Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration
Abstract
:1. Introduction
2. Results
2.1. Rice Yields
2.2. Nutrient Uptake by Rice
2.3. Nutrient Use Efficiency
2.4. Soil Organic Carbon and Total Carbon
2.5. Total and Available Nitrogen Content in Soil
2.6. Physical and Chemical Properties of Post-Harvest Soils
2.7. Soil Organic Carbon Stock, Total Carbon Stock, and Organic Carbon Sequestration in Post-Harvest Soil
3. Discussion
3.1. Rice Yields
3.2. Nutrient Uptake by Rice
3.3. Nutrient Use Efficiency
3.4. Soil Organic Carbon and Total Carbon
3.5. Total and Available Nitrogen Content in Soil
3.6. Physical and Chemical Properties of Post-Harvest Soils
3.7. Soil Organic Carbon Stock, Total Carbon Stock, and Organic Carbon Sequestration in Post-Harvest Soil
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Treatments and Design
4.3. Fertilizer Application, Transplanting, and Intercultural Operations
4.4. Harvesting and Data Collection
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C sequestration | Carbon sequestration |
RD | Recommended inorganic fertilizers |
PM | Poultry manure |
VC | Vermicompost |
FP | Farmers’ practice |
N | Nitrogen |
P | Phosphorus |
K | Potassium |
Ca | Calcium |
Mg | Magnesium |
S | Sulfur |
INM | Integrated nutrient management |
OM | Organic matter |
CO2 | Carbon dioxide |
OC | Organic carbon |
TC | Total carbon |
BRRI | Bangladesh Rice Research Institute |
TSP | Triple super phosphate |
MoP | Muriate of potash |
DAT | Days after transplanting |
RE | Recovery efficiency |
AE | Agronomic efficiency |
PE | Physiological efficiency |
Total N | Total nitrogen |
SOC stock | Soil organic carbon stock |
OC seq. | Organic carbon sequestration |
NO3−-N | Nitrate nitrogen |
OH− | Hydroxide |
HCO3− | Bicarbonate |
NH4+–N | Ammonium-nitrogen |
NH4+ | Ammonium ion |
References
- Menšík, L.; Hlisnikovský, L.; Kunzová, E. The state of the soil organic matter and nutrients in the long-term field experiments with application of organic and mineral fertilizers in different soil-climate conditions in the view of expecting climate change. In Organic Fertilizers-History, Production and Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Liu, Y.; Ge, T.; van Groenigen, K.J.; Yang, Y.; Wang, P.; Cheng, K.; Zhu, Z.; Wang, J.; Li, Y.; Guggenberger, G.; et al. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun. Earth Environ. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.S.; Kamal, M.Z.U.; Rahman, G.M. Organic sources and tillage practices for soil management. In Resources Use Efficiency in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 283–328. [Google Scholar]
- Islam, M.M.; Urmi, T.A.; Rana, M.S.; Alam, M.S.; Haque, M.M. Green manuring effects on crop morpho-physiological characters, rice yield and soil properties. Physiol. Mol. Biol. Plants 2019, 25, 303–312. [Google Scholar] [CrossRef]
- FAO. FAOSTAT, Food and Agriculture Organization, Rome. Available online: http://www.fao.org/faostat/en/#home (accessed on 10 October 2021).
