] [CrossRef]
- Maiti, P.; Bhakat, R.K.; Jha, Y.; Bhattacharjee, A. Allelopathic potential of Hyptis suaveolens on physiobiochemical changes of mung bean seeds. Commun. Plant Sci. 2015, 5, 67–75. [Google Scholar]
- Joshi, N.; Joshi, A. Allelopathic effects of weed extracts on germination of wheat. Ann. Plant Sci. 2016, 5, 1330–1334. [Google Scholar] [CrossRef]
- Nascimento, S.S.; Pereira, S.G.; Amorim, D.J.; Mendes, M.S.; Reis, I.S. Phytotoxicity of Hyptis suaveolens against soybean and lettuce crops. Sci. Electron. Arch. 2020, 13, 24–32. [Google Scholar] [CrossRef]
- Arzoo, A.; Khatoon, A.; Nayak, S.K.; Mohapatra, A.; Satapathy, K.B. Assessment of the allelopathic potential of an invasive alien weed Hyptis suaveolens (L.) Poit. on germination of Oryza sativa L. J. Food Sci. Eng. 2016, 6, 212–214. [Google Scholar] [CrossRef] [Green Version]
- Oraon, S.; Mondal, S. Allelopathic effect of Lamiaceous weeds on seed germination and early growth of aromatic rice (Oryza sativa ‘Gobindobhog’). Acta Agrobot. 2021, 74, 741. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Allelopathic potentiality of medicinal plant Leucas aspera. Int. J. Sust. Agric. 2012, 4, 1–7. [Google Scholar]
- Sayed, M.A.; Alam, M.A.; Islam, M.S.; Ali, M.T.; Ullah, M.E.; Shibly, A.Z.; Ali, M.A.; Hasan-Olive, M.M. Leonurus sibiricus L. (honeyweed): A review of its phytochemistry and pharmacology. Assian Pac. J. Trop. Biomed. 2016, 6, 1076–1080. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.K.M.M.; Kato-Noguchi, H. Allelopathic activity of Leonurus sibiricus on different target plant species. J. Food Agric. Enviro. 2014, 12, 286–289. [Google Scholar]
- Sayed, M.A.; Haque, M.M.; Roy, B.; Hossain, S.M.J.; Das, S.R. Allelopathic effects of different extracts of honeyweed (Leonurus sibiricus) on seeds germination and seedlings growth of some selected vegetables. J. Nat. Prod. 2012, 5, 243–250. [Google Scholar]
- Dragoeva, A.P.; Nanova, Z.D.; Kalcheva, V.P. Allelopathic activity of micropropagated Hyssopus officinalis L., Lamiaceae, water infusions. Rev. Bras. Farmacog. 2010, 20, 513–518. [Google Scholar] [CrossRef]
- Araniti, F.; Landi, M.; Lupini, A.; Sunseri, F.; Guidi, L.; Abenavoli, M.R. Origanum vulgare essential oils inhibit glutamate and aspartate metabolism altering the photorespiratory pathway in Arabidopsis thaliana seedlings. J. Plant Physiol. 2018, 231, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Altindal, N.; Altindal, D. Allelopathic effect of sage and Turkish oregano volatile oils on in vitro in sainfoin (Onobrychis viciifolia). J. Essent. Oil Bear. Plants 2013, 16, 328–333. [Google Scholar] [CrossRef]
- Dragoeva, A.P.; Koleva, V.; Nanova, Z.D.; Kaschieva, M.Z.; Yotova, I.R. Allelopathic and cytotoxic activity of Origanum vulgare ssp. vulgare growing wild in Bulgaria. Chem. Bulg. J. Sci. Educ. 2014, 23, 914–924. [Google Scholar]
- Dragoeva, A.P.; Koleva, V.P.; Nanova, Z.D.; Kaschieva, M.Z. Allelopathy of cold water extracts from Origanum vulgare ssp. vulgare L. J. Agric. Chem. Environ. 2014, 3, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Bonea, D.; Urechean, V. Effect of sweet marjoram (Origanum majorana L.) cogermination and aqueous extracts on maize (Zea mays L.). Agric. Life Life Agric. Conf. Proceed. 2018, 1, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Tebaa, L.; Douma, M.; Tazart, Z.; Manaut, N.; Mouhri, K.; Loudiki, M. Algicidal effects of Achillea ageratum L. and Origanum compactum benth. plant extracts on growth of Microcystis aeruginosa. Appl. Ecol. Environ. Res. 2017, 15, 719–728. [Google Scholar] [CrossRef]
- Najem, A.M.; Abed, I.J.; Al-Haidari, A.M.D. Evaluation the activity of Rosemary (Rosmarinus officinalis L.) essential oil against some Cyanobacteria. Iraqi J. Biotechnol. 2016, 15, 97–102. [Google Scholar]
- Ramezani, S.; Saharkhiz, M.J.; Ramezani, F.; Fotokian, M.H. Use of essential oils as bioherbicides. J. Essent. Oil Bear. Plants 2008, 11, 319–327. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- El-Kenany, E.T.; Fakhry, A.M. Phytotoxicity of Rosmarinus officinalis L. and Salvia officinalis L. to control the noxious weed, Panicum turgidum Forssk. Egypt. J. Bot. 2016, 56, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Saharkhiz, M.J.; Ashiri, F.; Salehi, M.R.; Ghaemghami, J.; Mohammadi, S. Allelopathic potential of essential oils from Carum copticum L., Cuminum cyminum L., Rosmarinus officinalis L. and Zataria multiflora Boiss. Med. Aroma. Plant Sci. Biotechnol. 2009, 3, 32–35. [Google Scholar]
- Šućur, J.; Popović, A.; Petrović, M.; Anačkov, G.; Bursić, V.; Kiprovski, B.; Prvulović, D. Allelopathic effects and insecticidal activity of the aqueous extract of Satureja montana L. J. Serbian Chem. Soc. 2015, 80, 475–484. [Google Scholar] [CrossRef]
- Masoud, M.; Abugarsa, M.A.O.S.A. Allelopathic effects of aqueous extract from Satureja thymbra L. on seed germination and seedling growth of Pinus halepensis Mill. and Ceratonia siliqua L. Libyan J. Sci. Technol. 2018, 7, 17–20. [Google Scholar]
- Šućur, J.; Prvulović, D.; Manojlović, A.; Anačkov, G.; Malenčić, Đ. Influence of winter savory (Satureja montana L.) aqueous extract on antioxidant properties of Jimson weed (Datura stramonium L.). Bot. Serbica 2018, 42, 271–275. [Google Scholar] [CrossRef]
- Šućur, J.; Prvulović, D.; Anačkov, G.; Malenčić, D. The effect of Satureja montana L. aqueous extract on soybean seedlings. Biol. Nyssana 2016, 7, 125–129. [Google Scholar]
- Taban, A.; Saharkhiz, M.J. Natural phytotoxic activity of water extracts and dried leaf powders of three Satureja species. Biocatal. Agric. Biotechnol. 2015, 4, 594–602. [Google Scholar] [CrossRef]
- Gholami, B.A.; Faravani, M.; Kashki, M.T. Allelopathic effects of aqueous extract from Artemisia kopetdaghensis and Satureja hortensison growth and seed germination of weeds. J. Appl. Environ. Biol. Sci. 2011, 1, 283–290. [Google Scholar]
- Kole, R.K.; Karmakar, P.R.; Poi, R.; Mazumdar, D. Allelopathic inhibition of teak leaf extract: A potential pre-emergent herbicide. J. Crop Weed 2011, 7, 101–109. [Google Scholar]
- Manimegalai, A. Allelopathic effect of Tectona grandis leaves on protein content changes of black gram and green gram. Int. J. Curr. Sci. 2012, 4, 30–34. [Google Scholar]
- Manimegalai, A.; Manikandan, A.; Sheela, R.; Geetha, S. Allelopathic influence of Tectona grandis leaves on the germination of black gram and green gram. Int. J. Curr. Sci. 2012, 1, 241–244. [Google Scholar]
- Manimegalai, A. Allelopathic potential of Tectona grandis leaves extract on dry weight of Vigna mungo and Vigna radiata. Int. J. Curr. Sci. 2013, 5, 15–20. [Google Scholar]
- Biswas, K.; Das, A.P. Allelopathic effects of teak (Tectona grandis L.f.) on germination and seedling growth of Plumbago zeylanica L. Pleione 2016, 10, 262–268. [Google Scholar]
- da Silva, M.C.; Araujo, E.C.G.; Silva, T.C.; de Araujo, A.B.; da Silva Lins, T.R.; Leao, S.L.M.; de Lima, T.V. Alelopatic effects of Tectona grandis L.F. in the germination and initial development of Lettuce (Lactuca sativa L.). J. Agric. Sci. 2019, 11, 382–387. [Google Scholar] [CrossRef]
- John, J.; Sreekumar, K.M.; Rekha, P. Allelopathic effects of leaf leachates of multipurpose trees on vegetables. Allelopath. J. 2007, 19, 507–516. [Google Scholar]
- Evangeline, V.R.; Prakash, E.J.J.; Samuel, A.S.; Jayakumar, M. Allelopathic potential of Tectona grandis L. on the germination and seedling growth of Vigna mungo (L.) Hepper. Pak. J. Weed Sci. Res. 2012, 18, 65–70. [Google Scholar]
- Mensah, E.E.; Owusu-Mensah, I.; Oppong, E.; Saka, M.O. Allelopathic effect of topsoil extract from Tectona grandis L. plantation on the germination of Lycopersicum esculentum. J. Biol. Agric. Healthc. 2015, 5, 117–122. [Google Scholar]
- Kato-Noguchi, H.; Hamada, N.; Morita, M.; Suenaga, K. A novel allelopathic substance, 13-epi-orthosiphol N, in Orthosiphon stamineus. J. Plant Physiol. 2013, 170, 1–5. [Google Scholar] [CrossRef]
- Araniti, F.; Lupini, A.; Sorgonà, A.; Statti, G.A.; Abenavoli, M.R. Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi. Nat. Prod. Res. 2013, 27, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Araniti, F.; Sorgonà, A.; Lupini, A.; Abenavoli, M.R. Screening of Mediterranean wild plant species for allelopathic activity and their use as bio-herbicides. Allelopath. J. 2011, 29, 107–124. [Google Scholar]
- Gnanavel, I.; Kathiresan, R.M. Allelopathic potential of Coleus on water hyacinth. Indian J. Weed Sci. 2013, 45, 71–72. [Google Scholar]
- Kathiresan, R.M. Allelopathic potential of native plants against water hyacinth. Crop Prot. 2000, 19, 705–708. [Google Scholar] [CrossRef]
- Mandal, M.P.; Kumar, S.; Kumari, P.; Kiran. Allelopathc effects of medicinal plant species on seed germination and seedling growth of wheat varieties. Curr. J. Appl. Sci. Technol. 2018, 31, 1–7. [Google Scholar] [CrossRef]
- Zhang, C.; Yi, Y.L.; Hao, K.; Liu, G.L.; Wang, G.X. Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa—Towards identification of algicidal substance and determination of inhibition mechanism. Chemosphere 2013, 93, 997–1004. [Google Scholar] [CrossRef]
- Fraga, B.M.; Diaz, C.E.; Guadano, A.; Gonzalez-Coloma, A. Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J. Agric. Food Chem. 2005, 53, 5200–5206. [Google Scholar] [CrossRef]
- Eom, S.H.; Yang, H.S.; Weston, L.A. An Evaluation of the allelopathic potential of selected perennial groundcovers: Foliar volatiles of Catmint (Nepeta × faassenii) inhibit seedling growth. J. Chem. Ecol. 2006, 32, 1835–1848. [Google Scholar] [CrossRef]
- Mutlu, S.; Atici, O.; Esim, N. Bioherbicidal effects of essential oils of Nepeta meyeri Benth. On weed spp. Allelopath. J. 2010, 26, 291–300. [Google Scholar]
- Mutlu, S.; Atici, O.; Esim, N.; Mete, E. Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta Physiol. Plant. 2011, 33, 943–951. [Google Scholar] [CrossRef]
- Mancini, E.; Arnold, N.A.; De Feo, V.; Formisano, C.; Rigano, D.; Piozzi, F.; Senatore, F. Phytotoxic effects of essential oils of Nepeta curviflora Boiss. and Nepeta nuda L. subsp. albiflora growing wild in Lebanon. J. Plant Interact. 2009, 4, 253–259. [Google Scholar] [CrossRef]
- Kekeç, G.; Mutlu, S.; Alpsoy, L.; Sakçali, M.S.; Atici, O. Genotoxic effects of catmint (Nepeta meyeri Benth.) essential oils on some weed and crop plants. Toxicol. Ind. Health 2012, 29, 504. [Google Scholar] [CrossRef] [PubMed]
- Bozok, F. Herbicidal activity of Nepeta flavida essential oil. J. Essent. Oil Bear. Plants 2018, 21, 1687–1693. [Google Scholar] [CrossRef]
- Kobaisy, M.; Tellez, M.R.; Dayan, F.E.; Mamonov, L.K.; Mukanova, G.S.; Sitpaeva, G.T.; Gemejieva, N.G. Composition and phytotoxic activity of Nepeta pannonica L. essential oil. J. Essent. Oil Res. 2005, 17, 704–707. [Google Scholar] [CrossRef]
- Filho, A.P.S.; Bayma, J.C.; Guilhon, G.M.S.P.; Zoghbi, M.G.B. Potentially allelopathic activity of the essential oil of Ocimum americanum. Planta Daninha 2009, 27, 499–505. [Google Scholar] [CrossRef]
- Macdonald, I.O.; Oludare, A.S.; Olabiyi, A. Phytotoxic and anti-microbial activities of flavonoids in Ocimum gratissimum. Life Sci. J. 2010, 7, 45–48. [Google Scholar]
