Prototyping a Knowledge-Based System to Identify Botanical Extracts for Plant Health in Sub-Saharan Africa
Abstract
:1. Introduction
1.1. Marketed Formulations
1.2. Extemporaneous Preparations
2. Materials and Methods
- The knowledge base (KB) presented in Section 2.1;
- The Conceptual Harvester (CH), which contains a set of methods to navigate and explore KB, as presented in Section 2.2;
- A reference library, which is implemented using Zotero software and contains all of the documents from which the data compiled in KB were extracted.
2.1. Description of the Knowledge Base (KB)
2.1.1. Data Origin
2.1.2. Structure of the Microsoft® Excel File
2.1.3. Ontology and System Architecture
2.2. Conceptual Harvester
3. Results
3.1. Content of the Knowledge Base (Plant Health)
3.1.1. Protected Systems
- Crop protection in the field: this applies to all field crops.
- Seeds: this concerns the preservation of plant organs to be sown the following crop season and pre-sowing treatments, if any.
- Stored grain: this concerns postharvest grain storage, often in granaries, which is very important in African dryland areas to ensure a food supply for the population during the ‘lean season’.
- Foods: this concerns the food crop postharvest period. Plant extracts are used to prevent spoilage of plant-derived food by contaminants such as toxin-producing microorganisms.
3.1.2. Targeted Organisms
- Arthropods, such as insects or mites, some insects that may be plant disease vectors, such as the aphid Brevicoryne brassicae (L.) or the whitefly Bemisia tabaci (Gennadius). Insect pests of grain stored in cowpea or maize granaries are also present, such as the weevils Callosobruchus maculatus [113] and Caryedon serratus (Olivier);
- Phytopathogenic nematodes such as Meloidogyne incognita or M. javanica;
- Pathogenic microorganisms causing fungal diseases (Alternaria solani, Aspergillus flavus, Fusarium oxysporum). Bacterial diseases are only represented by Xanthomonas campestris pv. malvacearum [96].
3.1.3. Pesticidal Plant Species
3.2. Results for Two Invasive Species (T. absoluta and S. frugiperda)
4. Discussion
4.1. Knowledge Base (KB)
4.2. Knowledge Engineering
4.3. Identifying Multipurpose Species: A Promising Approach
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Abate, T.; van Huis, A.; Ampofo, J.K.O. Pest management strategies in traditional agriculture: An African perspective. Annu. Rev. Entomol. 2000, 45, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, D.G.; Muniappan, R.; Sall, D.; Paterne, D.; Diongue, A.; Dieng, E.O. First Record of Tuta absoluta (Lepidoptera: Gelechiidae) in Senegal. Fla. Entomol. 2013, 96, 661–662. [Google Scholar] [CrossRef]
- Brévault, T.; Sylla, S.; Diatte, M.; Bernadas, G.; Diarra, K. Tuta absoluta Meyrick (Lepidoptera: Gelechiidae): A new threat to tomato production in Sub-Saharan Africa. Afr. Entomol. 2014, 22, 441–444. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S. Understanding the full costs of pesticides: Experience from the field, with a focus on Africa. In The Impacts of Pesticides Exposure; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011; pp. 25–48. [Google Scholar] [CrossRef] [Green Version]
- Le Bars, M.; Sidibe, F.; Mandart, E.; Fabre, J.; Le Grusse, P.; Diakite, C.H. Évaluation des risques liés à l’utilisation de pesticides en culture cotonnière au Mali. Cah. Agric. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Donald, C.E.; Scott, R.P.; Blaustein, K.L.; Halbleib, M.L.; Sarr, M.; Jepson, P.C.; Anderson, K.A. Silicone wristbands detect individuals’ pesticide exposures in West Africa. R. Soc. Open Sci. 2016, 3, 160433. [Google Scholar] [CrossRef] [Green Version]