- Saleque, M.A.; Abedin, M.J.; Bhuiyan, N.I.; Saman, S.K.; Panaullah, G.M. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of low land rice. Field Crops Res. 2004, 86, 53–65. [Google Scholar] [CrossRef]
- Rahman, M.M. Nutrient-use and carbon-sequestration efficiencies in soils from different organic wastes in rice and tomato cultivation. Commun. Soil Sci. Plant Anal. 2013, 44, 1457–1471. [Google Scholar] [CrossRef]
- Alam, M.A.; Rahman, M.M.; Biswas, J.C.; Akhter, S.; Maniruzzaman, M.; Choudhury, A.K.; Jahan, M.A.H.S.; Miah, M.M.U.; Sen, R.; Kamal, M.Z.U.; et al. Nitrogen transformation and carbon sequestration in wetland paddy field of Bangladesh. Paddy Water Environ. 2019, 17, 677–688. [Google Scholar] [CrossRef]
- Sultana, M.; Jahiruddin, M.; Islam, M.R.; Rahman, M.M.; Abedin, M.A.; Solaiman, Z.M. Nutrient enriched municipal solid waste compost increases yield, nutrient content and balance in rice. Sustainability 2021, 13, 1047. [Google Scholar] [CrossRef]
- FRG. Fertilizer Recommendation Guide; Bangladesh Agricultural Research Council (BARC): Dhaka, Bangladesh, 2018. [Google Scholar]
- Suthar, S. Impact of vermicompost and composted farmyard manure on growth and yield of garlic (Allium stivum L.) field crop. Int. J. Plant Prod. 2009, 3, 27–38. [Google Scholar]
- Rahman, F.; Rahman, M.M.; Rahman, G.K.M.M.; Saleque, M.A.; Hossain, A.T.M.S.; Miah, M.G. Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice-rice cropping pattern. Carbon Manag. 2016, 7, 41–53. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of vermicompost on growth, plant nutrient uptake and bioactivity of ex vitro pineapple (Ananas comosus var. MD2). Agronomy 2020, 10, 1333. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Jorgensen, R.G.; Meyer, B.; Roden, A.; Wittke, B. Microbial activity and biomass in mixture treatments of soil and biogenic municipal refuse compost. Biol. Fert. Soils 1996, 23, 43–49. [Google Scholar] [CrossRef]
- Rajkishore, S.K.; Natarajan, S.K.; Manikandan, A.; Vignesh, N.S.; Balusamy, A. Carbon sequestration in rice soils—A review. The Ecosean 2015, 9, 427–433. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Gnanavelrajah, N.; Shrestha, R.P.; Schmidt-Vogt, D.; Samarakoon, L. Carbon stock assessment and soil carbon management in agricultural land-uses in Thailand. Land Degrad. Dev. 2008, 19, 242–256. [Google Scholar] [CrossRef]
- Rahman, M.M. Carbon sequestration options in soils under different crops and their management practices. Agriculturists 2010, 8, 90–101. [Google Scholar]
- Russell, A.E.; Larid, D.A.; Parkin, T.B.; Mallarino, A.P. Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern Mollisols. Soil Sci. Soc. Am. J. 2005, 69, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Senesi, N.; Plaza, C.; Brunetti, G.; Polo, A. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol. Biochem. 2007, 39, 1244–1262. [Google Scholar] [CrossRef]
- Bejbaruah, R.; Sharma, R.C.; Banik, P. Split application of vermicompost to rice (Oryza sativa L.): Its effect on productivity, yield components, and N dynamics. Org. Agric. 2013, 3, 123–128. [Google Scholar] [CrossRef]
- Nowshin, L.; Rahman, M.A.; Paul, S.K.; Afrina, R. Yield performance of aromatic fine rice as influenced by integrated use of vermicompost and inorganic fertilizers. J. Bangladesh Agric. Univ. 2020, 18, 260–265. [Google Scholar]