- Koiou, K.; Vasilakoglou, I.; Dhima, K. Herbicidal potential of lavender (Lavandula angustifolia Mill.) essential oil components on bristly foxtail (Setaria verticillata (L.) P. Beauv.): Comparison with carvacrol, carvone, thymol and eugenol. Arch. Biol. Sci. 2020, 72, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Gitsopoulos, T.K.; Chatzopoulou, P.; Georgoulas, I. Effects of essential oils of Lavandula x hybrida Rev, Foeniculum vulgare Mill and Thymus capitatus L. on the germination and radical length of Triticum aestivum L., Hordeum vulgare L., Lolium rigidum L. and Phalaris brachystachys L. J. Essent. Oil Bear. Plants 2013, 16, 817–825. [Google Scholar] [CrossRef]
- Masi, M.; Pannacci, E.; Santoro, E.; Zermane, N.; Superchi, S.; Evidente, A. Stoechanones A and B, Phytotoxic Copaane Sesquiterpenoids isolated from Lavandula stoechas with potential herbicidal activity against Amaranthus retroflexus. J. Nat. Prod. 2020, 83, 1658–1665. [Google Scholar] [CrossRef]
- Singh, N.; Singh, H.P.; Batish, D.R.; Kohli, R.K.; Yadav, S.S. Chemical characterization, phytotoxic, and cytotoxic activities of essential oil of Mentha longifolia. Environ. Sci. Pollut. Res. 2020, 27, 13512–13523. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Prakash, O.; Padalia, R.C.; Vivekanand; Pant, A.K.; Mathela, C.S. Chemical diversity in Mentha spicata: Antioxidant and potato sprout inhibition activity of its essential oils. Nat. Prod. Commun. 2011, 6, 1373–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grul’ová, D.; De Martino, L.; Mancini, E.; Tkáčiková, L.U.; Šalamon, I.; Fejer, J.; De Feo, V. Phytotoxic and antibacterial activity of essential oil of new peppermint cultivar. Nat. Prod. Commun. 2016, 11, 1721–1724. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Ayoub, K.; Chaima, A.J.; Hanaa, L.; Abdelaziz, C. Effect of drying methods on yield, chemical composition and bioactivities of essential oil obtained from Moroccan Mentha pulegium L. Biocatal. Agric. Biotechnol. 2018, 16, 638–643. [Google Scholar] [CrossRef]
- Sarheed, M.M.; Rajabi, F.; Kunert, M.; Boland, W.; Wetters, S.; Miadowitz, K.; Kazmierczak, A.; Sahi, V.P.; Nick, P. Cellular base of mint allelopathy: Menthone affects plant microtubules. Front. Plant Sci. 2020, 11, 1320. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. CV. Mitcham). J. Appl. Res. Med. Aroma. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Camusso, W.; Bertea, C.M.; Bossi, S.; Maffei, M. Effect of (+)-pulegone and other oil components of Mentha × piperita on cucumber respiration. Phytochemistry 2001, 57, 91–98. [Google Scholar] [CrossRef]
- Ali, I.B.E.H.; Chaouachi, M.; Bahri, R.; Chaieb, I.; Boussaïd, M.; Harzallah-Skhiri, F. Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis Boiss. et Reut. Ind. Crops Prod. 2015, 77, 631–639. [Google Scholar] [CrossRef]
- Saoud, I.; Hamrouni, L.; Gargouri, S.; Amri, I.; Hanana, M.; Fezzani, T.; Bouzid, S.; Jamoussi, B. Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatus Hoff. et Link.) essential oils. Acta Aliment. 2013, 42, 417–427. [Google Scholar] [CrossRef]
- Kashkooli, A.B.; Saharkhiz, M.J. Essential oil compositions and natural herbicide activity of four Denaei Thyme (Thymus daenensis Celak.) ecotypes. J. Essent. Oil Bear. Plants 2014, 17, 859–874. [Google Scholar] [CrossRef]
- Saleh, I.; Abd-ElGawad, A.; El Gendy, A.E.N.; Abd El Aty, A.; Mohamed, T.; Kassem, H.; Aldosri, F.; Elshamy, A.; Hegazy, M.E.F. Phytotoxic and antimicrobial activities of Teucrium polium and Thymus decussatus essential oils extracted using hydrodistillation and microwave-assisted techniques. Plants 2020, 9, 716. [Google Scholar] [CrossRef]
- Giweli, A.; Said, A.; Aoun, T.; Elhaji, N. Allelopathic effects on seeds germination of Lactuca sativa L. seeds and antibacterial activity of Thymus capitatus essential oil from Zintan-Libya flora. Am. Acad. Sci. Res. J. Engin. Technol. Sci. 2016, 17, 121–131. [Google Scholar]
- Ulukanli, Z.; Cenet, M.; Ince, H.; Yilmaztekin, M. Antimicrobial and herbicidal activities of the essential oil from the Mediterranean Thymus eigii. J. Essent. Oil Bear. Plants 2018, 21, 214–222. [Google Scholar] [CrossRef]
- Grosso, C.; Figueiredo, A.C.; Burillo, J.; Mainar, A.M.; Urieta, J.S.; Barroso, J.G.; Coelho, J.A.; Palavra, A.M. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010, 33, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Hemada, M.; El-Darier, S. Comparative study on composition and biological activity of essential oils of two Thymus species grown in Egypt. Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 647–654. [Google Scholar]
- Mandal, S. Allelopathic activity of root exudates from Leonurus sibiricus L. (Raktodrone). Weed Biol. Manag. 2001, 1, 170–175. [Google Scholar] [CrossRef]
- Almeida, L.F.R.; Delachiave, M.E.; Sannomiya, M.; Vilegas, W.; dos Santos, L.C.; Mancini, E.; De Feo, V. In vitro allelopathic potential of Leonurus sibiricus L. leaves. J. Plant Interact. 2008, 3, 39–48. [Google Scholar] [CrossRef]
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Bozari, S.; Agar, G.; Yanmis, D. Chemical content, and toxic effects of essential oil of Origanum vulgare L. ssp vulgare against to Zea mays seedlings. J. Essent. Oil Bear. Plants 2014, 17, 67–77. [Google Scholar] [CrossRef]
- Erbaș, S.; Karaman, R.; Baydar, H.; Șanlı, A. Allelopathic effect of oregano (Origanum onites L.) on germination and seedling development of some weed and cultivars. Sci. Pap. Ser. A Agron. 2015, 58, 190–194. [Google Scholar]
- Fouad, R.; Bousta, D.; Lalami, A.E.O.; Chahdi, F.O.; Amri, I.; Jamoussi, B.; Greche, H. Chemical composition and herbicidal effects of essential oils of Cymbopogon citratus (DC) Stapf, Eucalyptus cladocalyx, Origanum vulgare L. and Artemisia absinthium L. cultivated in Morocco. J. Essent. Oil Bear. Plants 2015, 18, 112–123. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.H.; Wang, K.B.; Fan, L.M.; Su, F.W.; Ye, M. Chemical composition and allelopathic potential of essential oil isolated from Origanum vulgare. J. Appl. Ecol. 2020, 31, 2257–2263. [Google Scholar] [CrossRef]
- Mancini, E.; Camele, I.; Elshafie, H.S.; De Martino, L.; Pellegrino, C.; Grulova, D.; De Feo, V. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the Southern Apennines (Italy). Chem. Biodivers. 2014, 11, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Yillar, M.; Bayar, Y.; Onaran, A. Chemical composition and allelopathic effect of Origanum onites L. essential oil. Plant Prot. Bull. 2019, 59, 71–78. [Google Scholar] [CrossRef]
- Taban, A.; Saharkhiz, M.J.; Hooshmandi, M. Insecticidal and repellent activity of three Satureja species against adult red flour beetles, Tribolium castaneum (Coleoptera: Tenebrionidae). Acta Ecol. Sin. 2017, 37, 201–206. [Google Scholar] [CrossRef]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M.G. Isolation and phytotoxicity of terpenes from Tectona grandis. J. Chem. Ecol. 2010, 36, 396–404. [Google Scholar] [CrossRef]
- Menelaou, M.A.; Henandez, H.P.; Macías, F.A.; Weidenhamer, J.D.; Williamson, G.B.; Fronczek, F.R.; Fischer, H.D.; Fischer, N.H. Constituents of Calamintha ashei: Effects on Florida sandhill species. Nat. Prod. Commun. 2010, 5, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Saharkhiz, M.J.; Zadnour, P.; Kakouei, F. Essential oil analysis and phytotoxic activity of catnip (Nepeta cataria L.). Am. J. Essent. Oils Nat. Prod. 2016, 4, 40–45. [Google Scholar]
- Formisano, C.; Rigano, D.; Arnold, N.A.; Piozzi, F.; Senatore, F. GC and GC–MS analysis of the essential oil of Nepeta cilicica Boiss. ex Benth. from Lebanon. Nat. Prod. Res. 2013, 27, 1975–1981. [Google Scholar] [CrossRef]
- Hussain, J.; Jamila, N.; Gilani, S.A.; Abbas, G.; Ahmed, S. Platelet aggregation, antiglycation, cytotoxic, phytotoxic and antimicrobial activities of extracts of Nepeta juncea. Afr. J. Biotechnol. 2009, 8, 935–940. [Google Scholar]
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet basil (Ocimum basilicum L.) productivity and raw material quality from organic cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Culpeper, N. Culpeper’s English Physician and Complete Herbal; Foulsham: London, UK, 1633; (Reprint 1955). [Google Scholar]
- Samunder, S.; Megh, S. Interactions of Basil (Ocimum sanctum L.) with some weed species—Competition or allelopathy? Indian J. Weed Sci. 2009, 41, 12–22. [Google Scholar]
- Mota, M.S.C.S.; Silva, R.S.; Silva, G.A.; Picanco, M.C.; Mesquita, A.L.M.; Pereira, R.C.A. Potential of allelochemicals from basil (Ocimum micranthum Willd) to control whitefly (Aleurodicus cocois (Curtis, 1846)) in cashew nut crop (Anacardium occidentale L.). Allelopath. J. 2017, 40, 197–208. [Google Scholar] [CrossRef]
- Guitton, Y.; Nicolè, F.; Jullien, F.; Caissard, J.C.; Saint-Marcoux, D.; Legendre, L.; Pasquier, B.; Moja, S. A comparative study of terpene composition in different clades of the genus Lavandula. Bot. Lett. 2018, 165, 494–505. [Google Scholar] [CrossRef]
- Passalacqua, N.G.; Tundis, R.; Upson, T.M. A new species of Lavandula Sect. Lavandula (Lamiaceae) and review of species boundaries in Lavandula angustifolia. Phytotaxa 2017, 292, 161–170. [Google Scholar] [CrossRef]
- Barhouchi, B.; Aouadi, S.; Abdi, A. Comparative chemical profile of Lavandula stoechas L. essential oils isolated from flowers and leaves native to algeria. Phytothérapie 2019, 17, 240–248. [Google Scholar] [CrossRef]
- Müller, W.E.; Sillani, G.; Schuwald, A.; Friedland, K. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of Lavender. Neurochem. Int. 2021, 143, 104899. [Google Scholar] [CrossRef]
- Qasem, J.R. Allelopathic effects of selected medicinal plants on Amaranthus retroflexus and Chenopodium murale. Allelopath. J. 2002, 10, 105–122. [Google Scholar]
- Dias, L.S.; Pereira, I.P.; Dias, A.S. Evaluation of Mediterranean-type vegetation for weedicide activity. Allelopath. J. 1995, 2, 197–204. [Google Scholar]
- Argyropoulos, E.I.; Eleftherohorinos, I.G.; Vokou, D. In vitro evaluation of essential oils from Mediterranean aromatic plants of the Lamiaceae for weed control in tomato and cotton crops. Allelopath. J. 2008, 22, 69–78. [Google Scholar]
- Uremis, I.; Arslan, M.; Sangun, M.K. Herbicidal activity of essential oils on the germination of some problem weeds. Asian J. Chem. 2009, 21, 3199–3210. [Google Scholar]
- Cruz-Silva, C.T.A.; Nóbrega, L.H.P.; Dellagostin, S.M.; Silva, C.F.G. Salvia officinalis L. coverage on plants development. Rev. Bras. Plantas Med. 2016, 18, 488–493. [Google Scholar] [CrossRef] [Green Version]
- El-Rokiek, K.G.; El-din, S.A.S.; El-Wakeel, M.A.; Dawood, M.G.; El-Awadi, M. Allelopathic effect of the two medicinal plants Plectranthus amboinicus (Lour.) and Ocimum basilicum L. on the growth of Pisum sativum L. and associated weeds. Middle East J. Agric. Res. 2018, 7, 1146–1153. [Google Scholar]
- Skrzypek, E.; Repka, P.; Stachurska-Swakon, A.; Barabasz-Krasny, B.; Mozdzen, K. Allelopathic effect of aqueous extracts from the leaves of peppermint (Mentha piperita L.) on selected physiological processes of common sunflower (Helianthus annuus L.). Not. Bot. Horti Agrobot. Cluj Napoca 2015, 43, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Ulbrich, A.; Kahle, H.; Kramer, P.; Schulz, M. Mentha × piperita volatiles promote Brassica oleracea—A pilot study for sustainable vegetable production. Allelopath. J. 2018, 43, 93–104. [Google Scholar] [CrossRef]
