Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages
Abstract
1. Introduction
2. Results and Discussion
2.1. Selenium Concentration
2.2. Mineral Element Content
2.3. Effect of Selenium on Blossom-End Rot
2.4. Qualitative Characteristics of Fruit
2.4.1. Fruit Composition
2.4.2. Aroma Profiles
3. Materials and Methods
3.1. Experimental Set-Up
3.2. Selenium and Mineral Content Analyses
3.3. Fruit Composition and Quality Parameters
3.4. HS-SPME-GC-MS Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surai, P.F. Selenium in Nutrition and Health; Nottingham University Press: Nottingham, UK, 2006; pp. 151–260. [Google Scholar] [CrossRef]
- Fairweather-Tait, B.Y.; Broadley, M.; Berry, R.; Ford, D.; Hesketh, J.; Hurst, R. Selenium in Human Health and Disease. Antioxid Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Tóth., R.; Csapó, J. Tóth. R.; Csapó, J.The role of selenium in nutrition—A review. Acta Univ. Sapientiae Aliment. 2018, 11, 128–144. [Google Scholar] [CrossRef]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium Supplementation in the Prevention of Coronavirus Infections (COVID-19). Med. Hypotheses 2020, 143. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US). Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12. [CrossRef]
- Combs, G.F. Selenium in Global Food Systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium Enrichment of Horticultural Crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef]
- D’Amato, R.; Regni, L.; Falcinelli, B.; Mattioli, S.; Benincasa, P.; Dal Bosco, A.; Pacheco, P.; Proietti, P.; Troni, E.; Santi, C.; et al. Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review. J. Agric. Food Chem. 2020, 68, 4075–4097. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754. [Google Scholar] [CrossRef]
- Newman, R.; Waterland, N.; Moon, Y.; Tou, J. Selenium Biofortification of Agricultural Crops and Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease Prevention—A Review. Plant Foods Hum. Nutr. 2019, 74. [Google Scholar] [CrossRef]
- Schiavon, M.; Dall’Acqua, S.; Mietto, A.; Pilon-Smits, E.A.H.; Sambo, P.; Masi, A.; Malagoli, M. Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum Lycopersicon L.). J. Agric. Food Chem. 2013, 61, 10542–10554. [Google Scholar] [CrossRef]
- Schiavon, M.; Nardi, S.; Vecchia, F.; Ertani, A. Selenium biofortification in the 21 century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Effect of Selenium on the Responses Induced by Heat Stress in Plant Cell Cultures. Plants 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Pezzarossa, B.; Malorgio, F.; Tonutti, P. Effects of selenium uptake by tomato plants on senescence, fruit ripening and ethylene evolution. In Biology and Biotechnology of The Plant Hormone Ethylene, 2nd ed.; Kanellis, A.K., Chang, C., Klee, H., Bleecker, A.B., Pech, J.C., Grierson, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 275–276. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Remorini, D.; Gentile, M.L.; Massai, R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012, 92, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Pezzarossa, B.; Rosellini, I.; Borghesi, E.; Tonutti, P.; Malorgio, F. Effects of Se-Enrichment on Yield, Fruit Composition and Ripening of Tomato (Solanum Lycopersicum) Plants Grown in Hydroponics. Sci. Hortic. 2014, 165, 106–110. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Terry, L.A.; Tosetti, R.; Rosellini, I.; Pezzarossa, B. Effect of Selenium Enrichment on Metabolism of Tomato (Solanum Lycopersicum) Fruit during Postharvest Ripening. J. Sci. Food Agric. 2019, 99, 2463–2472. [Google Scholar] [CrossRef] [PubMed]
- Babalar, M.; Mohebbi, S.; Zamani, Z.; Askari, M.A. Effect of foliar application with sodium selenate on selenium biofortification and fruit quality maintenance of ‘Starking Delicious’ apple during storage. J. Sci. Food Agric. 2019, 99, 5149–5156. [Google Scholar] [CrossRef] [PubMed]
- Neysanian, M.; Iranbakhsh, A.; Ahmadvand, R.; Ardebili, Z.O.; Ebadi, M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE 2021, 16. [Google Scholar] [CrossRef] [PubMed]
