Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.)
Abstract
:1. Introduction
2. Composition of Cucurbita
3. Health-Promoting Properties of Cucurbita
3.1. Hypoglycemic Properties
3.2. Anti-Cancerous Properties
3.3. Neuroprotective Properties
3.4. Liver Disease Preventive Properties
3.5. CVD Preventive Properties
3.6. Other Health-Related Properties
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, H.; Akhtar, S.; Ismail, T.; Sestili, P.; Lorenzo, J.; Ranjha, M.; Jooste, L.; Hano, C.; Aadil, R. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.M.A.N.; Shafique, B.; Wang, L.; Irfan, S.; Safdar, M.N.; Murtaza, M.A.; Nadeem, M.; Mahmood, S.; Mueen-Ud-Din, G.; Nadeem, H.R. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum). Adv. Tradit. Med. 2021, 1–21. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Amjad, S.; Ashraf, S.; Khawar, L.; Safdar, M.N.; Jabbar, S.; Nadeem, M.; Mahmood, S.; Murtaza, M.A. Extraction of Polyphenols from Apple and Pomegranate Peels Employing Different Extraction Techniques for the Development of Functional Date Bars. Int. J. Fruit Sci. 2020, 20, S1201–S1221. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Irfan, S.; Nadeem, M.; Mahmood, S. A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. Food Rev. Int. 2020, 38, 199–225. [Google Scholar] [CrossRef]
- Rasheed, H.; Shehzad, M.; Rabail, R.; Kowalczewski, P.; Kidoń, M.; Jeżowski, P.; Ranjha, M.M.A.N.; Rakha, A.; Din, A.; Aadil, R.M. Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. Appl. Sci. 2022, 12, 3170. [Google Scholar] [CrossRef]
- Khalid, W.; Gill, P.; Arshad, M.S.; Ali, A.; Ranjha, M.M.A.N.; Mukhtar, S.; Afzal, F.; Maqbool, Z. Functional Behavior of DHA and EPA in the Formation of Babies Brain at Different Stages of Age, and Protect from Different Brain-Related Diseases. Int. J. Food Prop. 2022, 25, 1021–1044. [Google Scholar] [CrossRef]
- Mutch, D.; Wahli, W.; Williamson, G. Nutrigenomics and Nutrigenetics: The Emerging Faces of Nutrition. FASEB J. 2005, 19, 1602–1616. [Google Scholar] [CrossRef]
- Rotilio, G.; Marchese, E. Nutritional Factors in Human Dispersals. Ann. Hum. Biol. 2010, 37, 312–324. [Google Scholar] [CrossRef]
- Brunner, E.; Cohen, D.; Toon, L. Cost Effectiveness of Cardiovascular Disease Prevention Strategies: A Perspective on EU Food Based Dietary Guidelines. Public Health Nutr. 2001, 4, 711–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caili, F.; Huan, S.; Quanhong, L. A Review on Pharmacological Activities and Utilization Technologies of Pumpkin. Mater. Veg. 2006, 61, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ayyildiz, H.F.; Topkafa, M.; Kara, H. Pumpkin (Cucurbita pepo L.) Seed Oil. In Fruit Oils: Chemistry and Functionality; Ramadan, M.F., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 765–788. ISBN 978-3-030-12473-1. [Google Scholar]
- Bardaa, S.; Ben Halima, N.; Aloui, F.; Ben Mansour, R.; Jabeur, H.; Bouaziz, M.; Sahnoun, Z. Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids Health Dis. 2016, 15, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawirska-Olszańska, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of organic acids in the fruit of different pumpkin species. Food Chem. 2014, 148, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial Activity of Essential Oils and Other Plant Extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Gossell-Williams, M.; Davis, A.; O′connor, N. Inhibition of Testosterone-Induced Hyperplasia of the Prostate of Sprague-Dawley Rats by Pumpkin Seed Oil. J. Med. Food 2006, 9, 284–286. [Google Scholar] [CrossRef]
- Boaduo, N.K.K.; Katerere, D.; Eloff, J.N.; Naidoo, V. Evaluation of Six Plant Species Used Traditionally in the Treatment and Control of Diabetes Mellitus in South Africa Using in Vitro Methods. Pharm. Biol. 2014, 52, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Alshammari, G.M.; Balakrishnan, A. Pumpkin (Cucurbita ficifolia Bouché) Extract Attenuate the Adipogenesis in Human Mesenchymal Stem Cells by Controlling Adipogenic Gene Expression. Saudi J. Biol. Sci. 2019, 26, 744–751. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Uddin, M.R.; Rahman, M.M.; Satter, M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon 2019, 5, e02462. [Google Scholar] [CrossRef] [Green Version]
- Paris, H.S. Germplasm Enhancement of Cucurbita Pepo (Pumpkin, Squash, Gourd: Cucurbitaceae): Progress and Challenges. Euphytica 2015, 208, 415–438. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.-L.; Wang, A.T.; Inglett, G.E. Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.-I.; Lee, C.-H.; Song, G.-S.; Kim, Y.-S. Characterization of the Pectic Polysaccharides from Pumpkin Peel. LWT-Food Sci. Technol. 2006, 39, 554–561. [Google Scholar] [CrossRef]
- Nor, N.M.; Carr, A.; Hardacre, A.; Brennan, C.S. The Development of Expanded Snack Product Made from Pumpkin Flour-Corn Grits: Effect of Extrusion Conditions and Formulations on Physical Characteristics and Microstructure. Foods 2013, 2, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s New in Biopotential of Fruit and Vegetable by-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Fernández-López, J.; Botella-Martínez, C.; Navarro-Rodríguez de Vera, C.; Sayas-Barberá, M.E.; Viuda-Martos, M.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. Plants 2020, 9, 1769. [Google Scholar] [CrossRef] [PubMed]
- Roongruangsri, W.; Bronlund, J. A Review of Drying Processes in the Production of Pumpkin Powder. Int. J. Food Eng. 2015, 11, 789–799. [Google Scholar] [CrossRef]
- Immaculate, N.; Eunice, A.O.; Grace, K.-R. Nutritional Physico-Chemical Composition of Pumpkin Pulp for Value Addition: Case of Selected Cultivars Grown in Uganda. Afr. J. Food Sci. 2020, 14, 233–243. [Google Scholar] [CrossRef]
- El Khatib, S.; Muhieddine, M. Nutritional Profile and Medicinal Properties of Pumpkin Fruit Pulp. In The Health Benefits of Foods-Current Knowledge and Further Development; Salanță, M.M.E.-L.C., Ed.; IntechOpen: Rijeka, Croatia, 2020; p. 3. ISBN 978-1-78985-934-8. [Google Scholar]
- Devi, N.M.; Prasad, R.V.; Sagarika, N. A Review on Health Benefits and Nutritional Composition of Pumpkin Seeds. Int. J. Chem. Stud. 2018, 6, 1154–1157. [Google Scholar]
- USDA. Pumpkin, Raw. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrients (accessed on 23 March 2022).