- Karkanis, A.; Alexiou, A.; Katsaros, C.; Petropoulos, S. Allelopathic activity of spearmint (Mentha spicata L.) and peppermint (Mentha × piperita L.) reduces yield, growth, and photosynthetic rate in a succeeding crop of maize (Zea mays L.). Agronomy 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, K.; Kaczmarek, S.; Kierzek, R. Allelopathic effect of popular medicinal plants on Fagopyrum esculentum (Moench), Papaver somniferum (L.) and Brassica napus var. oleifera (L.). J. Med. Plants Res. 2014, 8, 1051–1059. [Google Scholar]
- Kadoglidou, K.; Chatzopoulou, P.; Maloupa, E.; Kalaitzidis, A.; Ghoghoberidze, S.; Katsantonis, D. Mentha and Oregano soil amendment induces enhancement of tomato tolerance against soilborne diseases, yield and quality. Agronomy 2020, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahi, P.; Razavi, S.M.; Ghasemian, A.; Zahri, S. Physiological and biochemical responses of lettuce to thymol, as allelochemical. Russ. J. Plant Physiol. 2018, 65, 598–603. [Google Scholar] [CrossRef]
- Othira, J.O.; Deng, A.L.; Onek, L.A.; Kemey, J.; Omolo, E.O. Potential application of Hyptis spicigera for biological control of Striga hermonthica infestation. Afr. J. Agric. Res. 2008, 3, 747–752. [Google Scholar]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants—Back to Nature; El-Shemy, H.A., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kalemba, D.; Synowiec, A. Agrobiological interactions of essential oils of two menthol mints: Mentha piperita and Mentha arvensis. Molecules 2020, 25, 59. [Google Scholar] [CrossRef] [Green Version]
- Franzios, G.; Mirotsou, M.; Hatziapostolou, E.; Kral, J.; Scouras, Z.G.; Mavragani-Tsipidou, P. Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 1997, 45, 2690–2694. [Google Scholar] [CrossRef]
- Silva, L.F.; Cardoso, M.G.; Batista, L.R.; Gomes, M.S.; Rodrigues, L.M.A.; Rezende, D.A.C.S.; Teixeira, M.L.; Carvalho, M.S.S.; Santiago, J.A.; Nelson, D.L. Chemical characterization, antibacterial and antioxidant activities of essential oils of Mentha viridis L. and Mentha pulegium L. Am. J. Plant Sci. 2015, 6, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Maffei, M.; Camusso, W.; Sacco, W. Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry 2001, 58, 703–707. [Google Scholar] [CrossRef]
- Dob, T.; Dahmane, D.; Benabdelkader, T.; Chelghoum, C. Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boiss. et Reut. Int. J. Aromather. 2006, 16, 95–100. [Google Scholar] [CrossRef]
- Giordani, R.; Hadef, Y.; Kaloustian, J. Compositions and antifungal activities of essential oils of some Algerian aromatic plants. Fitoterapia 2008, 79, 199–203. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Morteza-Semnani, K.; Mojra, E. Anti-inflammatory and antinociceptive activity of Thymus pubescens extract. Fitoterapia 2008, 79, 361–365. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Veríssimo, A.R.; Faleiro, M.L.; Miguel, M.G. Chemical composition and biological activities of Algerian Thymus oils. Food Chem. 2009, 116, 714–721. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Ghasemi, G.; Alirezalu, A.; Ghosta, Y.; Jarrahi, A.; Safavi, S.A.; Abbas-Mohammadi, M.; Barba, F.J.; Munekata, P.E.S.; Domínguez, R.; Lorenzo, J.M. Composition, antifungal, phytotoxic, and insecticidal activities of Thymus kotschyanus essential oil. Molecules 2020, 25, 1152. [Google Scholar] [CrossRef] [Green Version]
- Szczepanik, M.; Zawitowska, B.; Szumny, A. Insecticidal activities of Thymus vulgaris essential oil and its components (thymol and carvacrol) against larvae of lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath. J. 2012, 30, 129–142. [Google Scholar]
- Araújo, E.C.C.; Silveira, E.R.; Lima, M.A.S.; Neto, M.A.; de Andrade, I.L.; Lima, M.A.A. Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. J. Agric. Food Chem. 2003, 51, 3760–3762. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.K.H.; de Oliveira, C.M.A.; Ferri, P.H.; de Oliveira, J.G., Jr.; de Souza, A.H., Jr.; Fernandes, O.F.L.; Silva, M.R.R. Antimicrobial activity of Hyptis ovalifolia towards dermatophytes. Mem. do Inst. Oswaldo Cruz 2003, 98, 963–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raizada, P. Ecological and vegetative characteristics of a potent invader, Hyptis suaveolens Poit. from India. Lyonia 2006, 11, 115–120. [Google Scholar]
- Sharma, G.P.; Raizada, P.; Raghubanshi, A.S. Hyptis suaveolens: An emerging invader of Vindhyan plateau, India. Weed Biol. Manag. 2009, 9, 185–191. [Google Scholar] [CrossRef]
- Sharma, A.; Batish, D.R.; Singh, H.P.; Jaryan, V.; Kohli, R.K. The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora 2017, 233, 156–162. [Google Scholar] [CrossRef]
- Chatiyanon, B.; Tanee, T.; Talubmook, C.; Wongwattana, C. Effect of Hyptis suaveolens Poit leaf extracts on seed germination and subsequent seedling growth of Pennisetum setosum (Swartz.) L. C. Rich and Mimosa invisa Mart. Agric. J. 2012, 7, 17–20. [Google Scholar]
- Afreen, T.; Srivastava, P.; Singh, H.; Singh, J.S. Effect of invasion by Hyptis suaveolens on plant diversity and selected soil properties of a constructed tropical grassland. J. Plant Ecol. 2018, 11, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Upadhyay, S. Repellent and insecticidal activities of Hyptis suaveolens (Lamiaceae) leaf essential oil against four stored-grain coleopteran pests. Int. J. Trop. Insect Sci. 2009, 29, 219–228. [Google Scholar] [CrossRef]
- Conti, B.; Benelli, G.; Flamini, G.; Cioni, P.L.; Profeti, R.; Ceccarini, L.; Macchia, M.; Canale, A. Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol. Res. 2012, 110, 2013–2021. [Google Scholar] [CrossRef]
- Adjou, E.S.; Chougourou, D.; Soumanou, M.M. Insecticidal and repellent effects of essential oils from leaves of Hyptis suaveolens and Ocimum canum against Tenebroides mauritanicus (L.) isolated from peanut in post-harvest. J. Consum. Prot. Food Saf. 2019, 14, 25–30. [Google Scholar] [CrossRef]
- Fragoso-Serrano, M.; González-Chimeo, E.; Pereda-Miranda, R. Novel labdane diterpenes from the insecticidal plant Hyptis spicigera. J. Nat. Prod. 1999, 62, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Noudjou, F.; Kouninki, H.; Ngamo, L.S.T.; Maponmestsem, P.M.; Ngassoum, M.; Hance, T.; Haubruge, E.; Malaisse, F.; Marlier, M.; Lognay, G.C. Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. an insecticidal essential oil from north-Cameroon. J. Essent. Oil Res. 2007, 19, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Mukerjee, S.K. A revision of the Labiatae of the Indian Empire. Rec. Bot. Surv. Ind. 1940, 14, 1–205. [Google Scholar]
- Ryding, O. Phylogeny of the Leucas Group (Lamiaceae). Syst. Bot. 1998, 23, 235–247. [Google Scholar] [CrossRef]
- Maheswaran, R.; Sathish, S.; Ignacimuthu, S. Larvicidal activity of Leucas aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti L. Int. J. Integr. Biol. 2008, 2, 214–217. [Google Scholar]
- Islam, A.K.M.M.; Kato-Noguchi, H. Allelopathic potential of five Labiatae plant species on barnyard grass (Echinochloa crus-galli). Aust. J. Crop Sci. 2013, 7, 1369–1374. [Google Scholar]
- Zhang, R.H.; Liu, Z.K.; Yang, D.S.; Zhang, X.J.; Sun, H.D.; Xiao, W.L. Phytochemistry and pharmacology of the genus Leonurus: The herb to benefit the mothers and more. Phytochemistry 2018, 147, 167–183. [Google Scholar] [CrossRef]
- Wu, H.K.; Mao, Y.J.; Sun, S.S.; Xu, Z.Y.; Ma, Y.; Cao, J.X.; Qi, H.; Wu, Z.F.; Li, G.; Yang, W.H. Leojaponic acids A and B, two new homologous terpenoids, isolated from Leonurus japonicus. Chin. J. Nat. Med. 2016, 14, 303–307. [Google Scholar] [CrossRef]
- Bich, T.T.N.; Kato-Noguchi, H. Isolation and identification of a phytotoxic substance from the emergent macrophyte Centrostachys aquatica. Bot. Stud. 2014, 55, 59. [Google Scholar] [CrossRef] [Green Version]
- Kato-Noguchi, H.; Moriyasu, M.; Ohno, O.; Suenaga, K. Growth limiting effects on various terrestrial plant species by an allelopathic substance, loliolide, from water hyacinth. Aqua. Bot. 2014, 117, 56–61. [Google Scholar] [CrossRef]
- Zaman, F.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Two allelopathic substances from Paspalum commersonii Lam. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 342–348. [Google Scholar] [CrossRef]
- Li, L.L.; Zhao, H.H.; Kong, C.H. (–)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J. Exp. Bot. 2020, 71, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, A.; Sacchetti, G.; Guevara, M.P.E.; Paganetto, G.; Grandini, A.; Maresca, I.; Menghini, L.; Di Martino, L.; Marengo, A.; Tacchini, M. Wild Italian Hyssopus officinalis subsp. Aristatus (Godr.) Nyman: From Morphological and Phytochemical Evidences to Biological Activities. Plants 2021, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; González-Coloma, A.; Andrés, M.F.; Santana-Méridas, O. Biocidal potential and chemical composition of industrial essential oils from Hyssopus officinalis, Lavandula × intermedia var. super, and Santolina chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef]
- Suwitchayanon, P.; Kunasakdakul, K.; Kato-Noguchi, H. Screening the allelopathic activity of 14 medicinal plants from northern Thailand. Environ. Cont. Biol. 2017, 55, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Pandey, D.; Brown, C. Teak: A global overview. Unasylva 2000, 51, 3–13. [Google Scholar]
- Healey, S.P.; Gara, R.I. The effect of a teak (Tectona grandis) plantation on the establishment of native species in an abandoned pasture in Costa Rica. Ecol. Manag. 2003, 176, 497–507. [Google Scholar] [CrossRef]
- Kenny, A.L.; Pickens, J.B.; Orr, B. Land allocation with the introduction of teak: A case study of smallholder farms in SouthernTogo. J. Sustain. For. 2014, 33, 776–795. [Google Scholar] [CrossRef]
- Newby, J.C.; Cramb, R.A.; Sakanphet, S. Forest transitions and rural livelihoods: Multiple pathways of smallholder teak expansionin Northern Laos. Land 2014, 3, 482–503. [Google Scholar] [CrossRef] [Green Version]
- Udayana, C.; Andreassen, H.P.; Skarpe, C. Understory diversity and composition after planting of teak and mahogany in Yogyakarta, Indonesia. J. Sustain. For. 2020, 39, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Kole, R.K.; Paul, P.; Saha, S.; Das, S. Chemistry and bio-efficacy of teak leaf for weed control in wheat. Allelopath. J. 2016, 39, 191–204. [Google Scholar]
- Lacret, R.; Varela, R.M.; Molinillo, J.M.G.; Nogueiras, C.; Macías, F.A. Anthratectone and naphthotectone, two quinones from bioactive extracts of Tectona grandis. J. Chem. Ecol. 2011, 37, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Lacret, R.; Varela, R.M.; Nogueiras, C.; Molinillo, J.M.G. Bioactive apocarotenoids from Tectona grandis. Phytochemistry 2008, 69, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
- Eminagaoglu, O.; Tepe, B.; Yumrutas, O.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sokmen, A. The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja spicigera (K. Koch.) Boiss. and Satureja cuneifolia ten. Food Chem. 2007, 100, 339–343. [Google Scholar] [CrossRef]
- Askun, T.; Tumen, G.; Satıl, F.; Karaarslan, D. Active constituents of some Satureja L. species and their biological activities. Afr. J. Microbiol. Res. 2012, 6, 4623–4633. [Google Scholar] [CrossRef]
- The Plant List. Version 1.1. Published on the Internet. Available online: http://www.theplantlist.org/tpl1.1/search?q=conradina (accessed on 9 October 2021).
