Bioacaricidal Potential of Moringa oleifera Ethanol Extract for Tetranychus merganser Boudreaux (Acari: Tetranychidae) Control
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. Acaricidal Effect of M. oleifera Extract on T. merganser
2.2.1. Mortality
2.2.2. Toxicity of the Extract
2.2.3. Oviposition
2.2.4. Hatched Eggs
2.2.5. Food Intake
3. Discussion
4. Materials and Methods
4.1. Red Spider Mite Colony
4.2. Preparation of the Extract and the Plant Material
4.3. Phytochemical Extract Analysis
4.4. Experimental Design
4.5. Tetranychus merganser Mortality Essay
4.6. Tetranychus merganser Oviposition and Hatched Eggs
4.7. Tetranychus merganser Anti-Feeding
4.8. Tetranychus merganser Growth Population
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.Q. Mites of Greenhouses: Identification, Biology and Control; CABI Publishing: London, UK, 2003; p. 257. [Google Scholar]
- Hoy, A.M. Agricultural Acarology: Introduction to Integrated Mite Management; CRC Press: Boca Raton, FL, USA, 2011; p. 430. [Google Scholar]
- Migeon, A.; Dorkeld, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. Available online: http://www1.montpellier.inra.fr/CBGP/spmweb (accessed on 25 January 2021).
- Ferragut, F.; Santonja, M.C. Taxonomía y distribución de los ácaros del género Tetranychus Dufour 1832 (Acari: Tetranychidae), en España. Bol. Sanidad Vegegetal. Plagas 1989, 15, 271–281. [Google Scholar]
- Ullah, M.S.; Moriya, D.; Badii, M.H.; Nachman, G.; Gotoh, T. A comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp. Appl. Acarol. 2011, 54, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Moriya, D.; Kongchuensin, M.; Konvipasruang, P.; Gotoh, T. Comparative toxicity of acaricides to Tetranychus merganser Boudreaux and Tetranychus kanzawai Kishida (Acari: Tetranychidae). Int. J. Acarol. 2011, 37, 535–543. [Google Scholar] [CrossRef]
- López-Bautista, E.; Santillán-Galicia, M.T.; Suárez-Espinosa, J.; Cruz-Huerta, N.; Bautista-Martínez, N.; Alcántara-Jiménez, J.A. Damage caused by mite Tetranychus merganser (Trombidiformes: Tetranychidae) on Carica papaya (Violales: Caricaceae) plants and effect of two species of predatory mite. Int. J. Acarol. 2016, 6, 3003–3309. [Google Scholar] [CrossRef]
- El-Wakeil, N.E. Botanical pesticides and their mode of action. Gesunde Pflanz. 2013, 65, 125–149. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. A review of biopesticides and their mode of action against insect pests. In Environmental Sustainability: Role of Green Technologies; Thangavel, P., Sridevi, G., Eds.; Springer: New Delhi, India, 2015; pp. 49–63. [Google Scholar] [CrossRef]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A Review. Plant Protect. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.; Fahey, J. Moringa oleifera: Un árbol multiusos para las zonas tropicales secas. Rev. Mex. Biodivers. 2011, 82, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.P.V.; Serra, T.M.; Gossmann, M.; Wolf, C.R.; Meneghetti, M.R.; Meneghetti, S.M.P. Moringa oleifera oil: Studies of characterization and biodiesel production. Biomass Bioenerg. 2010, 34, 1527–1530. [Google Scholar] [CrossRef]