- Mateljan, G. Pumpkin Seeds. Available online: http://www.whfoods.com/genpage.php?tname=foodspice&dbid=82 (accessed on 23 March 2022).
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [Green Version]
- Mares, J. Lutein and Zeaxanthin Isomers in Eye Health and Disease. Annu. Rev. Nutr. 2016, 36, 571–602. [Google Scholar] [CrossRef] [Green Version]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.-A.; Biesalski, H.K. β-Carotene Is an Important Vitamin A Source for Humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological Effects of Gallic Acid in Health and Diseases: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019, 22, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Masodsai, K.; Lin, Y.-Y.; Chaunchaiyakul, R.; Su, C.-T.; Lee, S.-D.; Yang, A.-L. Twelve-Week Protocatechuic Acid Administration Improves Insulin-Induced and Insulin-Like Growth Factor-1-Induced Vasorelaxation and Antioxidant Activities in Aging Spontaneously Hypertensive Rats. Nutrients 2019, 11, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamaniel, K.; Samuel, B.; Kapu, D.; Samson, A.; Wagner, H.; Okogun, J.; Wambebe, C. Anti-sickling, analgesic and anti-inflammatory properties of 3, 5-dimethoxy-4-hydroxy benzoic acid and 2, 3,4-trihydroxyacetophenone. Phytomedicine 2000, 7, 105–110. [Google Scholar] [CrossRef]
- Rasheeda, K.; Bharathy, H.; Fathima, N.N. Vanillic Acid and Syringic Acid: Exceptionally Robust Aromatic Moieties for Inhibiting in Vitro Self-Assembly of Type I Collagen Influence of Small Molecules on Self-Assembly of Type 1 Collagen. Int. J. Biol. Macromol. 2018, 113, 952–960. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. Protective Effects of Caffeic Acid and the Alzheimer′s Brain: An Update. Mini-Rev. Med. Chem. 2017, 17, 667–674. [Google Scholar] [CrossRef]
- Cha, H.; Lee, S.; Lee, J.H.; Park, J.-W. Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. Food Chem. Toxicol. 2018, 121, 131–139. [Google Scholar] [CrossRef]
- Ibitoye, O.; Ajiboye, T. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Microb. Pathog. 2018, 126, 393–398. [Google Scholar] [CrossRef]
- Shahmohamady, P.; Eidi, A.; Mortazavi, P.; Panahi, N.; Minai-Tehrani, D. Effect of Sinapic Acid on Memory Deficits and Neuronal Degeneration Induced by Intracerebroventricular Administration of Streptozotocin in Rats. Pol. J. Pathol. 2018, 69, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Budzynska, B.; Faggio, C.; Kruk-Slomka, M.; Samec, D.; Nabavi, S.F.; Sureda, A.; Devi, K.P.; Nabavi, S.M. Rutin as Neuroprotective Agent: From Bench to Bedside. Curr. Med. Chem. 2019, 26, 5152–5164. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amado, N.G.; Predes, D.; Fonseca, B.F.; Cerqueira, D.M.; Reis, A.H.; Dudenhoeffer, A.C.; Borges, H.; Mendes, F.A.; Abreu, J.G. Isoquercitrin Suppresses Colon Cancer Cell Growth in Vitro by Targeting the Wnt/β-Catenin Signaling Pathway. J. Biol. Chem. 2014, 289, 35456–35467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Liu, D.; Liu, N.; Kuang, Y.; Tai, Q. Astragalin Reduces Lipopolysaccharide-Induced Acute Lung Injury in Rats via Induction of Heme Oxygenase-1. Arch. Pharm. Res. 2019, 42, 704–711. [Google Scholar] [CrossRef]
- Chen, S.; Fan, B. Myricetin protects cardiomyocytes from LPS-induced injury. Herz 2017, 43, 265–274. [Google Scholar] [CrossRef]
- M Eid, H.; S Haddad, P. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr. Med. Chem. 2017, 24, 355–364. [Google Scholar]
- Boonnoy, P.; Karttunen, M.; Wong-Ekkabut, J. Does α-Tocopherol Flip-Flop Help to Protect Membranes against Oxidation? J. Phys. Chem. B 2018, 122, 10362–10370. [Google Scholar] [CrossRef]