- Fischer, N.H.; Williamson, G.B.; Tanrisever, N.; De la Peña, A.; Weidenhamer, J.D.; Jordan, E.D.; Richardson, D.R. Allelopathic actions in the Florida scrub community. Biol. Plant. 1989, 31, 471–478. [Google Scholar] [CrossRef]
- Fischer, N.H.; Williamson, G.B.; Weidenhamer, J.D.; Richardson, D.R. In search of allelopathy in the florida scrub: The role of terpenoids. J. Chem. Ecol. 1994, 20, 1355–1380. [Google Scholar] [CrossRef]
- Williamson, G.B.; Fischer, N.H.; Richardson, D.R.; De la Peña, A. Chemical inhibition of fire-prone grasses by fire-sensitive shrub, Conradina canescens. J. Chem. Ecol. 1989, 15, 1567–1577. [Google Scholar] [CrossRef]
- Dosoky, N.S. Isolation and Identification of Bioactive Compounds from Conradina canescens Gray; University of Alabama in Huntsville: Huntsville, AL, USA, 2015. [Google Scholar]
- De la Peña, A.C. Terpenoids from Conradina canescens (Labiatae) with Possible Allelopathic Activity; Louisiana State University: Baton Rouge, LA, USA, 1985. [Google Scholar]
- Weidenhamer, J.D.; Macias, F.A.; Fischer, N.H.; Williamson, G.B. Just how insoluble are monoterpenes? J. Chem. Ecol. 1993, 19, 1799–1807. [Google Scholar] [CrossRef]
- Rout, O.P.; Acharya, R.; Mishra, S.K.; Sahoo, R. Pathorchur (Coleus aromaticus): A review of the medicinal evidence for its phytochemistry and pharmacology properties. Int. J. Appl. Biol. Pharm. Technol. 2012, 3, 348–355. [Google Scholar]
- Soni, H.; Singhai, A.K. Recent updates on the genus Coleus: A review. Asian J. Pharm. Clin. Res. 2012, 5, 12–17. [Google Scholar]
- Tanrisever, N.; Fischer, N.H.; Williamson, G.B. Menthofurans from Calamintha ashei: Effects on Schizachyrium scoparium and Lactuca sativa. Phytochemistry 1988, 27, 2523–2526. [Google Scholar] [CrossRef]
- Weidenhamer, J.D.; Menelaou, M.; Macias, F.A.; Fischer, N.H.; Richardson, D.R.; Williamson, G.B. Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J. Chem. Ecol. 1994, 20, 3345–3359. [Google Scholar] [CrossRef]
- Harwood, S.H.; Moldenke, A.F.; Berry, R.E. Toxicity of pepper mint monoterpenees to the variegated cutworm (Lepidoptera: Noctuidae). J. Econ. Entom. 1990, 83, 1761–1767. [Google Scholar] [CrossRef]
- Gunderson, C.A.; Samuelian, J.H.; Evans, C.K.; Brattsten, L.B. Effects of the mint monoterpene epulegoneon Spodoptera eridania (Lepidoptera: Noctuidae). Environ. Entom. 1985, 14, 859–861. [Google Scholar] [CrossRef]
- Duke, S.O. Herbicides from natural compounds. Weed Technol. 1987, 1, 122–128. [Google Scholar] [CrossRef]
- Mason, J.R. Evaluation of d-pulegoneasanavian repellent. J. Wildl. Manag. 1990, 54, 130–135. [Google Scholar] [CrossRef]
- De Mastro, G.; El Mahdi, J.; Ruta, C. Bioherbicidal potential of the essential oils from mediterranean Lamiaceae for weed control in organic farming. Plants 2021, 10, 818. [Google Scholar] [CrossRef]
- Song, B.; Seiber, J.N.; Duke, S.O.; Li, Q.X. Green plant protection innovation: Challenges and perspectives. Engineering 2020, 6, 483–484. [Google Scholar] [CrossRef]
- Clay, S.A. Near-term challenges for global agriculture: Herbicide-resistant weeds. Agron. J. 2021, 113, 4463–4472. [Google Scholar] [CrossRef]
- Echeng, F.; Echeng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar]
- Dudareva, N.; Andersson, S.; Orlova, I.; Gatto, N.; Reichelt, M.; Rhodes, D.; Boland, W.; Gershenzon, J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in Snapdragon flowers. Proc. Natl. Acad. Sci. USA 2005, 102, 933–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasahara, H.; Hanada, A.; Kuzuyama, T.; Takagi, M.; Kamiya, Y.; Yamaguchi, S. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in arabidopsis. J. Biol. Chem. 2002, 277, 45188–45194. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Memo, M.; Mastinu, A. Plant behaviour: An evolutionary response to the environment? Plant Biol. 2020, 22, 961–970. [Google Scholar] [CrossRef]
- Vaughn, F.S.; Spencer, F.G. Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci. 1993, 41, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Elakovich, S.D. Terpenoids as models for new agrochemicals. In Biologically Active Natural Products; Cutler, H.G., Ed.; ACS Symposium Series; American Chemical Society: Hattiesburg, MS, USA, 1988; Volume 380, pp. 250–261. [Google Scholar]
- Rasmann, S.; Köllner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U.; Gershenzon, J.; Turlings, T.C. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434, 732–737. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.; Elshamy, A.; El Gendy, A.E.N.; Gaara, A.; Assaeed, A. Volatiles profiling, allelopathic activity, and antioxidant potentiality of Xanthium strumarium leaves essential oil from Egypt: Evidence from chemometrics analysis. Molecules 2019, 24, 584. [Google Scholar] [CrossRef] [Green Version]
- Tsai, R.; Yu, Q. Nematicidal activity of monoterpenoid compounds against economically important nematodes in agriculture. J. Essent. Oil Res. 2000, 12, 350–354. [Google Scholar] [CrossRef]
- Park, I.K.; Kim, J.; Lee, S.G.; Shin, S.C. Nematicidal activity of plant essential oils and components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) essential oils against Pine wood nematode (Bursaphelenchus xylophilus). J. Nematol. 2006, 39, 275–279. [Google Scholar]
- Shasany, A.K.; Gupta, S.; Gupta, M.K.; Naqvi, A.A.; Bahl, J.R.; Khanuja, S.P.S. Assessment of menthol mint collection for genetic variability and monoterpene biosynthetic potential. Flavour Frag. J. 2010, 25, 41–47. [Google Scholar] [CrossRef]
- Fejer, J.; Grulova, D.; Salamon, I. Clonal breeding of peppermint (Mentha × Piperita) with high content of menthol. Acta Hortic. 2014, 1023, 173–178. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, S.; Singh, S.; Verma, R.S.; Srivastava, R.K.; Gupta, A.K.; Lal, R.K. Genetic variability and elite line selection for high essential oil and nepetalactone content in catmint (Nepeta cataria L.). Am. J. Plant Sci. 2021, 12, 1135–1154. [Google Scholar] [CrossRef]
- Reichert, W.J. The Phytochemical Investigation, Breeding and Arthropod Repellent Efficacy of Nepeta cataria. Ph.D. Thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Gomes, E.N.; Allen, K.; Jaworski, K.; Zorde, M.; Lockhart, A.; Besancon, T.; Brown, T.; Reichert, W.; Wu, Q.; Simon, J.E. Catnip (Nepeta cataria L.): Recent Advances in Botany, Horticulture and Production. Med. Aroma. Plants N. Am. 2020, 6, 247–284. [Google Scholar] [CrossRef]
- Jia, K.H.; Liu, H.; Zhang, R.G.; Xu, J.; Zhou, S.S.; Jiao, S.Q.; Yan, X.M.; Tian, X.C.; Shi, T.L.; Luo, H.; et al. Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) Genome. Hortic. Res. 2021, 8, 177. [Google Scholar] [CrossRef]
- Song, Z.; Lin, C.; Xing, P.; Fen, Y.; Jin, H.; Zhou, C.; Gu, Y.Q.; Wang, J.; Li, X. A high-quality reference genome sequence of Salvia miltiorrhiza provides insights into tanshinone synthesis in its red rhizomes. Plant Genome 2020, 13, e20041. [Google Scholar] [CrossRef]
- Lichman, B.R.; Godden, G.T.; Hamilton, J.P.; Palmer, L.; Kamileen, M.O.; Zhao, D.; Vaillancourt, B.; Wood, J.C.; Sun, M.; Kinser, T.J.; et al. The evolutionary origins of the cat attractant nepetalactone in catnip. Sci. Adv. 2020, 6, eaba0721. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Dong, Y.; Zhang, W.; Wang, D.; Bai, H.; Li, K.; Li, H.; Shi, L. The Chromosome-based Lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis. Hortic. Res. 2021, 8, 53. [Google Scholar] [CrossRef]
- Bornowski, N.; Hamilton, J.P.; Liao, P.; Wood, J.C.; Dudareva, N.; Buell, C.R. Genome sequencing of four culinary herbs reveals terpenoid genes underlying chemodiversity in the Nepetoideae. DNA Res. 2020, 27, dsaa016. [Google Scholar] [CrossRef]
- Vining, K.J.; Johnson, S.R.; Ahkami, A.; Lange, I.; Parrish, A.N.; Trapp, S.C.; Croteau, R.B.; Straub, S.C.K.; Pandelova, I.; Lange, B.M. Draft genome sequence of Mentha longifolia and development of resources for mint cultivar improvement. Mol. Plant 2017, 10, 323–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leebens-Mack, J.H.; Barker, M.S.; Carpenter, E.J.; Deyholos, M.K.; Gitzendanner, M.A.; Graham, S.W.; Grosse, I.; Li, Z.; Melkonian, M.; Mirarab, S.; et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Zebec, Z.; Wilkes, J.; Jervis, A.J.; Scrutton, N.S.; Takano, E.; Breitling, R. Towards synthesis of monoterpenes and derivatives using synthetic biology. Curr. Opin. Chem. Biol. 2016, 34, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hong, K. Production of terpenoids by synthetic biology approaches. Front. Bioeng. Biotechnol. 2020, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Park, S.; Kim, J.A.; Lee, S.I.; Lee, K. Metabolic perturbation and synthetic biology strategies for plant terpenoid production—An updated overview. Plants 2021, 10, 2179. [Google Scholar] [CrossRef]
- Korman, T.P.; Opgenorth, P.H.; Bowie, J.U. A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 2017, 8, 15526. [Google Scholar] [CrossRef]
- Rolf, J.; Julsing, M.K.; Rosenthal, K.; Lütz, S. A gram-scale Limonene production process with engineered Escherichia coli. Molecules 2020, 25, 1881. [Google Scholar] [CrossRef] [Green Version]
Sl. No. | Genus Name | Total No. of Species | Distribution | Chemical Constituents * | Medicinal and/or Industrial Properties | Reference |
---|---|---|---|---|---|---|
1 | Salvia | 900 | Throughout the Old world (Asia, Africa and Europe) and new world (Americas) | Sesquiterpenoids, diterpenoids, sesterterpenoids, triterpenoids, steroids, polyphenols, etc. | Antioxidative, antibacterial, hypoglycaemic, anti-inflammatory, fungistatic, virustatic, astringent, eupeptic, anti-hydrotic, and cardioprotective properties. Used as spices and flavoring agents. | [44,45,46,47] |
2 | Nepeta | 280 | Native to temperate Europe, Asia, Africa, and are naturalized in North America | Nepetalactone (and its isomers), 1,8-cineole, β-caryophyllene, caryophyllene oxide, β-farnesene, α-citral, β-citronellol | Diuretic, diaphoretic, antitussive, antispasmodic, antiasthmatic, febrifuge, emmenagogue, sedative, antitumor, anti-inflammatory, antimicrobial, feline and canine attractant, insect repellant, arthropod defense, antibacterial, antifungal, and antiviral properties. Used as a perfume and flavoring agents. | [48,49,50,51,52,53] |