- Pérez, R.; De la Cruz, O.; Vázquez, E.; Francisco, J. Moringa Oleifera, una Alternativa Forrajera Para Sinaloa; Fundación Produce, Sinaloa AC: Sinaloa, Mexico, 2010; p. 29. [Google Scholar]
- Gokila Devi, T.; Revathi, A.; Gopinath, L.R.; Suryadevara, N.; Archaya, S.; Bhuvaneswari, R. Qualitative and quantitative analysis of secondary metabolites of Moringa oleifera and its anticancer activity. Int. J. Adv. Interdiscip. Res. 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Kamel, A.M. Can we use moringa oil as a botanical insecticide against Spodoptera frugiperda? Acad. J. Entomol. 2010, 3, 59–64. [Google Scholar]
- Moawad, S.S.; Sadek, H.E. Evaluation of two eco-friendly botanical oils on cotton leafworm, Spodoptera littoralis (Boisd) (Lepidoptera/Noctuidae). Ann. Agric. Sci. 2018, 63, 141–144. [Google Scholar] [CrossRef]
- Ojo, J.A.; Olunloyo, A.A.; Akanni, E.O. Efficacy of Moringa oleifera leaf powder against Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) on stored cowpea (Vigna unguiculata L. Walp). Researcher 2013, 5, 240–244. [Google Scholar]
- Anita, S.; Sujatha, P.; Prabhudas, P. Efficacy of pulverized leaves of Annona squamosa (L.), Moringa oleifera (Lam.), and Eucalyptus globulus (Labill.) against the stored grain pest, Tribolium castaneum (Herbst.). Recent Res. Sci. Technol. 2012, 4, 19–23. [Google Scholar]
- Martinez, D.S.T.; Freire, M.G.M.; Mazzafera, P.; Araujo-Júnior, R.T.; Bueno, R.D.; Macedo, M.L.R. Insecticidal effect of labramin, a lectin–like protein isolated from seeds of the beach apricot tree, Labramia bojeri, on the Mediterranean flour moth, Ephestia kuehniella. J. Insect Sci. 2012, 12, 62. [Google Scholar] [CrossRef]
- Agra-Neto, A.C.; Napoleão, T.H.; Pontual, E.V.; Santos, N.D.; de Andrade Luz, L.; de Oliveira, C.M.; de Melo-Santos, M.A.; Coelho, L.C.; Navarro, D.M.; Paiva, P.M. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol. Res. 2014, 113, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, D. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Vergara-Jimenez, M.; Almatraf, M.M.; Fernandez, M.L. Bioactive Components in Moringa oleifera leaves protect against chronic disease. Antioxidants 2017, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikal, W.M.; Baeshen, R.S.; Said-Al Ahl, H.A.H. Botanical insecticide as simple extractives for pest control. Cogent Biol. 2017, 3, 1404274. [Google Scholar] [CrossRef]
- Rincón, R.A.; Rodríguez, D.; Coy-Barrera, E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants 2019, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Adenekan, M.O.; Okpeze, V.E.; Ogundipe, W.F.; Oguntade, M.I. Evaluation of Moringa oleifera powders for the control of bruchid beetles during storage. Int. J. Agric. Policy Res. 2013, 1, 305–310. [Google Scholar]
- Hamza, A.F.; Sayed, R.M.; Zahran, N.F. Toxic and antifeedant activity of Moringa oleifera leaf extracts and/or gamma radiation against Spodoptera littoralis (Boisd.) larvae. Egypt. J. Biol. Pest Control 2016, 26, 551–556. [Google Scholar]