- Abdulla, K.A.; Um, C.Y.; Gross, M.D.; Bostick, R.M. Circulating γ-Tocopherol Concentrations Are Inversely Associated with Antioxidant Exposures and Directly Associated with Systemic Oxidative Stress and Inflammation in Adults. J. Nutr. 2018, 148, 1453–1461. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Wild, S.H.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Shan, B.; Liao, C.-H.; Xie, J.-H.; Wen, P.-W.; Shi, J.-Y. Anti-Diabetic Properties of Momordica Charantia L. Polysaccharide in Alloxan-Induced Diabetic Mice. Int. J. Biol. Macromol. 2015, 81, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, H.; Bai, W. Characterization of Momordica Charantia L. Polysaccharide and Its Protective Effect on Pancreatic Cells Injury in STZ-Induced Diabetic Mice. Int. J. Biol. Macromol. 2018, 115, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Cetto, A.; Heinrich, M. Mexican Plants with Hypoglycaemic Effect Used in the Treatment of Diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef]
- Jia, W.; Gaoz, W.; Tang, L. Antidiabetic Herbal Drugs Officially Approved in China. Phyther. Res. 2003, 17, 1127–1134. [Google Scholar] [CrossRef]
- Rolnik, A.; Olas, B. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition 2020, 78, 110788. [Google Scholar] [CrossRef]
- Ahmad, G.; Khan, A.A. Pumpkin: Horticultural Importance and Its Roles in Various Forms; a Review. Int. J. Hortic. Agric. 2019, 4, 1–6. [Google Scholar]
- Chen, J.G.; Liu, Z.Q.; Wang, Y.; Lai, W.Q.; Mei, S.; Fu, Y. Effects of Sugar-Removed Pumpkin Zymptic Powders in Preventing and Treating the Increase of Blood Glucose in Alloxan-Induced Diabetic Mice. Chin. J. Clin. Rehabil. 2005, 9, 94–95. [Google Scholar]
- Jaiswal, N.; Srivastava, S.P.; Bhatia, V.; Mishra, A.; Sonkar, A.K.; Narender, T.; Srivastava, A.K.; Tamrakar, A.K. Inhibition of Alpha-Glucosidase by Acacia Nilotica Prevents Hyperglycemia along with Improvement of Diabetic Complications via Aldose Reductase Inhibition. J. Diabetes Metab. 2012, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.-I.; Apostolidis, E.; Kim, Y.-C.; Shetty, K. Health Benefits of Traditional Corn, Beans, and Pumpkin: In Vitro Studies for Hyperglycemia and Hypertension Management. J. Med. Food 2007, 10, 266–275. [Google Scholar] [CrossRef]
- Bonner-Weir, S.; Weir, G.C. New Sources of Pancreatic β-Cells. Nat. Biotechnol. 2005, 23, 857. [Google Scholar] [CrossRef]
- Quanhong, L.; Caili, F.; Yukui, R.; Guanghui, H.; Tongyi, C. Effects of Protein-Bound Polysaccharide Isolated from Pumpkin on Insulin in Diabetic Rats. Mater. Veg. 2005, 60, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qian, L.; Wang, B.; Zhang, Z.; Liu, H.; Zhang, Y.; Liu, J. Synergistic Hypoglycemic Effects of Pumpkin Polysaccharides and Puerarin on Type II Diabetes Mellitus Mice. Molecules 2019, 24, 955. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, A.; Zhang, L.; Shen, M.; Xu, T.; Zhan, W.; Jin, H.; Zhang, Y.; Wang, W. Extraction and Purification of Pumpkin Polysaccharides and Their Hypoglycemic Effect. Int. J. Biol. Macromol. 2017, 98, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tian, Z.; Cai, T. Study on the Hypoglycemic Action of Pumpkin Extract in Diabetic Rat. Acta Nutr. Sin. 1956. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/wpr-678167 (accessed on 23 March 2022).
- Zuofeng, L.; Zhaofu, W.; Jie, C.; Zuo, C. A Study on the Extraction and Purification of Pumpkin Polysaccharide and the Hypoglyce Effect of Its Compound Oral Liquid. Prog. Pharm. Sci. 2004, 28, 515–518. [Google Scholar]
- Yang, S.; Xue-min, X.; Jue, C.; Ming, K. Effect of Pumpkin Polysaccharide Granules on Glycemic Control in Type 2 Diabetes. Cent. South Pharm. 2003, 5, 6. [Google Scholar]
- Askari, G.; Bayat, A.; Azizi-Soleiman, F.; Heidari-Beni, M.; Feizi, A.; Iraj, B.; Ghiasvand, R. Effect of cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in Type 2 Diabetes. Int. J. Prev. Med. 2016, 7, 30. [Google Scholar] [CrossRef]
- Halliwell, B.; Zhao, K.; Whiteman, M. The Gastrointestinal Tract: A Major Site of Antioxidant Action? Free Radic. Res. 2000, 33, 819–830. [Google Scholar] [CrossRef]
- Khazaei, Z.; Jarrahi, A.M.; Momenabadi, V.; Ghorat, F.; Adineh, H.A.; Sohrabivafa, M.; Goodarzi, E. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide Stomach Cancers and Their Relationship with the Human Development Index (HDI). World Cancer Res. J. 2019, 6, e1257. [Google Scholar]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Statistics and Information Systems: WHO Mortality Database. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 23 March 2022).