- Gouda, A.-I.; Imorou Toko, I.; Salami, S.-D.; Richert, M.; Scippo, M.-L.; Kestemont, P.; Schiffers, B. Pratiques phytosanitaires et niveau d’exposition aux pesticides des producteurs de coton du nord du Bénin. Cah. Agric. 2018, 27, 65002. [Google Scholar] [CrossRef]
- Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental risks: A global guideline and minimum pesticide list. Lancet Planet Health 2020, 4, e56–e63. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.E.; Silburn, D.M.; Kookana, R.S.; Shaw, M. Pesticide behaviour, fate, and effects in the Tropics: An overview of the current state of knowledge. J. Agric. Food Chem. 2016, 64, 3917–3924. [Google Scholar] [CrossRef]
- Martin, T.; Ochou, O.G.; Djihinto, A.; Traoré, D.; Togola, M.; Vassal, J.-M.; Vaissayre, M.; Fournier, D. Controlling an insecticide resistance bollworm in West Africa. Agric. Ecosyst. Environ. 2005, 107, 409–411. [Google Scholar] [CrossRef]
- Agboyi, L.K.; Ketoh, G.K.; Martin, T.; Glitho, I.A.; Tamo, M. Pesticide resistance in Plutella xylostella (Lepidoptera: Plutellidae) populations from Togo and Benin. Int. J. Trop. Insect Sci. 2016, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Furlan, L.; Pozzebon, A.; Duso, C.; Sion-Delso, N.; Sanchez-Bayo, F.; Marchand, P.A.; Codato, F.; van Lexmond, M.B.; Bonmatin, J.-M. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: Alternatives to systemic insecticides. Environ. Sci. Pollut. Res. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogan, M.; Higley, L. (Eds.) Integrated Management of Insect Pests. Current and Future Developments; Burleigh Dodds Series in Agricultural Science; Science Publishing: New York, NY, USA, 2020; pp. 1–600. [Google Scholar]
- Morales, H. Pest management in traditional tropical agroecosystems: Lessons for pest prevention research and extension. Int. Pest Manag. Rev. 2002, 7, 145–163. [Google Scholar] [CrossRef]
- Parsa, S.; Morse, S.; Bonifacio, A.; Chancellor, T.C.B.; Condori, B.; Crespo-Pérez, V.; Hobbs, S.L.A.; Kroschel, J.; Ba, M.N.; Rebaudo, F.; et al. Obstacles to integrated pest management adoption in developing countries. Proc. Natl. Acad. Sci. USA 2014, 111, 3889–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Deguine, J.-P.; Gloanec, C.; Laurent, P.; Ratnadass, A. Protection Agroécologique des Cultures, 1st ed.; Quae: Versailles, France, 2016; pp. 1–288. [Google Scholar]
- Fauvergue, X.; Rusch, A.; Barret, M.; Bardin, M.; Jacquin-Joly, E.; Malausa, T.; Lannou, C. Biocontrôle. Éléments pour une Protection Agroécologique des Cultures, 1st ed.; Quae: Versailles, France, 2020; pp. 1–376. [Google Scholar]
- Gurr, G.M.; Wratten, S.D.; Altieri, M.A. (Eds.) Ecological Engineering for Pest Management. Advances in Habitat Manipulation for Arthropods; CSIRO Publishing: Collingwood, Australia; CABI Publishing: Wallingford, UK, 2004; pp. 1–232. [Google Scholar]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef] [Green Version]
- Lescouret, F.; Dutoit, T.; Rey, F.; Côte, F.; Hamelin, M.; Lichthouse, E. Agroecological Engineering, 1st ed.; Spinger: Berlin/Heidelberg, Germany, 2016; pp. 1–431. [Google Scholar]
- Koné, W.M.; Atindehou, K.K.; Terreaux, C.; Hostettmann, K.; Traoré, D.; Dosso, M. Traditional medicine in North Côte-d’Ivoire: Screening of 50 medicinal plants for antibacterial activity. J. Ethnopharmac. 2004, 93, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malaria J. 2011, 10 (Suppl. 1), S11. Available online: http://www.malariajournal.com/content/10/S1/S11 (accessed on 15 November 2020). [CrossRef] [Green Version]