- Derbalah, A.S.; Keratrum, A.Y.; El-Dewy, M.E.; El-Shamy, E.H. Efficacy of some insecticides and plant extracts against Tetranychus urticae under laboratory conditions. Egypt. J. Plant Pro. Res. 2013, 1, 47–70. [Google Scholar]
- Fetoh, B.E.A.; Al-Shammery, K.A. Acaricidal ovicial and repellent activities of some plant extracts on the date palm dust mite, Oligonychus afrasiaticus Meg. (Acari: Tetranychidae). Int. J. Environ. Sci. Eng. 2011, 2, 45–52. [Google Scholar]
- Hosny, A.H.; Keratum, A.Y.; Hasan, N.E. Comparative efficiency of pesticides and some predators to control spider mites: II- Biological and behavioral characteristics of predators Stethorus gilvifrons, Amblyseius gossipi and Phytoseiulus macropili and their host two spotted spider mite, Tetranychus urticae under some chemicals treatments. J. Plant Prot. Path. Mansoura Univ. 2010, 1, 1065–1085. [Google Scholar]
- Tridiptasari, A.; Leksono, A.S.; Siswanto, D. Antifeedant effect of Moringa oleifera (L.) leaf and seed extract on growth and feeding activity of Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J. Exp. Life Sci. 2019, 9, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Baker, E.W.; Tuttle, D.M. A Guide to the Spider Mites (Tetranychidae) of the United States; Indira Publishing House: West Bloomfield, MI, USA, 1994; p. 347. [Google Scholar]
- Castillo, F.; Gallegos, G.; Mendez, M.; Rodríguez, R.; Reyes, A.; Aguilar, C. In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Ind. Crop Prod. 2010, 32, 324–328. [Google Scholar] [CrossRef]
- Shami, A.M.M.; Philip, K.; Muniady, S. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC Complement. Altern. Med. 2013, 13, 360. [Google Scholar] [CrossRef] [Green Version]
- Kuklinski, C. Farmacognosia: Estudio de las Drogas y Sustancias Medicamentosas de Origen Natural; Omega: Barcelona, Spain, 2000; p. 528. [Google Scholar]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A Review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res. Int. 2014, 497606. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A. Demographic toxicology as a method for studying the dicofol-twospotted spider mite (Acari: Tetranychidae) system. J. Econ. Entomol. 1983, 76, 239–242. [Google Scholar] [CrossRef]
- Reyes-Pérez, N.; Villanueva-Jiménez, J.A.; de la Cruz Vargas-Mendoza, M.; Cabrera-Mireles, H.; Otero-Colina, G. Population parameters of Tetranychus merganser Boudreaux (Acari: Tetranychidae) in papaya (Carica papaya L.) at different temperaturas. Agrociencia 2013, 47, 147–157. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Kramer, W.L.; Mulla, S. Oviposition attractants and repellents of mosquitoes: Oviposition responses of Culex1 mosquitoes to organic infusions. Environ. Entomol. 1979, 8, 1111–1117. [Google Scholar] [CrossRef]
- Hussey, N.W.; Parr, W.J. The effect of glasshouse red spider mite (Tetranychus urticae Koch) on the yield of cucumbers. J. Hortic. Sci. 1963, 38, 255–263. [Google Scholar] [CrossRef]