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer Is a Preventable Disease That Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-E.; Hirose, K.; Wakai, K.; Matsuo, K.; Ito, H.; Xiang, J.; Takezaki, T.; Tajima, K. Comparison of Lifestyle Risk Factors by Family History for Gastric, Breast, Lung and Colorectal Cancer. Asian Pac. J. Cancer Prev. 2004, 5, 419–427. [Google Scholar] [PubMed]
- Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer Statistics, 2010. CA Cancer J. Clin. 2010, 60, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Kim, C.-S.; Maeng, S. Effects of Pumpkin Seed Oil and Saw Palmetto Oil in Korean Men with Symptomatic Benign Prostatic Hyperplasia. Nutr. Res. Pract. 2009, 3, 323–327. [Google Scholar] [CrossRef]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as Potentially Cytotoxic Compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, R.M.P. Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Oi, T.; Asanuma, K.; Matsumine, A.; Matsubara, T.; Nakamura, T.; Iino, T.; Asanuma, Y.; Goto, M.; Okuno, K.; Kakimoto, T. STAT3 Inhibitor, Cucurbitacin I, Is a Novel Therapeutic Agent for Osteosarcoma. Int. J. Oncol. 2016, 49, 2275–2284. [Google Scholar] [CrossRef]
- L Rios, J.; Andújar, I.; M Escandell, J.; M Giner, R.; C Recio, M. Cucurbitacins as Inducers of Cell Death and a Rich Source of Potential Anticancer Compounds. Curr. Pharm. Des. 2012, 18, 1663–1676. [Google Scholar]
- Gossell-Williams, M.; Lyttle, K.; Clarke, T.; Gardner, M.; Simon, O. Supplementation with Pumpkin Seed Oil Improves Plasma Lipid Profile and Cardiovascular Outcomes of Female Non-Ovariectomized and Ovariectomized Sprague-Dawley Rats. Phytother. Res. 2008, 22, 873–877. [Google Scholar] [CrossRef]
- Friederich, M.; Theurer, C.; Schiebel-Schlosser, G. Prosta Fink Forte Capsules in the Treatment of Benign Prostatic Hyperplasia. Multicentric Surveillance Study in 2245 Patients. Forsch. Komplement. Und Klass. Nat. = Res. Complement. Nat. Class. Med. 2000, 7, 200–204. [Google Scholar]
- Velentzis, L.S.; Woodside, J.V.; Cantwell, M.M.; Leathem, A.J.; Keshtgar, M.R. Do Phytoestrogens Reduce the Risk of Breast Cancer and Breast Cancer Recurrence? What Clinicians Need to Know. Eur. J. Cancer 2008, 44, 1799–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, D.; Abarzua, S.; Chrobak, M.; Vrekoussis, T.; Weissenbacher, T.; Kühn, C.; Schulze, S.; Kupka, M.S.; Friese, K.; Briese, V.; et al. Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast Tumor Cells. Nutr. Cancer 2013, 65, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Tomar, P.P.S.; Nikhil, K.; Singh, A.; Selvakumar, P.; Roy, P.; Sharma, A.K. Characterization of Anticancer, DNase and Antifungal Activity of Pumpkin 2S Albumin. Biochem. Biophys. Res. Commun. 2014, 448, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Bonatto, F.; Polydoro, M.; Andrades, M.; Júnior, M.L.C.D.F.; Pizzol, F.D.; Rotta, L.; Souza, D.; Perry, M.L.; Moreira, J.C.F. Effects of maternal protein malnutrition on oxidative markers in the young rat cortex and cerebellum. Neurosci. Lett. 2006, 406, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kayode, O.; Kayode, A.; Odetola, A. Therapeutic Effect of Telfairia Occidentalis on Protein Energy Malnutrition-Induced Liver Damage. Res. J. Med. Plant 2009, 3, 80–92. [Google Scholar] [CrossRef]
- Potukuchi, A.; Addepally, U.; Sindhu, K.; Manchala, R. Increased Total DNA Damage and Oxidative Stress in Brain Are Associated with Decreased Longevity in High Sucrose Diet Fed WNIN/Gr-Ob Obese Rats. Nutr. Neurosci. 2017, 21, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Kayode, A.; Kayode, O.; Odetola, A. Telfairia occidentalis Ameliorates Oxidative Brain Damage in Malnorished Rats. Int. J. Biol. Chem. 2009, 4, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. Toxicology of Mycotoxins. In Molecular, Clinical and Environmental Toxicology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 31–63. [Google Scholar]
- Eraslan, G.; Kanbur, M.; Aslan, Ö.; Karabacak, M. The Antioxidant Effects of Pumpkin Seed Oil on Subacute Aflatoxin Poisoning in Mice. Environ. Toxicol. 2013, 28, 681–688. [Google Scholar] [CrossRef]
- Kessler, R.C.; A Sampson, N.; Berglund, P.; Gruber, M.J.; Al-Hamzawi, A.; Andrade, L.; Bunting, B.; Demyttenaere, K.; Florescu, S.; De Girolamo, G.; et al. Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol. Psychiatr. Sci. 2015, 24, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Akindele, A.J.; Ajao, M.Y.; Aigbe, F.R.; Enumah, U.S. Effects of Telfairia Occidentalis (Fluted Pumpkin; Cucurbitaceae) in Mouse Models of Convulsion, Muscle Relaxation, and Depression. J. Med. Food 2013, 16, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. Pumpkin (Cucurbita sp.) Seeds as Nutraceutic: A Review on Status Quo and Scopes. Mediterr. J. Nutr. Metab. 2013, 6, 183–189. [Google Scholar] [CrossRef]
- Eby, G.A.; Eby, K.L. Rapid Recovery from Major Depression Using Magnesium Treatment. Med. Hypotheses 2006, 67, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Sharma, S. Development and Nutritional Evaluation of Pumpkin Seed (Cucurbita moschata) Supplemented Products. Food Sci. Res. J. 2017, 8, 310–318. [Google Scholar] [CrossRef]
- Krause, D.; Myint, A.-M.; Schuett, C.; Musil, R.; Dehning, S.; Cerovecki, A.; Riedel, M.; Arolt, V.; Schwarz, M.J.; Müller, N. High Kynurenine (a Tryptophan Metabolite) Predicts Remission in Patients with Major Depression to Add-on Treatment with Celecoxib. Front. Psychiatry 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Adrian, A. Anti-Depression Diet. 2011. Available online: https://scholar.google.co.uk/scholar?hl=zh-CN&as_sdt=0%2C5&q=Adrian%2C+A.+Anti-Depression+Diet.+&btnG= (accessed on 23 March 2022).