- Islam, M.M.; Karim, M.R.; Oliver, M.M.H.; Urmi, T.A.; Hossain, M.A.; Haque, M.M. Impacts of trace element addition on lentil (Lens culinaris L.) agronomy. Agronomy 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Baskar, K. Effect of integrated use of inorganic fertilizers and FYM or green leaf manure on uptake and nutrient use efficiency of rice—Rice system on an inceptisol. J. Ind. Soc. Soil Sci. 2003, 51, 47–51. [Google Scholar]
- Mengel, K.; Krikby, E.A. Principles of Mineral Nutrition, 5th ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; p. 849. [Google Scholar]
- Singh, Y.; Singh, B.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effect of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar] [CrossRef]
- Syafruddin, M.R.; Arvan, M.Y.; Akil, M. Requirements for N, P and K fertilizers on Inceptisol Haplustepts soil. Indian J. Agri. 2009, 2, 77–84. [Google Scholar]
- Liu, E.; Yan, C.; Mei, X.; Zhang, Y.; Fan, T. Long-term effect of manure and fertilizer on soil organic carbon pools in dry land farming in northwest China. PLoS ONE 2013, 8, 56536. [Google Scholar]
- Feng, Y.; Li, X. A tool to determine long-term sustainable manure application rate for Alberta soils. In Report to Canadian-Alberta Beef Industry Development Fund; Alberta Beef Producers: Calgary, AB, Canada, 2002. [Google Scholar]
- Cerny, J.; Balik, J.; Kulhanek, M.; Nedved, V. The changes in microbial biomass and N in long-term field experiments. Plant Soil Environ. 2008, 54, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Chakraborty, K.; Chakraborty, A.; Ghosh, S. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fert. Soils 2011, 47, 227–233. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, A.D.; Vigil, M.F. Nitrogen mineralization from organic materials: Research opportunities. J. Environ. Qual. 2005, 34, 779. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.L.; Leake, J.R.; Quirk, J.; Hardy, K.; Banwart, S.A.; Beerling, D.J. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm. Geobiology 2009, 7, 171–191. [Google Scholar] [CrossRef]
- Reddy, K.R.; van Kessel, C. Nitrogen transformations in submerged soils. In Nitrogen in Agricultural Systems; American Society of Agronomy: Madison, WI, USA, 2008; pp. 401–437. [Google Scholar]
- Sahrawat, K.L. Nitrogen mineralization in lowland rice soils: The role of organic matter quantity and quality. Arch. Agron. Soil Sci. 2010, 56, 337–353. [Google Scholar] [CrossRef]
- Rahman, M.M. Carbon and nitrogen dynamics and carbon sequestration in soils under different residue management. Agriculturists 2014, 12, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Brar, B.S.; Singh, K.; Dheri, G.S.; Kumar, B. Carbon sequestration and soil carbon pools in a rice-wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil Till. Res. 2013, 128, 30–36. [Google Scholar] [CrossRef]
- Brown, S.; Cotton, M. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Sci. Util. 2011, 19, 87–96. [Google Scholar] [CrossRef]