- Pavela, R.; Benelli, G. Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—A review. Exp. Parasitol. 2016, 167, 103–108. [Google Scholar] [CrossRef]
- Tisgratog, R.; Sanguanpong, U.; Grieco, J.P.; Ngoen-Kluan, R.; Chareonviriyaphap, T. Plants traditionally used as mosquito repellents and the implication for their use in vector control. Acta Trop. 2016, 157, 136–144. [Google Scholar] [CrossRef]
- Koné, W.M.; Atindehou, K.K. Ethnobotanical inventory of medicinal plants used in traditional veterinary medicine in Northern Côte d’Ivoire (West Africa). S. Afr. J. Bot. 2008, 74, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Desrues, O.; Mueller-Harvey, I.; Pellikaan, W.F.; Enemark, H.L.; Thamsborg, S.M. Condensed tannins in the gastrointestinal track of cattle after sainfoin (Onobrychis viciifolia) intake and their possible relationship with antihelminthic effects. J. Agric. food Chem. 2017, 65, 1420–1427. [Google Scholar] [CrossRef]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish agriculture as an alternative to chemotherapy. Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D. The contribution of medicinal plants to tilapia aquaculture: A review. Aquac. Int. 2020. [Google Scholar] [CrossRef]
- Morales, H.; Perfecto, I. Traditional knowledge and pest management in the Guatemalan highlands. Agric. Hum. Values 2000, 17, 49–63. [Google Scholar] [CrossRef]
- Bentley, J.W. Folk experiments. Agric. Hum. Values 2006, 23, 451–462. [Google Scholar] [CrossRef]
- Tambo, J.A.; Wünscher, T. Identification and prioritization of farmers’ innovations in northern Ghana. Renew. Agric. Food Syst. 2015, 30, 537–549. [Google Scholar] [CrossRef]
- Tambo, J.A. Recognizing farmer-generated innovations through contests: Insights from four African countries. Food Sec. 2018, 10, 1237–1250. [Google Scholar] [CrossRef]
- Hill, S.B.; MacRae, R.J. Conceptual framework for the transition from conventional to sustainable agriculture. J. Sust. Agric. 1995, 7, 81–87. [Google Scholar] [CrossRef]
- Gliessman, S. The five levels of food system transformation. In Agroecology: The Bold Future of Farming in Africa; AFSA & TOAM: Dar es Salaam, Tanzania, 2016; pp. 84–85. [Google Scholar]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–443. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Galle, C.L.; Keith, S.R.; Kalscheur, N.A.; Kemp, K.E. Effect of commercially available plant-derived essential oil products on Arthropod pests. J. Econ. Entomol. 2009, 102, 1567–1579. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ali, A.; Khan, I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia 2014, 95, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Velasques, J.; Cardoso, M.H.; Abrantes, G.; Frihling, B.E.; Franco, O.L.; Migliolo, L. The rescue of botanical insecticides: A bioinspiration for new niches and needs. Pest. Biochem. Phys. 2017, 143, 14–25. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2019. [Google Scholar] [CrossRef]
- Siegwart, M.; Lavoir, A.-V. Les substances naturelles d’origine végétale utilisées comme produits de biocontrôle. In Biocontrôle. Éléments pour une Protection Agroécologique des Cultures, 1st ed.; Quae: Versailles, France, 2020; pp. 173–183. [Google Scholar]
- Williams, L.A.D.; Mansingh, A. The insecticidal and acaricidal actions of compounds from Azadirachta indica (A. Juss.) and their use in tropical pest management. Int. Pest Manag. Rev. 1996, 1, 133–145. [Google Scholar] [CrossRef]