- George, S.; Nazni, P. Antidepressive Activity of Processed Pumpkin (Cucurbita maxima) Seeds on Rats. Int. J. Pharm. Med. Biol. Sci. 2012, 1, 225–231. [Google Scholar]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCl4-induced liver injury in low-protein fed rats. Phytother. Res. 2005, 19, 341–345. [Google Scholar] [CrossRef]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-Induced liver injury in Low-Protein fed rats. Phytother. Res. 2006, 20, 935–940. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Ramadan, R.S.; Ahmed, L.A. Effect of Substituting Pumpkin Seed Protein Isolate for Casein on Serum Liver Enzymes, Lipid Profile and Antioxidant Enzymes in CCl4-Intoxicated Rats. Adv. Biol. Res. 2009, 3, 9–15. [Google Scholar]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. In Vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its In Vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats. Phytother. Res. 2006, 20, 780–783. [Google Scholar] [CrossRef]
- Toma, I.; Victory, N.C.; Kabir, Y. The effect of aqueous leaf extract of fluted pumpkin on some hematological parameters and liver enzymes in 2,4-dinitrophenylhydrazine- induced anemic rats. Afr. J. Biochem. Res. 2015, 9, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Farid, H.E.; El-Sayed, M.S.; Abozid, M.M. Pumpkin and Sunflower Seeds Attenuate Hyperglycemia and Protect Liver in Alloxan-Induced Diabetic Rats. Res. J. Pharm. Biol. Chem. 2015, 6, 1269–1279. [Google Scholar]
- Chacko, K.R.; Reinus, J. Extrahepatic Complications of Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2016, 20, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Modulation of Hepatic Steatosis by Dietary Fatty Acids. World J. Gastroenterol. WJG 2014, 20, 1746. [Google Scholar] [CrossRef] [PubMed]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Halldorsson, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the Amount and Type of Dietary Fat on Cardiometabolic Risk Factors and Risk of Developing Type 2 Diabetes, Cardiovascular Diseases, and Cancer: A Systematic Review. Food Nutr. Res. 2014, 58, 25145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical Composition and Profile Characterisation of Pumpkin (Cucurbita maxima) Seed Oil. Ind. Crop. Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Morrison, M.C.; Mulder, P.; Stavro, P.M.; Suárez, M.; Arola-Arnal, A.; Van Duyvenvoorde, W.; Kooistra, T.; Wielinga, P.Y.; Kleemann, R. Replacement of Dietary Saturated Fat by PUFA-Rich Pumpkin Seed Oil Attenuates Non-Alcoholic Fatty Liver Disease and Atherosclerosis Development, with Additional Health Effects of Virgin over Refined Oil. PLoS ONE 2015, 10, e0139196. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.; Esmail, R.S. Rice Bran Oil and Pumpkin Seed Oil Alleviate Oxidative Injury and Fatty Liver in Rats Fed High Fructose Diet. Pol. J. Food Nutr. Sci. 2014, 64, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Al-Okbi, S.Y.; Mohamed, D.A.; Hamed, T.E.-S.; Kassem, A.A.; El-Alim, S.H.A.; Mostafa, D.M. Enhanced prevention of progression of non alcoholic fatty liver to steatohepatitis by incorporating pumpkin seed oil in nanoemulsions. J. Mol. Liq. 2017, 225, 822–832. [Google Scholar] [CrossRef]
- Dwivedi, P.; Khatik, R.; Chaturvedi, P.; Khandelwal, K.; Taneja, I.; Raju, K.S.R.; Dwivedi, H.; Singh, S.K.; Gupta, P.K.; Shukla, P.; et al. Arteether nanoemulsion for enhanced efficacy against Plasmodium yoelii nigeriensis malaria: An approach by enhanced bioavailability. Colloids Surf. B Biointerfaces 2015, 126, 467–475. [Google Scholar] [CrossRef]
- Morakul, B.; Teeranachaideekul, V.; Junyaprasert, V.B. Niosomal delivery of pumpkin seed oil: Development, characterisation, and physical stability. J. Microencapsul. 2019, 36, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Okasha, E.F. Effect of Long Term-Administration of Aspartame on the Ultrastructure of Sciatic Nerve. J. Microsc. Ultrastruct. 2016, 4, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alazragi, R. Protective Effect of Pumpkin Seed Oil against Hepatotoxicity and Nephrotoxicity in Rats Administered High Doses of Aspartame. Med. Sci. 2019, 23, 799–809. [Google Scholar]
- Nwanna, E.E.; Oboh, G. Antioxidant and Hepatoprotective Properties of Polyphenol Extracts from Telfairia Occidentaux (Fluted Pumpkin) Leaves on Acetaminophen Induced Liver Damage. Pak. J. Biol. Sci. 2007, 10, 2682–2687. [Google Scholar]
- Vaughan, A.S.; Ritchey, M.D.; Hannan, J.; Kramer, M.R.; Casper, M. Widespread Recent Increases in County-Level Heart Disease Mortality across Age Groups. Ann. Epidemiol. 2017, 27, 796–800. [Google Scholar] [CrossRef] [Green Version]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from across the World in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [Green Version]