- Ogbodo, E.N. Effect of crop residue on soil chemical properties and rice yield on an Ultisol at Abakaliki, Southeastern Nigeria. World J. Agric. Sci. 2011, 7, 13–18. [Google Scholar]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- FAO. Soils Bulletin 80; Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Soremi, A.O.; Adetunji, M.T.; Adejuyigbe, C.O.; Bodunde, J.G.; Azeez, J.O. Effects of poultry manure on some soil chemical properties and nutrient bioavailability to soybean. J. Agric. Ecol. Res. Int. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Zaman, M.M.; Rahman, M.A.; Chowdhury, T.; Chowdhury, M.A.H. Effects of combined application of chemical fertilizer and vermicompost on soil fertility, leaf yield and stevioside content of stevia. J. Bangladesh Agric. Univ. 2018, 16, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Maguire, R.O.; Hesterberg, D.; Gernat, A.; Anderson, K.; Wineland, M.; Grimes, J. Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population. J. Environ. Qual. 2006, 35, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil. 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Whalen, J.; Chang, C.; Clayton, G.; Carefoot, J. Cattle manure amendments can increase the pH of acidic soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, T.; Gebrekidan, H.; Kibret, K.; Woldetsadik, K.; Shimelis, B.; Yadav, H. The integrated use of excreta-based vermicompost and inorganic NP fertilizer on tomato (Solanum lycopersicum L.) fruit yield, quality and soil fertility. Int. J. Recycl. Org. Waste Agric. 2017, 6, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.K.; Jat, G.; Meena, R.H.; Purohit, H.S.; Choudhary, R.S. Effect of vermicompost and nutrients application on soil properties, yield, uptake and quality of Indian mustard (Brassica juncea). Annals Plant Soil Res. 2017, 19, 17–22. [Google Scholar]
- Han, S.H.; An, J.Y.; Hwang, J.; Kim, S.B.; Park, B.B. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. For. Sci. Technol. 2016, 12, 137–143. [Google Scholar]
- Pan, G.; Zhou, P.; Li, Z.; Smith, P.; Li, L.; Qiu, D.; Zhang, X.; Xu, X.; Shen, S.; Chen, X. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric. Ecosyst. Environ. 2009, 131, 274–280. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Total nitrogen. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Jones, J.B., Jr.; Case, V.W. Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis, 3rd ed.; Westermaan, W.S., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Watson, M.E.; Isaac, R.A. Analytical instruments for soil and plant analysis. In Soil Testing and Plant Analysis, 3rd ed.; Westermaan, W.S., Ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 691–740. [Google Scholar]
- Baker, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Arnold, K., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy and Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic forms. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Barker, D.E.; Surh, N.H. Atomic absorption and flame emission spectroscopy. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 13–26. [Google Scholar]
Treatments | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Biological Yield (t ha−1) |
---|---|---|---|
Control | 3.63 d | 4.00 d | 7.6 d |
RD | 5.33 c | 6.41 c | 11.7 c |
PM5 + 50% RD | 5.86 ab | 6.81 bc | 12.7 b |
PM2.5 + 75% RD | 6.16 a | 7.24 ab | 13.4 a |
VC5 + 50% RD | 5.60 bc | 6.76 c | 12.4 b |
VC2.5 + 75% RD | 6.27 a | 7.35 a | 13.6 a |
FP | 5.42 c | 6.66 c | 12.1 bc |
S.E. (±) | 0.19 | 0.21 | 0.61 |
CV (%) | 4.46 | 4.00 | 5.1 |
Treatments | Nutrient Uptake (kg ha−1) | ||
---|---|---|---|
N | P | K | |
Control | 95.41 e | 16.65 d | 82.87 g |
RD | 145.16 d | 25.41 bc | 104.69 f |
PM5 + 50% RD | 157.34 bc | 29.57 a | 109.14 e |
PM2.5 + 75% RD | 166.06 ab | 27.14 b | 115.50 d |