- Businelli, D.; D’Amato, R.; Onofri, A.; Tedeschini, E.; Tei, F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci. Hortic. 2015, 197, 697–704. [Google Scholar] [CrossRef]
- Lu, X.; He, Z.; Zhiqing, L.; Yuanyuan, Z.; Linxi, Y.; Ying, L.; Xuebin, Y. Effects of Chinese Cooking Methods on the Content and Speciation of Selenium in Selenium Bio-Fortified Cereals and Soybeans. Nutrients 2018, 10, 317. [Google Scholar] [CrossRef]
- Keskinen, R.; Yli-Halla, M.; Hartikainen, H. Retention and Uptake by Plants of Added Selenium in Peat Soils. Commun. Soil Sci. Plant Anal. 2013, 2013 44, 3465–3482. [Google Scholar] [CrossRef]
- Narvaez-Ortiz, W.; Becvort-Azcurra, A.; Fuentes-Lara, L.; Benavides-Mendoza, A.; Valenzuela-García, J.; Gonzalez, F.J. Mineral Composition and Antioxidant Status of Tomato with Application of Selenium. Agronomy 2018, 8, 185. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Shuchi, S.; Simranjeet, K.; Harsh, N. Selenium in Agriculture: A Nutrient or Contaminant for Crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Zhu, Z.; Yanli, C.; Xueji, Z.; Miao, L. Effect of foliar treatment of sodium selenate on postharvest decay and quality of tomato fruits. Sci. Hortic. 2016, 198, 304–310. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Liu, J.; Chen, Y.; Zhang, X. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem. 2018, 25, 9–15. [Google Scholar] [CrossRef]
- Natasha, M.S.; Nabeel, K.N.; Sana, K.; Behzad, M.; Irshad, B.; Muhammad, I.R. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Navez, B.; Letard, M.; Graselly, D.; Jost, M. Les criteres de qualite de la tomate. Infos-Ctifl 1999, 155, 41–47. [Google Scholar]
- Tieman, D.; Zhu, G.; Resende, M.F.R., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Ortiz Beltran, K.S.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef]
- Tieman, D.; Zeigler, M.; Schmelz, E.; Taylor, M.G.; Rushing, S.; Jones, J.B.; Klee, H.J. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010, 62, 113–123. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Purificación, L.; Laura, C.; Ismael, R.; José, L.R.; Antonio, G.; Vicente, C.; José, M.B. A Non-Targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas Syringae. Front. Plant Sci. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Zeng, R.; Farooq, M.U.; Wang, L.; Su, Y.; Zheng, T.; Ye, X.; Jia, X.; Zhu, J. Study on Differential Protein Expression in Natural Selenium-Enriched and Non-Selenium-Enriched Rice Based on iTRAQ Quantitative Proteomics. Biomolecules 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Zasoski, R.J.; Burau, R.G. A rapid nitric-percloric acid digestion method for multi-element tissue analysis. Commun. Soil Sci. Plant Anal. 1977, 8, 425–436. [Google Scholar] [CrossRef]
- Huang, P.M.; Fujii, R. Selenium and Arsenic. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 793–831. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chem. 2008, 106, 1046–1056. [Google Scholar] [CrossRef]
- Brizzolara, S.; Santucci, C.; Tenori, L.; Hertog, M.; Nicolai, B.; Stürz, S.; Zanella, A.; Tonutti, P. A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biol. Technol. 2017, 127, 76–87. [Google Scholar] [CrossRef]
- Brizzolara, S.; Hertog, M.; Tosetti, R.; Nicolai, B.; Tonutti, P. Metabolic responses to low temperature of three peach fruit cultivars differently sensitive to cold storage. Front. Plant Sci. 2018, 9, 706. [Google Scholar] [CrossRef]
- Cortina, P.R.; Asis, R.; Peralta, I.E.; Asprelli, P.D.; Santiago, A.N. Determination of Volatile Organic Compounds in Andean Tomato Landraces by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Braz. Chem. Soc. 2017, 28, 30–41. [Google Scholar] [CrossRef]
Treatment Time | Se Spray mg L−1 | [Se] µg kg DW−1 | |
---|---|---|---|
1st Truss | 2nd Truss | ||
Flowering | 0 | 0 a | 0 a |
1.0 | 108 b | 123 c | |
1.5 | 146 b | 131 c | |
Immature green | 0 | 0 a | 0 a |
1.0 | 92 b | 84 b | |
1.5 | 105 b | 95.2 bc | |
Variance analysis | |||
Treatment time (A) | ns | *** | |
Se dosage (B) | *** | *** | |