- Andersson, C.; Vasan, R.S. Epidemiology of Cardiovascular Disease in Young Individuals. Nat. Rev. Cardiol. 2017, 15, 230–240. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 60, 1207–1227. [Google Scholar] [CrossRef]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease: A Cochrane Review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef]
- González, C.M.; Martínez, L.; Ros, G.; Nieto, G. Evaluation of Nutritional Profile and Total Antioxidant Capacity of the Mediterranean Diet of Southern Spain. Food Sci. Nutr. 2019, 7, 3853–3862. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Landeka, I.; Đikić, D.; Radišić, I.; Teparić, R.; Bačun-Družina, V.; Rogić, D. Croatian Journal of Food Technology, Biotechnology and Nutrition 63. Hrvat. Časopis Prehrambenu Tehnol. Biotehnol. Nutr. 2011, 6, 1–2. [Google Scholar]
- Herkeľ, R.; Gálik, B.; Arpášová, H.; Bíro, D.; Juráček, M.; Simko, M.; Rolinec, M. Fatty acid profile and nutritional composition of table eggs after supplementation by pumpkin and flaxseed oils. Acta Vet. Brno 2016, 85, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Hudečková, P.; Rusníková, L.; Straková, E.; Suchý, P.; Marada, P.; Macháček, M. The Effect of Linseed Oil Supplementation of the Diet on the Content of Fatty Acids in the Egg Yolk. Acta Vet. Brno 2012, 81, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Ali, W.S. Nutrition with Pumpkin (Cucrbita pepo) Cake as Lowering Cholesterol in Rats. Middle East J. Appl. Sci. 2015, 5, 10–18. [Google Scholar]
- Abuelgassim, A.O.; Al-Showayman, S.I. The Effect of Pumpkin (Cucurbita pepo L) Seeds and L-Arginine Supplementation on Serum Lipid Concentrations in Atherogenic Rats. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Makni, M.; Fetoui, H.; Gargouri, N.; Garoui, E.M.; Jaber, H.; Makni, J.; Boudawara, T.; Zeghal, N. Hypolipidemic and Hepatoprotective Effects of Flax and Pumpkin Seed Mixture Rich in ω-3 and ω-6 Fatty Acids in Hypercholesterolemic Rats. Food Chem. Toxicol. 2008, 46, 3714–3720. [Google Scholar] [CrossRef]
- Barakat, L.A.; Mahmoud, R.H. The Antiatherogenic, Renal Protective and Immunomodulatory Effects of Purslane, Pumpkin and Flax Seeds on Hypercholesterolemic Rats. N. Am. J. Med. Sci. 2011, 3, 411. [Google Scholar] [CrossRef]
- AL-showayman, S.I.A. The Effect of Pumpkin Seed Feeding on The Serum Lipid Profile and C-Reactive Protein in Atherogenic Rats. King Saud Univ. Deansh. Grad. Stud. Dep. Biochem. Coll. Sci. King Saud Univ. 2010. [Google Scholar]
- Glew, R.; Glew, R.; Chuang, L.-T.; Huang, Y.-S.; Millson, M.; Constans, D.; VanderJagt, D. Amino Acid, Mineral and Fatty Acid Content of Pumpkin Seeds (Cucurbita spp.) and Cyperus esculentus Nuts in the Republic of Niger. Mater. Veg. 2006, 61, 49–54. [Google Scholar] [CrossRef]
- Proboningsih, J.; Wirjatmadi, B.; Kuntoro, K.; Adriani, M. Expression of VCAM in Male Wistar Rats (Rattus Norvegicus) with Hypercholesterolemia Supplemented with Pumpkin Seeds (Cucurbita Moschata Duch) Extract. Health Notions 2018, 2, 648–654. [Google Scholar]
- Al-Okbi, S.Y.; Mohamed, D.A.; Kandil, E.; Abo-Zeid, M.A.; Mohammed, S.E.; Ahmed, E.K. Anti-Inflammatory Activity of Two Varieties of Pumpkin Seed Oil in an Adjuvant Arthritis Model in Rats. Grasas Aceites 2017, 68, 180. [Google Scholar] [CrossRef] [Green Version]
- Lestari, B.; Meiyanto, E. A Review: The Emerging Nutraceutical Potential of Pumpkin Seeds. Indones. J. Cancer Chemoprevention 2018, 9, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Vijayalakshmi, S.; Kripa, K.G. Dietary Approaches in the Management of Rheumatoid Arthritis—A Review. Int. J. Res. Pharm. Sci. 2018, 9, 958–964. [Google Scholar]
- McVary, K.T.; Roehrborn, C.G.; Avins, A.L.; Barry, M.J.; Bruskewitz, R.C.; Donnell, R.F.; Foster, H.E.; Gonzalez, C.M.; Kaplan, S.A.; Penson, D.; et al. Update on AUA Guideline on the Management of Benign Prostatic Hyperplasia. J. Urol. 2011, 185, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Caro-Zapata, F.L.; Vásquez-Franco, A.; Correa-Galeano, É.D.; García-Valencia, J. Postoperative Infectious Complications after Open Prostatectomy and Transurethral Resection of the Prostate in Patients with Benign Prostatic Hyperplasia. Iatreia 2018, 31, 274–283. [Google Scholar] [CrossRef]
- Edwards, R.; Shadiack, A. Do Pumpkin Seeds or Pumpkin Supplements Reduce Symptoms of BPH? Evid. Based Pract. 2018, 21, E14–E15. [Google Scholar] [CrossRef]