3 | Ocimum | 160 | Widely distributed throughout the tropical and sub-tropical Asia | Eugenol, thymol or sesquiterpene alcohols as major or terpene compounds as minor oil constituents | Anti-diabetic, anti-oxidant, anti-microbial, antinociceptive, anti-fertility, anti-inflammatory, anti-cancer, anthelmintic, cardioprotective, etc. | [54,55,56] |
4 | Lavandula | 30 | Native to the Mediterranean region, but is grown in many other countries of the world | Linalool, linalyl acetate, 1,8-cineole β-ocimene, terpinen-4-ol, and camphor | Anticancer, antimutagenic, antioxidant, antimicrobial, anxiolytic, mood stabilizer, sedative, analgesic, anticonvulsive and neuroprotective properties. Used for the treatment of epilepsy, migraine attacks, pain and tremor. Also used in perfume, cosmetic industry, and aromatherapy. | [57,58,59,60] |
5 | Mentha | 42 | Northeastern Africa, western Asia and southeastern Europe | Menthol | Insecticidal, antibacterial, antifungal, anti-cancer, pharmaceutical, flavoring and cosmetic properties. Used for treating wounds, swollen glands, cough, cold, fever, asthma, indigestion, influenza, vomiting, gastro-intestinal disorder. | [61,62,63,64,65,66,67,68] |
6 | Thymus | 400 | Native to Europe | Several types of monoterpenes, p-cymene, γ-terpinene and thymol | Antiseptic, antihelminthic, expectorant, antispasmodic, antimicrobial, antifungal, antiviral, antioxidative, carminative, sedative, antivirotic, diaphoretic, antibacterial, antispasmodic, antirheumatic, antihypertensive, anti-inflammatory, and pharmaceutical properties. Used for the treatment of skin (oily skin, acne, dermatitis), eczema, insect bites, digestive, cardiovascular, nervous systems, nausea and fatigue, respiratory (such as colds), menstrual and menopausal problems, etc. | [69,70,71,72,73,74] |
7 | Hyptis | 150 | Tropical America, but now distributed throughout the world from tropical to subtropical regions. | Urosolic acid, alkaloids, terpenes, and volatile oils | Natural HIV-integrase inhibitor, antispasmodic, antirheumatic, anti-inflammatory, antifertility agents, antiseptic, appetizer and insecticidal properties. Used for diabetes and cancer treatments. | [32,75,76,77,78] |
8 | Leucas | 80 | Tropical and temperate Asia, and Africa | Lignans, flavonoids, coumarins, steroids, terpenes, fatty acids, and aliphatic long-chain compounds | Analgesic, antipyretic, anti-rheumatic, anti-venom, anti-inflammatory, antibacterial, antifungal, and mosquito repellent properties. Used for coughs, colds, painful swellings, and chronic skin eruption treatment. | [25,79,80] |
9 | Leonurus | 20 | Europe and Asia, naturalized in New Zealand, Hawaii, New Caledonia, and America | Diterpenoids | Analgesic, anti-inflammatory, anti-bacterial, antiproliferative, antioxidative, anticancer, cardioprotective, neuroprotective properties. Used for treating chronic rheumatism, menstrual irregularities, and heart disorders. | [22,81,82,83,84,85] |
10 | Origanum | 900 | Europe, Central Asia, and North America | Carvacrol, Thymol, γ-terpinene, p-cymene, β-cymene, Methyleugenol, myristicin | Anti-fungal, anti-bacterial, anti-tumor, anti-inflammatory, anti-oxidant, anti-cholinesterase, anti-parasitic, anti-viral, and anti-diabetes properties. | [86,87,88] |
11 | Rosmarinus | 3 | Native to the Mediterranean areas, and widely distributed in many parts of the world | α-pinene, verbenol, verbenone, 1,8-cineol and isoborneol | Antimicrobial, antioxidant, antibacterial, antimycotic, food flavoring, and food preservative properties. | [89,90,91] |
12 | Hyssopus | 36 | Highly abundant on dry, rocky, calcareous soils in Europe, southwest and central Asia, and north-west India | Pinocamphone, α-pinene, β-pinene, apigenin, quercetin, diosmin, luteolin, chlorogenic, protocatechuic, ferulic, syringic, p-hydroxybenzoic, and caffeic acids | Used for the treatment of stomachic, chronic bronchitis, rheumaticpains, bruises, wounds, blood pressure regulation, states of anxiety, hysteria. Has muscle-relaxing, antiseptic, insecticidal, nematicidal, antibacterial, antifungal, and antioxidant properties. | [92,93,94,95,96,97] |
13 | Orthosiphon | 40 | Tropical and subtropical Asia including Southern Africa and Madagascar | Polymethoxylated flavonoids, phenylpropanoids (caffeic acid derivatives), and terpenoids (mainly diterpenes and triterpenes) | Used for the treatment of urinary lithiasis, edema, rheumatism, hepatitis, diabetes, hypertension, oedema, epilepsy, fever, influenza, tonsillitis, menstrual, disorder, gonorrhea, syphilis, and jaundice. | [98,99,100,101] |
14 | Tectona | 3 | Indian subcontinent, throughout Myanmar and Thailand | Triterpenoids, flavonoïds, chromomoric acid derivatives, anthraquinones, naphthoquinones, anthraquinone-naphthoquinones, apocarotenoids and lignans | Used for bronchitis treatments, hyperacidity, dysentery, verminosis, burning sensation, diabetes, difficult labor, leprosy, skin diseases, stomatitis, indolent ulcers, headache, biliousness, burning pains, etc. Have hemostatic, anti-inflammatory, antibacterial, antifungal, analgesic, cytotoxic, hypoglycemic properties. | [40,102,103,104] |
15 | Satureja | 200 | Mediterranean region, Asia, and some parts of USA | Thymol, carvacrol, cymene, flavonoids, tannins, linalool, γ-terpinene | Antimicrobial, antioxidant, anti-inflammatory, anti-parasitic, anti-viral, analgesic, antinociceptive, anti-diabetic, anti-cancer, and anti-hypercholesterolemic properties. | [105,106,107] |
16 | Conradina | 6 | Xeric with well-drained sandy soil areas of US | Camphor, 1,8-cineole, ursolic acid, cis-punocamphone, botulin, α-pinene, p-pinene, myrtenal, myrtenol, verbenone, myrtenyl acetate, limonene, camphene, β-amyrin, β-caryophyllene, β-pinene, β-cubebene, myrtenic acid | Antibacterial, antifungal, cytotoxic, antileishmanial properties. | [108,109] |
17 | Coleus | 264 | Tropics and sub-tropics of Old world | Terpinolene, α-pinene, β-pinene, β-caryophyllene, 1, 8-cineole, eugenol, carvacrol, thymol and β-phellandrene | Stimulant, antispasmodic and stomachic properties, and used for the treatment of headache, fever, epilepsy, dyspepsia, chronic cough, and asthma | [110,111,112,113,114,115,116] |
18 | Calamintha | 9 | Mediterranean region | Pulegone, menthone isolmenthone, piperitone, carvone, gallic acid, rosmarinic acid, caffeine, caffeic acid and eucalyptol | Antimicrobial, antiseptic, antispasmodic, antimicrobial, antispasmodic, sedative, and antipyretic properties. | [117,118] |
Plant Species | Plant Organ | Extract Types | Target Species | Effect | Reference |
---|---|---|---|---|---|
Salvia moorcraftiana Wall. | Aerial parts | Crude acetone extract | Lemna aequinoctials Welve. | Inhibited growth | [129] |
Salvia sclarea | Aerial parts | Aqueous extract | Solanum nigrum L. roots | Induced lipid peroxidation | [130] |
Bromus mollis L. | Increase of the superoxide dismutase, catalase, and antioxidant enzyme activity | [131] | |||
Salvia macrosiphon Boiss. | Aerial parts | Aqueous extract | Zea mays L. | Inhibited seed germination, growth, fresh, and dry weight of radicles and plumules | [132] |
Salvia macrochlamys Boiss. et Kotschy | Aerial parts | Methanolic extract | Portulaca oleracea | Inhibited the germination, decreased the amylase activity and the abscisic acid (ABA) at higher concentrations (>2.5%), increased the gibberellic acid (GA3) levels at conc. <2.5% | [124] |
Salvia officinalis L. | Aerial parts | Aqueous extracts | Hordeum vulgare and Portulaca oleracea | Inhibited germination | [133] |
Essential oils (EOs) | Lectuca sativa | Inhibited germination and root growth | [46] | ||
Salvia namaensis Schinz, Salvia fallax Fernald, Salvia disermas L., Salvia chamaedryoides Cav., Salvia confertiflora Pohl., S. × jamensis J. Compton, Salvia buchananii Hedge, S. wagneriana Polak, Salvia scabra Linn. Fil., Salvia miniata Fernald, Salvia cacaliaefolia Benth., Salvia adenophora Fernald, Salvia rutilans Carrière | Aerial parts | Exudate | Papaver rhoeas L. and Avena sativa L. | Inhibited germination and growth | [122] |
Nepeta nuda subsp. Nuda | Aerial parts | Water extracts | Cucumis sativus L. and Triticum aestivum L. | Seedling growth, fresh and dry weight | [134] |
Nepeta meyeri Benth. | Roots and leaves | Aqueous extracts | H. vulgare, T. aestivum, Brassica napus L., Carthamus tinctorius L. and Helianthus annuus L. | Inhibited seed germination and seedling growth of H. vulgare and H. annuus at all concentrations. Stimulated T. aestivum B. napus and C. tinctorious seedling growth at lower concentrations. At higher concentration showed neutral activity to T. aestivum, but inhibited B. napus and C. tinctorious. | [135] |
Nepeta preatervisa | Whole plants | Methanolic extract | Lemna aequinocatialis | Inhibited the development of fronds | [136] |
Ocimum basilicum L. | Leaf, root and seeds | Aqueous extracts | T. aestivum, Cicer arietinum, Lens culinaris, Brassica spp., Hordeum vulgare, Abelmoschus esculentus, and Pisum sativum | Inhibited seed germination and seedling growth | [137] |
Aerial parts | Aqueous extract | Sorghum bicolor [L.] Moench, Pennisetum glaucum [L.] R. Br., Zea mays L., Triticum vulgare L. | [138] | ||
Crude methanolic extracts | Lemna minor | Moderate phytotoxicity (25%) was obtained at 1000 µg mL−1 concentration | [139] | ||
Methanol, acetone and distilled water | Z. mays and Glycine max | Root growth | [140] | ||
Aqueous extract | Sorghum bicolor [L.] Moench, Pennisetum glaucum [L.] R. Br., Z. mays and Triticum vulgare L. | Inhibited the seed germination of the tested cereal crops and the order of their sensitivity was Z. mays > P. glaucum t > T. vulgare > S. bicolor | [141] | ||
Ocimum tenuiflorum L. | Whole plants | Aqueous methanol extract | Lepidium sativum L., Lactuca sativa L., Medicago sativa L., Lolium multiflorum Lam., Echinochloa crus-galli L. and Phleum pratense L. | Inhibited the total germination percentage, germination index, germination energy, speed of emergence, seedling vigor index, coefficient of the germination rate, except those for E. crusgalli and germination % of L. sativa at higher concentration. Increased the time required for 50% germination and mean germination time. | [142] |