- Nachman, G.; Zemek, R. Interactions in a tritrophic acarine predator-prey metapopulation system III: Effects of Tetranychus urticae (Acari: Tetranychidae) on host plant condition. Exp. Appl. Acarol. 2002, 26, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Montelongo-Ruíz, G.; Chacón-Hernández, J.C.; Reyes-Zepeda, F.; Octavio-Aguilar, P.; Heinz-Castro, R.T.Q.; Juárez, L.; Ordaz-Silva, S. The stimulatory effect of Chamaedorea radicalis ethanolic extract on Tetranychus merganser Boudreaux (Acari: Tetranychidae). Int. J. Acarol. 2020, 46, 318–321. [Google Scholar] [CrossRef]
- Marčić, D.; Međo, I. Acaricidal activity and sublethal effects of an oxymatrine-based biopesticide on two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol. 2014, 64, 375–391. [Google Scholar] [CrossRef]
- Marčić, D.; Međo, I. Sublethal effects of azadirachtin-A (NeemAzal-T/S) on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2015, 20, 25–38. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, UK, 1971; p. 331. [Google Scholar]
- SAS Institute. SAS/STAT 9.1: User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2002; pp. 3703–3796. [Google Scholar]
Bioactive Compound | Test | Bioactive Compound | Test | ||
---|---|---|---|---|---|
Phenols | + | FeCl3 | Carbohydrates | + | Molisch’s |
Flavonoids | + | Shinoda for flavanone’s | Alkaloids | + | Dragendorff’s |
+ | NaOH at 1% for flavanone’s or Xanthone | + | Sonheschain’s | ||
Tannins | + | FeCl3 for gallic acid | Quinones | + | H2SO4 for anthraquinone |
+ | Ferrocyanide for phenols | + | Bröntraguer’s for benzoquinone | ||
+ | Jelly | + | NH4OH for anthraquinone | ||
Saponins | + | Bouchard for steroidal saponins | Carotenoids | + | H2SO4 and FeCl3 reagents |
− | Foam | Sugar reducers | + | Fehling’s | |
− | Rosenthale | + | Benedict’s | ||
Coumarins | + | Erlich’s | Cyanogenic glycosides | + | Grignard’s |
Purines | − | HCl | Terpenoids | − | Ac2O |
Soluble starch | + | KOH and H2SO4 |
Treatments | Corrected Mortality (±SE) Average * | ||
---|---|---|---|
24 | 48 | 72 | |
0.1 | 0.00 ± 0.00 e | 6.67 ± 3.33 e | 13.70 ± 3.16 c |
0.5 | 10.00 ± 0.00 d | 10.00 ± 0.00 e | 20.74 ± 0.74 c |
1 | 13.33 ± 3.33 cd | 20.00 ± 0.00 d | 27.41 ± 2.59 c |
5 | 23.33 ± 3.33 bc | 33.33 ± 3.33 cd | 55.19 ± 2.89 b |
10 | 30.00 ± 0.00 b | 43.33 ± 3.33 bc | 68.89 ± 5.88 b |
15 | 43.33 ± 3.33 a | 56.67 ± 6.67 b | 92.96 ± 3.53 a |
20 | 46.67 ± 3.33 a | 86.67 ± 3.33 a | 96.30 ± 3.70 a |
LC50(CI95) | LC90(CI95) | b ± SE | χ2 | Pr > χ2 |
---|---|---|---|---|
6.06 | 17.59 | 4.75 ± 0.86 | 30.52 | <0.0001 |
(4.25–7.39) | (14.51–24.74) |
Concentrations (% v/v) | Eggs Number ± SE * | OAP (%) ± SE | Eggs Number ± SE | OAP(%) ± SE | Eggs Number ± SE | OAP (%) ± SE | Growth Rate ± SE |
---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | |||||
Control | 61.33 ± 0.88 a | 142.00 ± 2.08 a | 222.33 ± 1.76 a | 1.04 ± 0.00 a | |||
0.1 | 58.33 ± 1.76 a | −2.54 ± 1.31 | 100.00 ± 1.15 b | −17.35 ± 0.51 | 138.67 ± 1.86 b | −23.18 ± 0.92 | 0.89 ± 0.00 b |
0.5 | 47.00 ± 0.58 b | −13.23 ± 0.56 | 81.67 ± 0.88 c | −26.96 ± 1.16 | 107.33 ± 1.76 c | −34.89 ± 0.95 | 0.81 ± 0.00 b |
1 | 30.00 ± 0.58 c | −34.31 ± 0.66 | 46.67 ± 0.88 d | −50.52 ± 1.07 | 58.67 ± 0.88 d | −58.25 ± 0.33 | 0.62 ± 0.00 c |
5 | 28.00 ± 0.58 c | −37.30 ± 1.50 | 32.67 ± 1.45 e | −62.61 ± 1.36 | 33.33 ± 0.88 e | −73.93 ± 0.53 | 0.44 ± 0.01 d |