- Vahlensieck, W.; Theurer, C.; Pfitzer, E.; Patz, B.; Banik, N.; Engelmann, U. Effects of Pumpkin Seed in Men with Lower Urinary Tract Symptoms Due to Benign Prostatic Hyperplasia in the One-Year, Randomized, Placebo-Controlled GRANU Study. Urol. Int. 2014, 94, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.M.; Yang, S.; Ming, K.; Xin-sheng, P.; Jue, C. Study on Extraction and Separation of Effective Composition of Pumpkin Polysaccharide and Its Glucatonic Effect. Chin. Tradit. Pat. Med. 2000, 22, 563–565. [Google Scholar]
- Ng, T.B.; Parkash, A.; Tso, W.W. Purification and Characterization of Moschins, Arginine–Glutamate-Rich Proteins with Translation-Inhibiting Activity from Brown Pumpkin (Cucurbita moschata) Seeds. Protein Expr. Purif. 2002, 26, 9–13. [Google Scholar] [CrossRef]
- Park, S.-C.; Lee, J.R.; Kim, J.-Y.; Hwang, I.; Nah, J.-W.; Cheong, H.; Park, Y.; Hahm, K.-S. Pr-1, a Novel Antifungal Protein from Pumpkin Rinds. Biotechnol. Lett. 2009, 32, 125. [Google Scholar] [CrossRef] [PubMed]
- Gill, N.; Bali, M. Isolation of Anti Ulcer Cucurbitane Type Triterpenoid from the Seeds of Cucurbita pepo. Res. J. Phytochem. 2011, 5, 70–79. [Google Scholar] [CrossRef]
- Abdel-Azim, N.S.; Shams, K.; Shahat, A.A.A.; Missiry, M.; Ismail, S.I.; Hammouda, F.M. Egyptian Herbal Drug Industry: Challenges and Future Prospects. Res. J. Med. Plant 2011, 5, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Narayan, S.; Sasmal, D.; Mazumder, P.M. Evaluation of the Wound Healing Effect of Herbal Ointment Formulated with Salvia Splendens (Scarlet Sage). Int. J. Pharm. Pharm. Sci. 2011, 3, 195–199. [Google Scholar]
- Bahramsoltani, R.; Farzaei, M.H.; Abdolghaffari, A.H.; Rahimi, R.; Samadi, N.; Heidari, M.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M. Evaluation of Phytochemicals, Antioxidant and Burn Wound Healing Activities of Cucurbita Moschata Duchesne Fruit Peel. Iran. J. Basic Med. Sci. 2017, 20, 798. [Google Scholar]
- Inhorn, M.C. Middle Eastern Masculinities in the Age of New Reproductive Technologies: Male Infertility and Stigma in Egypt and Lebanon. Med. Anthropol. Q. 2004, 18, 162–182. [Google Scholar] [CrossRef]
- Ejete-iroh, C.; Dada, A. Dietary Fluted Pumpkin (Telfairia occidentalis) Improves Reproductive Indices in Male African Catfish (Clarias gariepinus) Broodstock. J. Agric. Sci. 2019, 7, 228. [Google Scholar]
- Fawzy, E.I.; El Makawy, A.I.; El-Bamby, M.M.; Elhamalawy, H.O. Improved Effect of Pumpkin Seed Oil against the Bisphenol-A Adverse Effects in Male Mice. Toxicol. Rep. 2018, 5, 857–863. [Google Scholar] [CrossRef]
- Abarikwu, S.O.; Mgbudom-Okah, C.J.; Onuah, C.L.; Ogunlaja, A. Fluted Pumpkin Seeds Protect against Busulfan-Induced Oxidative Stress and Testicular Injuries in Adult Mice. Drug Chem. Toxicol. 2019, 45, 1–11. [Google Scholar] [CrossRef]
- Akang, E.N.; Oremosu, A.A.; Dosumu, O.O.; Noronha, C.C.; Okanlawon, A.O. The Effect of Fluted Pumpkin (Telferia occidentalis) Seed Oil (FPSO) on Testis and Semen Parameters. Agric. Biol. J. N. Am. 2010, 1, 697–703. [Google Scholar]
Nutrient | Pumpkin Peel | Pumpkin Fruit | Pumpkin Seed |
---|---|---|---|
(Value/100 g) | (Value/100 g) | (Value/32.25 g) | |
Energy | 520.78 kJ | 109 kJ | NR |
Water | 89.527 mg | 91.6 g | 1.69 g |
Lipids | 1.650 mg | 0.1 g | 15.82 g |
Protein | 14.670 mg | 1.0 g | 9.75 g |
Ash | 7.317 mg | 0.8 g | 1.54 g |
Dietary Fiber | 13.383 mg | 0.5 g | 1.94 g |
Carbohydrates | 12.407 mg | 6.5 g | 3.45 g |
Total Sugars | 7.633 mg | 2.76 g | NR |
Calories | NR | 26 kcal | 180.28 kcal |
Carotene, beta | NR | 3100 µg | NR |
Carotene, alpha | NR | 4016 µg | NR |
Reference | Amin et al. [20] | USDA [31] | Mateljan [32] |
Nutrient | Pumpkin Peel | Pumpkin Fruit | Pumpkin Seed |
---|---|---|---|
(mg/100 g) | (mg/100 g) | (mg/32.25 g) | |
Calcium | 1.360 | 21 | 14.84 |
Iron | 4.004 | 0.8 | 2.84 |
Magnesium | 3.353 | 12 | 190.92 |
Phosphorous | 1.419 | 44 | 397.64 |
Potassium | 687.467 | 340 | 260.90 |
Sodium | 9.652 | 1.0 | 2.26 |
Zinc | 0.150 | 0.32 | 2.52 |
Copper | 0.025 | 0.127 | 0.43 |
Manganese | 0.360 | 0.125 | 1.47 |
Selenium | NR | 0.3 µg | NR |
Reference | Amin et al. [20] | USDA [31] | Mateljan [32] |
Nutrient | Pumpkin Fruit | Pumpkin Seed | |
---|---|---|---|
(mg/100 g) | (mg/100 g) | (mg/32.25 g) | |
Vitamin A | 0.426 | 0.019 | 0.0015 |
Vitamin C | 9.0 | 0.3 | 0.61 |
Vitamin B1 | 0.05 | 0.034 | 0.09 |
Vitamin B2 | 0.11 | 0.052 | 0.05 |
Vitamin B3 | 0.6 | 0.286 | 1.61 |
Vitamin B5 | 0.298 | 0.056 | 0.24 |
Vitamin B6 | 0.061 | 0.037 | 0.05 |
Vitamin B9 | 0.016 | 0.009 | 0.0187 |
Vitamin E | 1.06 | NR | 0.70 |
Vitamin K | 0.001 | NR | 0.0023 |
Reference | Amin et al. [20] | USDA [31] | Mateljan [32] |
Cultivar | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bambino | Hokkaido | Gomez | Melonowa Żółta | Porcelain Doll | Blue | Kuri | Buttercup | Jumbo Pink Banana | Jarrahdale | Marina di Chioggia | Green Hubbard | ||