Ocimum sanctum L. | Dry leaf extract | Aqueous extract | Phaseolus radiata (L.) Wilczek, Phaseolus unguiculata (L.) Walp, Cajanus cajan L., Cicer arietinum L., Phaseolus mungo (L.) Heeper, and Phaseolus aconitifolius Jacq. | No inhibition on the seed germination of the legumes, except for C. arietinum | [143] |
Leaf extract | Amaranthus spinosus L. | Inhibited seed germination (80%) | [143] | ||
Lavandula officinalis | Dry leaf extract | Aqueous extract | Velvet flower and Purslane | Reduction of germination, stem and root growth, and fresh weight | [144] |
Lavandula × intermedia | Dry flowers | Aqueous extract | L. sativa | Inhibited germination, seedling length, and fresh and dry weight of seedlings | [145] |
Lavandula × intermedia cv. Grosso | Leaf and stem | Aqueous extract | Lolium rigidum | Completely inhibited root growth | [146] |
Lavandula × intermedia Emeric ex Loisel. | Flowers | Aqueous extract | R. sativus | Completely inhibited seed germination | [147] |
Mentha × piperita L. | Aerial parts | Aqueous extract | R. sativus | Negative effect on germination, growth, and super oxide dismutase, and positive effect on proline, soluble sugars and total phenols, ascorbate peroxidase, catalase, and peroxidase | [148] |
Mentha longifolia syn. M. sylvestris L. | All parts of the plant (leaves, stem, flowers, seeds and roots) | Methanolic extract | T. aestivum | Inhibited shoot and root growth | [66] |
Mentha sylvestris L. | All parts of the plant (leaves, stem and roots) | Aqueous methanolic extract | Lepidum sativum L., L. sativa L., Medicago sativa L., B. napus, Phleum pretense L.; Digitaria sanguinalis L. scop.; E. crus-galli, and L. multiflorum | Inhibited seedling growth | [149] |
Mentha × piperita L. | Dry leaves | Volatile compounds | R. sativus | Inhibited germination | [150] |
Mentha longifolia L. | Dry leaves | EOs | Convolvulus arvensis L. | Inhibited seed germination, and root and shoot growth | [151] |
Mentha × villosa Huds. | Soil collected from the garden area cultivated with mint | - | L. sativa | Inhibited seed emergence, but had no effect on germination speed index | [152] |
Mentha spicata L. | Foliage | EOs | Alcea pallida Waldst. and Kit., Amaranthus retroflexus L., Centaurea salsotitialis L., R. raphanistrum, Rumex nepalensis Spreng., Sinapis arvensis L., and Sonchus oleraceus | Inhibited seed germination | [153] |
Thymus serpyllum | Fresh aerial parts | Methanolic extract | Lemna minor L. and R. sativus | Inhibited germination and growth | [154] |
Thymus numidicus Poir. | Leaves, stem and roots | Water, petroleum ether, ethyl acetate and methano | Medicago sativa and T. aestivum | Inhibited germination and growth | [155] |
Thymus kotschyanus | Whole plants | Aqueous extracts | Bromus tomentellus and Trifolium repens | Inhibited germination and seedling growth, and fresh and dry weight | [156] |
Thymus vulgaris | Leaves | Aqueous extracts | C. arietinum | Reduced germination capability, shoot and root length, total free amino acids, and proline content. Whereas, increased the carbohydrates, proteins, K+, Ca2+, and the activity of antioxidant enzymes | [157] |
Thymus comosus Heuff. ex Griseb. & Schenk, Thymus dacicus Borbás and Thymus praecox ssp. polytrichus (A. Kern. ex Borbás) Jalas | Aerial parts | Aqueous extracts | R. sativus and B. oleracea | Reduced germination percentage, speed of germination, and accumulated speed of germination | [158] |
Thymus vulgaris | Soil under Thymus plants | - | Daucus carota, Nigella damascena, and Bromus madritensis | Reduced germination | [159] |
Hyptis rhomboide Mart. et Gal | Stalks | Aqueous extracts | B. campestris, R. sativus and O. sativa | Inhibited the seed germination and seedling growth of Brassica campestris, Raphanus sativus L., Oryza sativa | [160] |
Leaves | |||||
Hyptis suaveolens (L.) Poit. | Leaves | Leaves residue | S. vulgare and L. sativa | Reduced germination speed index and percentage of germination | [161] |
Aqueous extracts | C. arietinum and C. cajan | Fungal infections on seeds were observed after 8 days | [162] | ||
Leaf leachates | Parthenium hysterophorus, Senna uniflora | Inhibiting seed germination | [163] | ||
Leaf extracts and leachates | Vigna radiata cv. K851 | Reduced the germination, seed viability, insoluble carbohydrates, proteins, and the activities of dehydrogenase and catalase enzymes. Increased the amino acid and soluble carbohydrate levels. | [164] | ||
Aqueous extracts | T. aestivum var k9 | Reduced germination percentage, weight of germinated seeds, radicle and coleoptile length, total chlorophyll, and total proteins | [165] | ||
Ethanolic extract | L. sativa, G. max | Strong inhibitory activity was observed on the germination percentage, germination speed index, growth inhibition of seedlings and biomass production of L. sativa | [166] | ||
Aqueous extracts | O. sativa | Decreased the percentage of germination | [167] | ||
Hyptis suaveolens (L.) Poit | Whole plants | Aqueous methanolic extracts | Lepidum sativum L., L. sativa, M. sativa, B. napus, Phleum pratense L., Digitaria sanguinalis L. Scop., E. crus-galli, and L. multiflorum | Inhibited the germination of L. sativum and L. multiflorum, and the seedling growth of all test species | [78] |
Hyptis sauveolens (L.) | Leaves and roots | Aqueous extracts | O. sativa cv. Gobindobhog | Inhibited germination, shoot and root length | [168] |
Leucas aspera (Willd.) Linn. | Whole plants | Aqueous methanolic extracts | L. sativum L., L. sativa, M. sativa, P. pratense, E. colonum, E. crus-galli, and L. multiflorum | Inhibited the seedling growth of all test species | [169] |
Leucas cephalotes (Roth) | Leaves and roots | Aqueous extracts | O. sativa cv. Gobindobhog | Inhibited germination, shoot and root length | [168] |
Leonurus sibiricus L. | Aerial parts | Aqueous extracts | T. aestivum | Inhibited seed germination and seedling growth | [170] |
Whole plants | Aqueous methanolic extracts | L. multiflorum, L. sativum, and L. sativa | Inhibited seed germination | [171] | |
L. multiflorum, L. sativum, L. sativa, P. pratense, D. sanguinalis, M. sativa, and B. napus | Inhibited seedling growth | ||||
Aerial parts | Aqueous, ethanol, and acetone extracts | Solanum melongena, Abelmoschus esculentus, Amaranthus tricolor and Cucumber Cucumis sativus | Inhibited seed germination and seedling growth | [172] | |
Hyssopus officinalis L. | Aerial parts | Water infusions | Cucumis sativus L. and T. aestivum | Inhibitory effects on germination and root elongation (T. aestivum > C. sativus) | [173] |
Allium cepa L. | Mitodepressive and genotoxic effect on the root tip cells | ||||
Origanum vulgare ssp. hirtum (Link) | - | EOs | Arabidopsis seedlings | Inhibited glutamate and aspartate metabolism, altering the photorespiratory pathway | [174] |
Origanum onites L. | - | EOs | T. aestivum, Avena Sterilis and Sinapis arvensis | Inhibited germination and seedling length | [37] |
- | Volatile oils | Onobrychis viciifolia | Reduced plant length | [175] | |
Origanum vulgare ssp. vulgare L. | Aerial parts | Cold water extracts | T. aestivum | Decreased root length | [176] |
Allium cepa L. | Inhibited cell division in root meristematic cells, induced abnormalities in mitotic and interphase cells | ||||
Cucumis sativus L. | Decreased root length | [177] | |||
Origanum majorana L. | Seed, aerial parts | Co-germination, Aqueous extracts | Z. mays | Co-germination stimulated Z. mays germination, whereas aqueous extracts inhibited root length | [178] |
Origanum compactum Benth. | Leaves | Aqueous extracts | Microcystis aeruginosa | Inhibited the growth and decreased the photosynthetic pigments (chlorophyll-a and carotenoids) | [179] |
Rosmarinus officinalis L. | Dry plant powder | EOs | M. aeruginosa and Chroococcus minor | Decreased growth rates | [180] |
Aerial parts | EOs | L. sativa, A. retroflexus, P. oleracea, and Acroptilon repens | Inhibited seed germination and growth | [181] | |
Aerial parts (inflorescences, leaves and stems) | Solid residue | Lycopersicon esculentum L. and Lolium perenne L. | Limited phytotoxic effects on germination, root and leaf growth | [182] | |
Leaves | Aqueous extracts | Panicum turgidum Forssk. | Inhibited germination percentage, relative germination percentage, plumule and radicle lengths | [183] | |
Aerial parts | EOs | Cynodon dactylon L., Festuca arundinacea Schreb. and Lolium perenne L. | Inhibited seed germination and growth | [184] | |
Satureja montana L. | Aerial parts | Aqueous extracts | Capsicum annuum L. and Solanum nigrum L. | Not phytotoxic, induced lipid peroxidation in S. nigrum roots, and increased the pyrogallol and guaiacol peroxidase in S. nigrum leaves | [185] |
Satureja thymbra L. | Aerial parts | Aqueous extracts | Pinus halepensis Mill. and Ceratonia siliqua L. | Inhibited the germination of C. siliqua, and the root length and number of leaves of P. halepensis and C. siliqua | [186] |
Satureja montana L. | Aerial parts | Aqueous extracts | Datura stramonium L. | Induced lipid peroxidation in roots of D. stramonium | [187] |
G. max | Increase in the catalase and superoxide dismutase activity of roots, and the superoxide dismutase activity in leaves | [188] | |||
Satureja khuzestanica Jamzad, S. bachtiarica Bunge and S. rechingeri Jamzad | Aerial parts | Aqueous extracts | L. sativum, Solanum lycopersicum, and Secale cereale | S. khuzestanica aqueous extract was most suppressive to S. cereale seed germination, while S. bachtiarica aqueous extract suppressed the germination and growth indices of L. sativum, Solanum lycopersicum and seedlings | [189] |
Leaves | Dry leaves powder | S. rechingeri had the maximum inhibitory effect on germination percent and growth indices of S. cereale, L. sativum and Solanum lycopersicum | |||
Satureja hortensison L. | Aerial parts | Aqueous extracts | P. oleraceae and Chenopodium album | Inhibited the root, stem, leaf growth, root/shoot ratio, germination rate, and percentage germination | [190] |
Tectona grandis L. | Green and deciduous leaves | Methanol extract | E. colona, Cyperus difformis L. and O. sativa | Inhibitory activity on E. colona germination, no activity on O. sativa | [191] |