10 | 4.33 ± 0.33 d | −86.83 ± 0.77 | 13.33 ± 0.33 f | −82.82 ± 0.62 | 14.00 ± 0.58 f | −88.15 ± 0.53 | 0.18 ± 0.01 e |
15 | 2.33 ± 0.33 d | −92.66 ± 1.09 | 4.00 ± 0.58 g | −94.54 ± 0.72 | 4.67 ± 0.67 g | −95.89 ± 0.57 | −0.22 ± 0.05 f |
20 | 1.67 ± 0.33 d | −94.69 ± 1.09 | 2.67 ± 0.33 g | −96.31 ± 0.47 | 2.67 ± 0.33 g | −97.63 ± 0.30 | −0.40 ± 0.00 g |
Concentration % (v/v) | Mean Values of Hatched Eggs * | Mean Values Hatching Percentage |
---|---|---|
Control | 59.33 ± 0.88 a | 96.74 ± 0.05 |
0.1 | 46.33 ± 1.20 b | 79.45 ± 0.39 |
0.5 | 32.67 ± 0.67 c | 69.49 ± 0.79 |
1 | 19.00 ± 0.58 d | 63.31 ± 0.71 |
5 | 14.00 ± 0.58 e | 49.96 ± 1.03 |
10 | 1.00 ± 0.00 f | 23.33 ± 1.67 |
15 | 0.00 ± 0.00 f | 0.00 ± 0.00 |
20 | 0.00 ± 0.00 f | 0.00 ± 0.00 |
Concentration % (v/v) | Average Damage (%) ± SE | Food Intake (%) ± SE | Average Damage (%) ± SE | Food Intake (%) ± SE | Average Damage (%) ± SE | Food Intake (%) ± SE |
---|---|---|---|---|---|---|
24 h * | 48 h | 72 h | ||||
Control | 15.67 ± 1.20 a | 20.00 ± 0.58 a | 34.00 ± 0.58 a | |||
0.1 | 12.00 ± 0.58 b | −13.05 ± 3.75 | 20.67 ± 0.33 b | −13.27 ± 1.78 | 29.00 ± 0.58 b | −7.94 ± 1.59 |
0.5 | 9.33 ± 0.67 bc | −25.04 ± 6.78 | 17.00 ± 0.58 c | −22.74 ± 2.30 | 20.00 ± 0.58 c | −25.93 ± 1.88 |
1 | 7.33 ± 0.88 cd | −36.57 ± 1.93 | 10.00 ± 0.58 d | −45.97 ± 2.82 | 17.33 ± 0.88 c | −35.51 ± 2.82 |
5 | 4.67 ± 0.33 de | −53.67 ± 5.04 | 6.67 ± 0.67 e | −60.56 ± 2.53 | 10.667 ± 1.20 d | −52.42 ± 4.19 |
10 | 2.33 ± 0.33 e | −73.73 ± 4.62 | 3.33 ± 0.33 f | −78.10 ± 1.56 | 5.00 ± 0.58 e | −74.39 ± 2.82 |
15 | 2.00 ± 0.58 e | −77.05 ± 6.66 | 2.67 ± 0.33 f | −82.05 ± 2.11 | 3.67 ± 0.33 e | −80.55 ± 1.65 |
20 | 1.67 ± 0.33 e | −80.31 ± 4.60 | 2.33 ± 0.33 f | −84.19 ± 1.78 | 2.67 ± 0.33 e | −85.48 ± 1.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinz-Castro, R.T.Q.; Arredondo-Valdés, R.; Ordaz-Silva, S.; Méndez-Cortés, H.; Hernández-Juárez, A.; Chacón-Hernández, J.C. Bioacaricidal Potential of Moringa oleifera Ethanol Extract for Tetranychus merganser Boudreaux (Acari: Tetranychidae) Control. Plants 2021, 10, 1034. https://doi.org/10.3390/plants10061034
Heinz-Castro RTQ, Arredondo-Valdés R, Ordaz-Silva S, Méndez-Cortés H, Hernández-Juárez A, Chacón-Hernández JC. Bioacaricidal Potential of Moringa oleifera Ethanol Extract for Tetranychus merganser Boudreaux (Acari: Tetranychidae) Control. Plants. 2021; 10(6):1034. https://doi.org/10.3390/plants10061034
Chicago/Turabian StyleHeinz-Castro, Rapucel Tonantzin Quetzalli, Roberto Arredondo-Valdés, Salvador Ordaz-Silva, Heriberto Méndez-Cortés, Agustín Hernández-Juárez, and Julio Cesar Chacón-Hernández. 2021. "Bioacaricidal Potential of Moringa oleifera Ethanol Extract for Tetranychus merganser Boudreaux (Acari: Tetranychidae) Control" Plants 10, no. 6: 1034. https://doi.org/10.3390/plants10061034
APA StyleHeinz-Castro, R. T. Q., Arredondo-Valdés, R., Ordaz-Silva, S., Méndez-Cortés, H., Hernández-Juárez, A., & Chacón-Hernández, J. C. (2021). Bioacaricidal Potential of Moringa oleifera Ethanol Extract for Tetranychus merganser Boudreaux (Acari: Tetranychidae) Control. Plants, 10(6), 1034. https://doi.org/10.3390/plants10061034