VC5 + 50% RD | 152.67 cd | 24.14 c | 135.46 b |
VC2.5 + 75% RD | 168.86 a | 26.70 b | 145.97 a |
FP | 148.85 cd | 25.46 bc | 130.52 c |
S.E. (±) | 4.95 | 0.87 | 1.57 |
CV (%) | 4.10 | 4.24 | 1.63 |
Treatments | Organic Carbon (%) | Total Carbon (%) | Total Nitrogen (%) | Ammonium Nitrogen (mg kg−1) | Nitrate Nitrogen (mg kg−1) |
---|---|---|---|---|---|
Control | 0.95 | 1.00 ab | 0.077 c | 3.69 c | 1.56 b |
RD | 0.96 | 1.02 ab | 0.073 c | 7.45 ab | 2.74 ab |
PM5 + 50% RD | 1.05 | 1.18 a | 0.124 a | 9.21 ab | 3.55 a |
PM2.5 + 75% RD | 0.99 | 1.03 ab | 0.086 bc | 9.29 a | 2.70 ab |
VC5 + 50% RD | 1.03 | 1.14 a | 0.109 ab | 8.06 ab | 2.76 ab |
VC2.5 + 75% RD | 0.95 | 1.02 ab | 0.099 abc | 8.32 ab | 1.92 b |
FP | 0.92 | 0.94 b | 0.085 bc | 6.99 b | 1.61 b |
S.E. (±) | 0.13 | 0.14 | 0.012 | 1.04 | 0.56 |
CV (%) | 6.17 | 5.39 | 6.01 | 6.83 | 8.83 |
Treatments | BD (g cm−3) | Soil pH | P (mg kg−1) | S (mg kg−1) | K (c-mol kg−1) | Ca (c-mol kg−1) | Mg (c-mol kg−1) |
---|---|---|---|---|---|---|---|
Control | 1.32 ab | 5.47 c | 2.69 c | 2.89 c | 0.12 d | 1.88 e | 0.24 d |
RD | 1.35 a | 5.63 c | 3.79 bc | 5.24 b | 0.21 c | 2.27 de | 0.37 d |
PM5 + 50% RD | 1.18 e | 6.25 a | 5.66 ab | 4.75 bc | 0.28 ab | 3.80 b | 0.57 c |
PM2.5 + 75% RD | 1.23 cde | 5.72 c | 5.87 a | 4.77 bc | 0.23 bc | 3.06 c | 0.82 b |
VC5 + 50% RDF | 1.21 de | 6.07 ab | 4.02 abc | 8.85 a | 0.33 a | 5.07 a | 0.61 c |
VC2.5 + 75% RD | 1.26 bcd | 5.61 c | 5.79 a | 6.42 b | 0.23 bc | 2.70 cd | 1.14 a |
FP | 1.28 bc | 5.77 bc | 3.51 c | 6.07 b | 0.13 d | 2.90 cd | 0.38 d |
S.E. (±) | 0.025 | 0.15 | 0.87 | 0.93 | 0.03 | 0.32 | 0.07 |
CV (%) | 2.43 | 3.10 | 13.99 | 10.40 | 7.55 | 12.49 | 8.48 |
Treatments | OC Stock (t ha−1) | TC Stock (t ha−1) | OC Seq. (t ha−1) |
---|---|---|---|
Control | 17.44 | 18.43 | 0.49 |
RD | 18.26 | 19.84 | 1.31 |
PM5 + 50% RD | 18.70 | 20.81 | 1.75 |
PM2.5 + 75% RD | 17.74 | 16.71 | 0.79 |
VC5 + 50% RD | 18.59 | 20.76 | 1.65 |
VC2.5 + 75% RD | 17.98 | 20.60 | 1.03 |
FP | 17.58 | 19.61 | 0.63 |
S.E. (±) | 2.08 | 2.44 | 2.08 |
CV (%) | 14.15 | 15.31 | 33.87 |
Sample | Moisture (%) | Carbon (%) | Nutrient Content (%) | ||
---|---|---|---|---|---|
N | P | K | |||
Poultry manure | 35 | 16.82 | 1.33 | 0.75 | 0.85 |
Vermicompost | 45 | 18.21 | 1.57 | 1.25 | 2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urmi, T.A.; Rahman, M.M.; Islam, M.M.; Islam, M.A.; Jahan, N.A.; Mia, M.A.B.; Akhter, S.; Siddiqui, M.H.; Kalaji, H.M. Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration. Plants 2022, 11, 138. https://doi.org/10.3390/plants11010138
Urmi TA, Rahman MM, Islam MM, Islam MA, Jahan NA, Mia MAB, Akhter S, Siddiqui MH, Kalaji HM. Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration. Plants. 2022; 11(1):138. https://doi.org/10.3390/plants11010138
Chicago/Turabian StyleUrmi, Tahmina Akter, Md. Mizanur Rahman, Md. Moshiul Islam, Md. Ariful Islam, Nilufar Akhtar Jahan, Md. Abdul Baset Mia, Sohela Akhter, Manzer H. Siddiqui, and Hazem M. Kalaji. 2022. "Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration" Plants 11, no. 1: 138. https://doi.org/10.3390/plants11010138
APA StyleUrmi, T. A., Rahman, M. M., Islam, M. M., Islam, M. A., Jahan, N. A., Mia, M. A. B., Akhter, S., Siddiqui, M. H., & Kalaji, H. M. (2022). Integrated Nutrient Management for Rice Yield, Soil Fertility, and Carbon Sequestration. Plants, 11(1), 138. https://doi.org/10.3390/plants11010138