Aqueous extracts | Inhibitory activity on C. difformis germination, no activity on O. sativa | ||||
Dried leaves | Aqueous extracts | Vigna mungo var. ADT-3 and V. radiate var. Co-3 | Completely inhibited the seedling growth, dry weight at 100% concentration | [192,193,194] | |
Fresh leaves | Aqueous extracts | Plumbago zeylanica Linn. | Inhibited the seed germination and seedling growth | [195] | |
Leaves and flowers | Aqueous extracts | L. sativa | No inhibitory potential on the percentage and average germination time | [196] | |
Leaves | Leachates | Vigna unguiculata, Momordica charantia and Solanum melongena L. | Inhibited the seed germination and seedling growth | [197] | |
Leaves | Aqueous extracts | Vigna mungo (L.) Hepper | Inhibited the seed germination and seedling growth | [198] | |
Top soil | Aqueous extracts | L. esculentum | Suppressed germination and growth | [199] | |
Orthosiphon stamineus Benth. (syn. O. aristatus, O. gradiflorus, O. spicatus) | Shoots | Aqueous methanol extracts | L. sativum and L. sativa | Inhibited root and hypocotyl growth | [200] |
Calamintha nepeta L. (Savi) | Leaves and stems | Methanol extract was further fractionated using n-hexane, chloroform, ethyl acetate and n-butanol | L. sativa | Inhibited germination and root growth of L. sativa with a methanolic extract and also with its fraction. Hierarchy of phytotoxicity of its fraction was ethyl acetate > n-hexane > chloroform > n-butanol | [29] |
Foliar | Volatiles and EOs | L. sativa, R. sativus and A. retroflexus | Volatiles strongly inhibited both germination and root growth of L. sativa, and EOs at >125 µL L−1 inhibited both processes of L. sativa, R. sativus, A. retroflexus | [201] | |
Leaves and green stem | Aqueous extract | L. sativa, C. album, Sinapis alba, | Inhibited germination and root growth | [202] | |
Coleus amboinicus L. | Dried leaves powder | Aqueous extract | Eichhornia crassipes Mart. | Reduced the fresh and dry weight | [203,204] |
Coleus forskohli | Leaves | Aqueous extract | T. aestivum | Root–shoot length and dry weight | [205] |
Plant Species | Allelochemical/Major Compounds | Parts from Where Isolated | Target Species | Effect | Reference |
---|---|---|---|---|---|
Salvia miniata Fernald | 13 clerodane diterpenoids | Extracts of aerial parts | Papaver rhoeas L. and Avena sativa L. | Inhibited germination and growth | [125] |
Salvia elegans Vahl, Salvia greggii A. Gray, Salvia munzii Epling | monoterpenoids and sesquiterpenoids | Essential oils (EOs) | R. sativus. and L. sativum | Inhibited germination and root growth | [126] |
Salvia leucophylla | volatile monoterpenoids (camphor, 1,8-cineole, β-pinene, α-pinene, and camphene) | Volatile compounds from seeds | B. campestris | All five monoterpenoids inhibited root growth but camphor, 1,8-cineole, and β-pinene only inhibited germination at high concentrations | [127] |
Salvia miltiorrhiza | neo-przewaquinone A | Roots | M. aeruginosa | Caused cell morphologic damage or lysis, increased malondialdehyde content, and decreased the soluble protein content, total antioxidant, and superoxide dismutase activity, and significantly inhibited three photosynthesis-related genes (psaB, psbD, and rbcL) | [206] |
Salvia broussonetii | demethylsalvicanol and 14-deoxycoleon U | Roots | Leptinotarsa decemlineata | Antifeedant | [207] |
demethylcryptojaponol | Toxic | ||||
Nepeta faassenii | 2-(2-ethoxyethoxy)ethanol, alloaromadendrene, and Χ-cadinene | Volatile mixture and the methanolic extract, but also in an aqueous foliar extract | L. sativum | Growth | [208] |
Nepeta meyeri Benth. | 4aα,7α,7aβ-nepetalactone (83.4%) | EOs | A. retroflexus, Bromus danthoniae Trin., Bromus intermedius Guss., L. serriola, C. album, C. dactylon | Inhibited germination and seedling growth. Increased CAT activity in all the weed species, and decreased SOD activity, except in A. retroflexus. Also increased the lipid peroxidation and hydrogen peroxide (H2O2) concentration | [209,210] |
4aα,7α,7aβ-nepetalactone (80.3% in essential oils), 4aα,7α,7aβ-nepetalactone (83.7% in hexane extract) | Aerial parts | A. retroflexus, C. album, Cirsium arvense L. and Sinapsis arvensis L. | The essential oils completely inhibited the germination of all species. Concentration-dependent inhibitory activity by the extract. | [35] | |
Nepeta curviflora Boiss., Nepeta nuda L. subsp. albiflora (Boiss.) Gams., Nepeta nuda L. subsp. albiflora | Aerial parts | EOs | R. sativus and L. sativum | Germination and initial radical elongation | [211] |
Calamintha nepeta (L.) Savi | - | Foliar volatiles | L. sativa | Inhibited both germination and root growth | [29] |
pulegone | EOs | L. sativa, R. sativus and A. retroflexus | |||
Nepeta meyeri Benth. | 4aα,7α,7aβ-nepetalactone (80.4% in essential oils), | Aerial parts & EOs | Bromus danthoniae, L. serriola, B. napus and Z. mays | Inhibited the germination | [212] |
Nepeta flavida | linalool (37.64%) and 1,8-cineole (30.80%) | Aerial parts EOs | L. sativum, R. sativus and Eruca sativa | Completely inhibited the germination at 4.0 and 8.0 μL mL−1 | [213] |
Nepeta pannonica L. | 1,8-cineole (28.9%), and 4aα,7β,7aα-nepetalactone (14.3%) | Aerial parts EOs | Agrostis stolonifera cv. Pencross | 100% growth inhibition at 0.3 mg mL−1 | [214] |
L. sativa cv. Iceberg | 100% growth inhibition at 1.0 mg mL−1 | ||||
Ocimum americanum | limonene, camphor and linalol | EOs | Mimosa pudica and Senna obtusifolia | Inhibited the germination and seedling growth | [215] |
Ocimum gratissimum | flavonoids | Dried powdered leaves | Bean and Z. mays seedlings | Inhibited the radicles more than their coleoptiles | [216] |
Lavandula angustifolia Mill. | lavandulol, terpinen-4-ol, linalyl acetate, lavandulyl acetate and α-terpineol | EOs | Setaria verticillata (L.) P. Beauv. | Inhibited germination and root length | [217] |
Lavandula × hybrida Rev. | linalool (27.51%) and linalyl acetate (37.21%) | EOs | Crops: T. aestivum and H. vulgare and Weeds: Lolium rigidum L. and Phalaris brachystachys L. | Inhibited the germination and root length of weeds and had no effect on crops | [218] |
Lavandula × intermedia cv. Grosso | coumarin and 7-methoxycoumarin | Leaf and stem extract | L. rigidum | Inhibited growth | [146] |
Lavandula stoechas | stoechanones A and B | Aqueous methanol extract | A. retroflexus | Inhibited the seed germination percentage, radicle, and hypocotyl lengths | [219] |
Mentha longifolia (L.) Huds. | piperitone oxide (53.83%) and piperitenone oxide (11.52%), followed by thymol (5.80%), and (E)-caryophyllene (4.88%) | EOs | C. rotundus, E. crus-galli and O. sativa | In a pre-emergence assay: Inhibiting percent germination, plantlet growth, and chlorophyll content of the weeds. In pre-emergence assay: loss of chlorophyll, wilting, and growth inhibition, leading to death of all species | [220] |
Allium cepa L. root tips. | EO exposure to the onion roots induced various chromosomal aberrations | ||||
Mentha spicata L. | carvone (15.3–68.5%), piperetenone oxide (24.0–79.2%) and α-humulene (0.1–29.9%) | EOs | S. tuberosum | Sprout suppressant | [221] |
Mentha × piperita L. | (-)-menthol (58.7–71.2%), menthone (3.5–19.6%), limonene (3.4–8.4%), menthyl acetate (1.4–17.2%) and β-caryophyllene (2.4–6.3%) | EOs | R. sativus | Stimulated the germination | [222] |
Mentha pulegium L. | pulegone (57.8–62.8%), menthone (9.5–15.0%) and limonene (4.9–6.9%) | EOs | M. sativa | Inhibited the germination | [223] |
Mentha spicata L., M. crispa, M. longifolia, | menthone/isomenthone | EOs | L. sativum | Inhibited the germination | [224] |
Mentha × piperita L. cv. Mitcham | menthol (35%), mentone (17.48%), menthofuran (11.7%) and 1,8-cineole (5.9%) | EOs | L. esculentum, R. sativus, Convolvulus arvensis L., P. oleracea and E. colonum | Inhibited germination percentage, root and shoot lengths, and dry weight of the seedlings. Crops were more susceptible than weeds. | [225] |
trans-ferulic acid (10.8 mg/g), hesperidin (9.3 mg g−1), ellagic acid (6.8 mg g−1) and sinapic acid (4.2 mg g−1) | Aqueous extract | ||||
Mentha × piperita L. cv. Mitcham | trans-ferulic acid (10.8 mg g−1), hesperidin (9.3 mg g−1), ellagic acid (6.8 mg g−1) and sinapic acid (4.2 mg g−1) | Aqueous extract | R. sativus | Inhibited germination and growth, total chlorophyll content. Stimulated proline, soluble sugar, phenolic compound content | [148] |
Mentha × piperita | pulegone and menthone | EOs | Cucumber | Root and mitochondrial respiration | [226] |
Thymus algeriensis Boiss. et Reut. | α-pinene (19.5%), 1,8-cineole (11.6%) and camphor (10.4%) | EOs | M. sativa and T. aestivum | Inhibited shoot and root growth | [227] |
Thymus fontanesii Boiss. et Reut. | carvacrol (52.1%), thymol (13.3%), p-cymene (12.2%) and γ-terpinene (8.1%) | EOs | S. arvensis, Avena fatua L., Sonchus oleraceus L., Xanthium strumarium L. and C. rotundus | Inhibited germination percentage | [28] |
Thymus capitatus Hoff. et Link | carvacrol (63–84%) | EOs | S. arvensis | Inhibited germination | [228] |
Thymus capitatus L. | carvacrol (75.30%) | EOs | Crops: T. aestivum and H. vulgare Weeds: L. rigidum and P. brachystachys | Almost no effect on crop’s germination but caused radical length inhibition. However, both germination and radical length of weeds were inhibited | [218] |
Thymus daenensis Celak. | thymol (20–60.5%) and carvacrol (20.1–63.4%) | EOs | A. retroflexus, Avena fatua, Datura stramonium and L. sativum | Inhibited germination | [229] |
Thymus decussatus | carvacrol (75.91–94.40%) | EOs | L. sativa | Inhibited seed germination, shoot, and root growth | [230] |
Thymus capitatus | carvacrol (68.19%) | EOs | L. sativa | Inhibited seed germination | [231] |
Thymus eigii | thymol (24.77%) and carvacrol (14.0%) | EOs | L. sativa, L. sativum and P. oleracea | Inhibited germination and growth | [232] |
Thymus vulgaris L. | thymol (35.4%), p–cymene (34.7%) | EOs | P. oleracea, Vicia sativa L. | Inhibited seed germination | [233] |