Carotenoids | Zeaxanthin | + | + | + | + | + | + | + | + | + | + | + | + |
Lutein | + | + | + | + | + | + | + | + | + | + | + | + | |
β-carotene | + | + | + | + | + | + | + | + | + | + | + | + | |
Phenolic acids | Gallic acid | + | + | + | + | + | + | + | + | + | + | + | + |
Protocatechuic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
4-Hydroxy-benzoic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
Vanillic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
Chlorogenic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
Caffeic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
p-coumaric acid | − | + | − | + | + | + | + | + | + | + | + | + | |
Ferulic acid | + | + | + | + | + | + | + | + | + | + | + | + | |
Sinapic acid | + | + | − | + | − | + | + | − | + | − | + | + | |
Flavonols | Rutin | + | + | + | + | + | + | + | + | + | + | + | + |
Kaempferol | − | + | + | + | − | + | + | − | + | − | + | + | |
Isoquercetin | + | + | + | + | + | + | + | − | + | + | + | − | |
Astragalin | + | − | − | + | + | + | + | − | − | + | + | − | |
Myricetin | + | + | − | − | + | + | + | + | + | − | − | + | |
Quercetin | + | + | + | + | + | + | + | + | − | + | + | + | |
Tocopherols | α-tocopherol | + | + | + | + | + | + | + | + | + | + | + | + |
γ-tocopherol | + | + | + | + | + | + | + | + | + | + | + | + |
Compound | Molecular Formula | Molecular Weight | Structure | Health Effects | Reference |
---|---|---|---|---|---|
Zeaxanthin | C40H56O2 | 568.9 | Promotes Eye Health | [34] | |
Lutein | C40H56O2 | 568.9 g | Promotes Eye Health | [34] | |
β-carotene | C40H56 | 536.9 | An important vitamin source for humans | [35] | |
Gallic acid | C7H6O5 | 170.12 | Performs excellent activities for gastrointestinal, neuropsychological, metabolic, and cardiovascular disorders | [36] | |
Protocatechuic acid | C7H6O4 | 154.12 | Strong antioxidant, best known for cardiovascular-protective effects | [37] | |
4-Hydroxy-benzoic acid | C7H6O3 | 138.12 | Antisickling, analgesic, and anti-inflammatory properties | [38] | |
Vanillic acid | C8H8O4 | 168.15 | Antioxidant; potentially reduces oxidative stress | [39] | |
Chlorogenic acid | C16H18O9 | 354.31 | Used as a treatment for metabolic syndrome, including antioxidant, anti-inflammatory, antilipidemic, antidiabetic, and antihypertensive activities | [40] | |
Caffeic acid | C9H8O4 | 180.16 | Possesses strong anti-inflammatory to anticancer effects | [41] | |
p-coumaric acid | C9H8O3 | 164.16 | Strong protective effects against acetaminophen-induced hepatotoxicity | [42] | |
Ferulic acid | C10H10O4 | 194.18 | Strong antioxidant, prooxidant, and has strong antibacterial activities | [43] | |
Sinapic acid | C11H12O5 | 224.21 | Neuroprotective and might be beneficial in the treatment of Alzheimer’s disease | [44] | |
Rutin | C27H30O16 | 610.5 | Neuroprotective agent | [45] | |
Kaempferol | C15H10O6 | 286.24 | Strong anticancer potential | [46] | |
Isoquercetin | C21H20O12 | 464.4 | Suppresses colon cancer cell growth | [47] | |
Astragalin | C21H20O11 | 448.4 | Reduces lipopolysaccharide-induced acute lung injury | [48] | |
Myricetin | C15H10O8 | 318.23 | Protects cardiomyocytes from LPS-induced injury | [49] | |
Quercetin | C15H10O7 | 302.23 | Strong antidiabetic potential | [50] | |
α-tocopherol | C29H50O2 | 430.7 | Potential antioxidant | [51] | |
γ-tocopherol | C28H48O2 | 416.7 | Y-tocopherol concentrations are inversely associated with antioxidant exposures | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, M.; Ranjha, M.M.A.N.; Roobab, U.; Manzoor, M.F.; Farooq, U.; Nadeem, H.R.; Nadeem, M.; Kanwal, R.; AbdElgawad, H.; Al Jaouni, S.K.; et al. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants 2022, 11, 1394. https://doi.org/10.3390/plants11111394
Batool M, Ranjha MMAN, Roobab U, Manzoor MF, Farooq U, Nadeem HR, Nadeem M, Kanwal R, AbdElgawad H, Al Jaouni SK, et al. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants. 2022; 11(11):1394. https://doi.org/10.3390/plants11111394
Chicago/Turabian StyleBatool, Maria, Muhammad Modassar Ali Nawaz Ranjha, Ume Roobab, Muhammad Faisal Manzoor, Umar Farooq, Hafiz Rehan Nadeem, Muhammad Nadeem, Rabia Kanwal, Hamada AbdElgawad, Soad K. Al Jaouni, and et al. 2022. "Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.)" Plants 11, no. 11: 1394. https://doi.org/10.3390/plants11111394
APA StyleBatool, M., Ranjha, M. M. A. N., Roobab, U., Manzoor, M. F., Farooq, U., Nadeem, H. R., Nadeem, M., Kanwal, R., AbdElgawad, H., Al Jaouni, S. K., Selim, S., & Ibrahim, S. A. (2022). Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin (Cucurbita sp.). Plants, 11(11), 1394. https://doi.org/10.3390/plants11111394