Interaction A × B | ns | *** |
Treatment Time | Se Spray | Cu | Zn | Mn | Fe | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
mg L−1 | mg kg −1 | |||||||
Flowering | 0 | 14.4 a | 60.4 a | 79.7 b | 484 a | 1672 a | 429 ab | 978 a |
1.0 | 13.5 a | 65.5 a | 88.6 b | 493 a | 1076 a | 511 a | 1007 a | |
1.5 | 7.4 a | 35.5 c | 51.3 c | 363 a | 1540 ab | 375 b | 781 b | |
Immature green | 0 | 14.1 a | 60.2 a | 80.0 b | 479 a | 1668 a | 431 ab | 980 a |
1.0 | 9.9 a | 50.0 b | 77.1 b | 437 a | 1374 b | 458 a | 909 a | |
1.5 | 13.4 a | 61.6 a | 106 a | 401 a | 1005 c | 540 a | 1053 a | |
Variance analysis | ||||||||
Treatment time (A) | ns | *** | ** | ns | ns | ns | ** | |
Se dosage (B) | ** | *** | ns | ns | *** | ** | ns | |
Interaction A × B | ** | *** | *** | ns | ** | *** | *** |
Treatment Time | Se Spray | Cu | Zn | Mn | Fe | K | Ca | Mg |
---|---|---|---|---|---|---|---|---|
mg L−1 | mg kg −1 | |||||||
Flowering | 0 | 14.3 a | 67.1 a | 95.0 a | 550 a | 1320 a | 628 a | 1074 a |
1.0 | 15.4 a | 67.0 a | 94.3 a | 580 a | 402 a | 594 a | 1054 a | |
1.5 | 9.8 b | 44.3 c | 68.9 a | 320 b | 1355 a | 516 b | 851 b | |
Immature green phase | 0 | 14.5 a | 67.4 a | 94.9 a | 556 a | 1327 a | 630 a | 1072 a |
1.0 | 8.9 b | 39.8 c | 55.2 a | 392 b | 1469 a | 462 b | 785 b | |
1.5 | 10.5 b | 53.8 c | 84.1 a | 366 b | 1508 a | 603 a | 908 b | |
Variance analysis | ||||||||
Treatment time (A) | *** | *** | ns | ns | ns | ns | ns | |
Se dosage (B) | * | *** | ** | ** | ns | *** | *** | |
Interaction A × B | ** | *** | ** | * | ns | *** | ** |
Treatment Time | Se Spray mg L−1 | Blossom−End Rot Incidence Affected/Total Fruit Ratio | |
---|---|---|---|
1st Truss | 2nd Truss | ||
Flowering | 0 | 25.3 a | 40.4 a |
1.0 | 19.4 ab | 33.0 ab | |
1.5 | 14.4 ab | 31.2 bc | |
Immature green | 0 | 18.2 ab | 36.8 a |
1.0 | 9.2 b | 31.4 b | |
1.5 | 9.6 b | 20.2 c | |
Variance analysis | |||
Treatment time (A) | * | ns | |
Se dosage (B) | ns | * | |
Interaction A × B | ns | ns |
Treatment Time | Se Spray mg L−1 | DW % | SSC °Brix | Titrable Acidity g Citric Acid 100 mL−1 | Maturity Index | Taste Index |
---|---|---|---|---|---|---|
0 | 5.0 c | 6.5 a | 0.8 a | 8.0 a | 1.1 a | |
Flowering | 1.0 | 7.1 a | 6.1 a | 0.7 b | 8.5 a | 1 b |
1.5 | 6.5 a | 6.4 a | 0.7 b | 9.3 a | 0.9 b | |
0 | 5.1 c | 6.3 a | 0.9 a | 8.1 a | 1 a | |
Immature green | 1.0 | 6.7 a | 6.4 a | 0.8 ab | 8.4 a | 1 ab |
1.5 | 5.9 b | 6.2 a | 0.7 b | 8.9 a | 0.9 b | |
Variance Analysis | ||||||
Treatment time (A) | *** | ns | ns | ns | ns | |
Se dosage (B) | *** | ns | *** | ns | ** | |
Interaction A × B | * | ns | ns | ns | ns |
Treatment Time | Se Spray mg L−1 | DW % | SSC °Brix | Titrable Acidity g Citric Acid 100 mL−1 | Maturity Index | Taste Index |
---|---|---|---|---|---|---|
0 | 4.5 bc | 6.2 c | 0.8 a | 7.5 b | 1 a | |
Flowering | 1.0 | 5.4 a | 7.0 a | 0.7 a | 9.4 a | 1 a |
1.5 | 4.8 b | 6.3 bc | 0.6 b | 10.2 a | 0.8 c | |
0 | 4.6 bc | 6.0 c | 0.8 a | 7.6 b | 1 a | |
Immature green | 1.0 | 4.2 c | 6.3 bc | 0.7 a | 8.8 a | 0.9 b |
1.5 | 5.3 a | 6.5 b | 0.7 a | 9.4 a | 0.9 b | |
Variance Analysis | ||||||
Treatment time (A) | *** | ns | ns | ns | ns | |
Se dosage (B) | *** | ** | ** | * | ** | |
Interaction A × B | *** | *** | *** | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meucci, A.; Shiriaev, A.; Rosellini, I.; Malorgio, F.; Pezzarossa, B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants 2021, 10, 1050. https://doi.org/10.3390/plants10061050
Meucci A, Shiriaev A, Rosellini I, Malorgio F, Pezzarossa B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants. 2021; 10(6):1050. https://doi.org/10.3390/plants10061050
Chicago/Turabian StyleMeucci, Annalisa, Anton Shiriaev, Irene Rosellini, Fernando Malorgio, and Beatrice Pezzarossa. 2021. "Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages" Plants 10, no. 6: 1050. https://doi.org/10.3390/plants10061050
APA StyleMeucci, A., Shiriaev, A., Rosellini, I., Malorgio, F., & Pezzarossa, B. (2021). Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. Plants, 10(6), 1050. https://doi.org/10.3390/plants10061050