Thymus capitatus L., Thymus vulgaris L. | T. capitatus: thymol (15.17%) and carvacrol (53.16%) T. vulgaris: thymol (12.74%) and carvacrol (48.23%) | EOs | L. sativum | Inhibited germination parameters (germination percentage, time to get 50% germination, mean germination time, germination index), hypocotyl, and radicle length | [234] |
Hyptis suaveolens Poit. | 14α-hydroxy-13β-abiet-8-en-18-oic acid (suaveolic acid) | Aqueous methanol extract | L. sativum, L. multiflorum and E. crus-galli | Inhibited seedling growth | [32] |
Leucas aspera (Willd.) Linn. | 3:2 mixture of two labdane type diterpenes (rel 5S,6R,8R,9R,10S,13S,15S,16R)-6-acetoxy-9,13;15,16-diepoxy-15-hydroxy-16-methoxylabdane and (rel 5S,6R,8R,9R,10S,13S,15R,16R)-6-acetoxy-9,13;15,16-diepoxy-15-hydroxy-16-methoxylabdane (2) | Aqueous methanol extract | L. sativum and E. crus-galli | Inhibited germination and seedling growth | [30] |
Leonurus sibiricus L. | caffeic acid | Root exudates | O. sativa, T. aestivum and B. spp. | Inhibited germination and seedling growth | [235] |
Leonurus sibiricus L. | 3′-OH-genkwanin and quercetin | Methanol extract | L. sativa | Inhibited germination | [236] |
3′-OH-genkwanin, rutin, and isoquercetrin | Inhibited radicle growth | ||||
Origanum syriacum | carvacrol (60.1%), p-Cymene (19.7%), γ-Terpinene (13%) | EOs | T. aestivum and Amaranthus | Inhibited germination | [237] |
Origanum vulgare ssp. vulgare L. | caryophyllene oxide (34.44%), β-caryophyllene (20.40%) and α-cadinol (7.02%) | EOs | Z. mays | DNA alterations | [238] |
Origanum acutidens | carvacrol (87.0%) | EOs | A.ret-roflexus, C. album, and Rumex crispus | Inhibited seed germination and seedling growth | [86] |
Origanum onites L. | carvacrol (91.39%) | EOs | Crops: T. aestivum cv Gün 91, H. annuus cv. Sirena and C. arietinum Weeds: A. retroflexus, Rumex crispus L. and S. arvensis | Reduced germination rate of weeds but had no effect on crops | [239] |
Origanum vulgare L. | carvacrol (34.0%) and γ-terpinene (21.6%), p-cymene (9.4%) | EOs | S. avensis | Inhibited seed germination and seedling growth | [240] |
Origanum vulgare L. | methyleugenol (16.5%), myristicin (15.6%), carvacrol (15.0%), thymol (9.8%), and apioline (9.4%) | EOs | T. aestivum, V. radiata and R. sativus | Inhibited seed germination and seedling growth | [241] |
Origanum vulgare ssp. hirtum | thymol and carvacrol (65.3–84.7%) | EOs | S. arvensis L., P. canariensis,L. sativum L., and R. sativus L. | Inhibited seed germination and seedling growth | [242] |
Origanum onites L. | carvacrol (59.87%), γ-terpinene (17.08%) and β-cymene (8.83%) | EOs | A. retroflexus L., T. aestivum L. and L. sativum L. | Completely inhibited seed germination, and root and shoot growth | [243] |
Rosmarinus officinalis L. | α-pinene (29.6%), 1,8-cineole (25.6%) and piperitone (14.1%) | Fresh leaves leachate | Eleusine indica (L.) Gaertn., C. dactylon, D. sanguinalis | Inhibited seed germination and seedling growth | [89] |
α-pinene (25.7%), 1,8-cineole (13.2%) and piperitone (20.5%) | Stem | ||||
α-pinene (33.7%), 1,8-cineole (19.4%) and piperitone (30.4%) | Root | ||||
α-pinene (44.3%), 1,8-cineole (26.7%) and piperitone (6.5%) | Litter | ||||
α-pinene, 1,8-cineole, camphor | Aerial parts | A. retroflexus, and Lolium perenne | Inhibited germination, early growth, and physiological and histological parameters | [39] | |
α-pinene (25.8–27.7%), camphor (8.6–9%), camphene (6.5–7.7%) and 1, 8-cineole (9.4–9.6%) | L. serriola and R. sativus | Inhibited seed germination and growth | [36] | ||
α-pinene (24.9%), verbenol (8.5%), verbenone (8.5%), 1,8-cineol (8.2%) andisoborneol (8.1%) | Ruta graveolens L. | Increased radical elongation at higher concentration (100 µg mL−1) | [90] | ||
R. sativus | Inhibited radical elongation at higher concentrations (100 µg mL−1) | ||||
L. sativa | Inhibited radical elongation | ||||
S. lycopersicum | Inhibited germination only | ||||
Satureja hortensis L. | carvacrol (46.94%) and γ-terpinene (29.14%) | Aerial parts | L. rigidum L. and P. brachystachys L. | Inhibited the germination and root length of L. rigidum and P. brachystachys | [218] |
Satureja spp., S. khuzestanica, S. bachtiarica, S. rechingeri and S. spicigera | carvacrol and thymol | EOs | L. esculentum and S. cereale | S. khuzestanica and S. rechingeri essential oils showed high inhibitory effect against L. esculentum and S. cereale, whereas S. bachtiarica showed the least. S. spicigera and S. rechingeri inhibited the germination and growth of S. cereale | [107] |
Satureja hortensis L. | carvacrol (55.6%) and γ-terpinene (31.9%) | EOs nanoemulsion | A. retroflexus and C. album | Inhibited the germination, shoot-root growth, and chlorophyll content | [244] |
Tectona grandis | 2-oxokovalenic acid and 19-hydroxyferruginol | Aqueous extract dried leaves | T. aestivum | Inhibited the elongation of etiolated wheat coleoptiles | [245] |
Orthosiphon stamineus Benth. (syn. O. aristatus, O. gradiflorus, O. spicatus) | 13-epi-Orthosiphol N | Shoots | L. sativum and L. sativa | Inhibited root and hypocotyl growth | [200] |
Calamintha nepeta L. (Savi) | gallic, vanillic, syringic, p-coumaric and ferulic acids from ethylacetate fraction | Methanol extract of leaves and stem | A. retroflexus and E. crus-galli | Inhibited seed germination and root growth | [29] |
trans-caryophyllene, menthol, farnesene and pulegone from n-hexane | |||||
Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene | Methanolic extract and EOs | Arabidopsis thaliana (L.) Heynh | Farnesene and trans-caryophyllene had a strong inhibitory effect on root growth, and pulegone at the highest concentrations reduced lateral root formation. The addition, at low concentration, of farnesene to pulegone–camphor–trans-caryophyllene mixture further increased the inhibitory effect on root elongation | [201] | |
Calamintha ashei | Saturated aqueous solutions of menthofuran, (+)-evodone, (-)-calaminthone, (+)-desacetylcalaminthone, 4α,5β−diacetoxymenthofuran, and a mixture of (+)-evodone and (+)-desacetylcalaminthone | Fresh aerial parts | Schizachyrium scoparium and Leptochloa dubia and L. sativa | Inhibited germination and root growth | [246] |
Plant Species | Plant Organ | Mode of Application | Type of Experiment | Target Species | Effect | Reference |
---|---|---|---|---|---|---|
Salvia officinalis L. | Dried leaves biomass | [email protected] t ha−1 | Green house | L. esculentum | Inhibited the shoot length and dry biomass | [262] |
Residue@15 t ha−1 | Panicum maximum Jacq. | |||||
Ocimum basilicum L. | Aerial parts | Aqueous extract | Wire house | Amaranthus and P. oleraceae | Reduction in the fresh weight g/pot, and root and stem length | [140] |
Acetone extract (@40.48 kg ha−1 which equal 1% extract) | Field | All weeds found in the experimental field | Reduced the fresh weight of different weed species 21 days from spraying. | |||
Fresh leaves | Aqueous extract | Pot | P. minor, Anagalis arvensis | Increasing concentration of up to 25% maximize the inhibitions of both weeds biomass (80%) in two consecutive seasons | [263] | |
Lavandula × intermedia cv. Grosso | Coumarin and plant extract | Leaf and stem extract | Cylindrical vials (50% soil: 50% peat moss) | L. rigidum | Shoot length and weight were significantly reduced by post-emergence application | [146] |
Mentha × piperita L. | Leaves | Aqueous extracts | Green house | H. annuus | Reduced germination and chlorophyll a. Increased electrolyte leakage from seedlings, chlorophyll b, photochemical efficiency of photosystem II | [264] |
Mentha × piperita L. | Mixture of two Mentha varieties | Volatiles | Glasshouse | B. oleracea convar. capitata | Stimulated leaf development and dry weight | [265] |
Mentha spicata L. and Mentha × piperita L. | Introduction in crop rotation | - | Field experiment | Z. mays | Inhibited the plant height, biomass, photosynthetic rate, stomatal conductance, and relative chlorophyllcontent | [266] |
Mentha sp. | Dry leaves | - | Pot experiment | B. napus var. oleifera | Stimulated seedling emergence | [267] |
Mentha spicata L. | Dry above ground biomass | - | Pot experiment | L. esculentum | Taller plants with thicker stems, higher chlorophyll content index, and photosynthetic rate and yield. | [268] |
Thymus fontanesii Boiss. et Reut. | Dried aerial parts | EOs | Greenhouse | S. arvensis, Avena fatua L., S. oleraceus, X. strumarium and C. rotundus | Wilting, leaf chlorosis, necrotic spots and desiccation, reduced chlorophyll content | [28] |
Thymus sp. | Thymol | - | Pot experiment | L. sativa | Inhibited the shoot fresh and dry weights and photosynthetic rate. Promoted photosystem II, total protein concentration, proline content, antioxidant enzymes (poly-phenol oxidase, ascorbate peroxidase and catalase) | [269] |
Hyptis spicigera | Z. mays was following fallow with H. spicigera | Striga hermonthica | Reduced S. hermonthica incidence and increased Z. mays yield | [270] | ||
Intercropping maize and H. spicigera | Negatively affected maize growth, resulting in reduced maize yields | |||||
Tectona grandis | Fresh leaves | Leachates | Pot culture | V. unguiculata, M. charantia and S. melongena L. | Inhibited the seed germination and seedling growth | [197] |
Calamintha nepeta L. (Savi) | Above ground parts | Residue | Pot culture | L. sativa, C. album, S. alba | Inhibited the shoot and root growth | [202] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, A.K.M.M.; Suttiyut, T.; Anwar, M.P.; Juraimi, A.S.; Kato-Noguchi, H. Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture. Plants 2022, 11, 1478. https://doi.org/10.3390/plants11111478
Islam AKMM, Suttiyut T, Anwar MP, Juraimi AS, Kato-Noguchi H. Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture. Plants. 2022; 11(11):1478. https://doi.org/10.3390/plants11111478
Chicago/Turabian StyleIslam, A. K. M. Mominul, Thiti Suttiyut, Md. Parvez Anwar, Abdul Shukor Juraimi, and Hisashi Kato-Noguchi. 2022. "Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture" Plants 11, no. 11: 1478. https://doi.org/10.3390/plants11111478
APA StyleIslam, A. K. M. M., Suttiyut, T., Anwar, M. P., Juraimi, A. S., & Kato-Noguchi, H. (2022). Allelopathic Properties of Lamiaceae Species: Prospects and Challenges to Use in Agriculture. Plants, 11(11), 1478. https://doi.org/10.3390/plants11111478