- Isman, M.B. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica 1997, 25, 339–344. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem oil and crop protection: From now to the future. Front. Plant Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Canale, A.; Toniolo, C.; Higuchi, A.; Murugan, K.; Pavela, R.; Nicoletti, M. Neem (Azadirachta indica): Towards the ideal insecticide ? Nat. Prod. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- De Bon, H.; Temple, L.; Malézieux, E.; Bendjebbar, P.; Fouilleux, E.; Silvie, P. Organic agriculture in Africa: Source of innovation for agricultural development. CIRAD Montp. Perspect. 2018, 48, 4. [Google Scholar] [CrossRef] [Green Version]
- Vacante, V.; Kreiter, S. (Eds.) Handbook of Pest Management in Organic Farming; CAB International: Wallingford, UK, 2018; pp. 1–504. [Google Scholar]
- Stevenson, P.C.; Arnold, S.E.; Belmain, S.R. Pesticidal plants for stored product pests on small-holder farms in Africa. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 149–172. [Google Scholar]
- Soujanya, P.L.; Sekhar, J.C.; Kumar, P.; Sunil, N.; Vara Prasad, C.; Mallavadhani, U.V. Potentiality of botanical agents for the management of post harvest insects of maize: A review. J. Food Sci. Technol. 2016, 53, 2169–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiam, A.; Ducommun, G. Protection Naturelle des Végétaux en Afrique. Actes de l’atelier Organisé par le Programme Protection Naturelle (PRONAT) d’Enda Tiers-Monde en Collaboration avec Agrecol (Suisse) à Madesaherl, Mbour, Sénégal, du 21 au 26 Octobre 1991; Enda, Ed.; Série Etudes et Recherches: Dakar, Sénégal, 1993; pp. 1–207. [Google Scholar]
- Zehrer, W. (Ed.) L’utilisation des produits naturels en protection des végétaux à Madagascar. In Proceedings of the du Symposium National du 29 Juin au 3 Juillet 1998 à Antananarivo, Projet DPV/GTZ «Promotion de la Protection Intégrée des Cultures et des Denrées Stockées à Madagascar», Antananarivo, Madagascar, 29 June–3 July 1998; pp. 1–609. [Google Scholar]
- Stoll, G. Protection Naturelle des Végétaux en Zones Tropicales: Vers une Dynamique de L’information, 2nd ed.; Margraf Verlag: Weikersheim, Germany, 2002; pp. 1–386. [Google Scholar]
- Ntalli, N.G.; Menkissoglu-Spiroudi, U. Pesticides of botanical orginin: A promising tool in plant protection. In Pesticides: Formulations, Effects, Fate; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011; pp. 1–24. [Google Scholar]
- Saito, M.L.; Lucchini, F. Substâncias obtidas de plantas e a procura por praguicidas eficientes e seguros ao meio ambiente. Embrapa-CNPMA Jaguariúna Braz. Doc. 1998, 12, 1–46. [Google Scholar]
- Saito, M.L.; Scramin, S. Plantas aromáticas e seu uso na agricultura. Embrapa Meio Ambiente Jaguariúna Brazil Doc. 2000, 20, 1–45. [Google Scholar]
- Anjarwalla, P.; Belmain, S.; Sola, P.; Jamnadass, R.; Stevenson, P.C. (Eds.) Handbook on Pesticidal Plants; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2016; pp. 1–62. [Google Scholar]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef] [Green Version]
- Sourabie, S.; Zerbo, P.; Yonli, D.; Boussim, J.I. Connaissances traditionnelles des plantes locales utilisées contre les bio-agresseurs des cultures et produits agricoles chez le peuple Turka au Burkina Faso. Int. J. Biol. Chem. Sci. 2020, 14, 1390–1404. [Google Scholar] [CrossRef]
- Lehman, A.D.; Dunkel, F.V.; Klein, R.A.; Ouattara, S.; Diallo, D.; Gamby, K.T.; N’Diaye, M. Insect management products from Malian traditional medicine—Establishing systematic criteria for their identification. J. Ethnopharmacol. 2007, 110, 235–249. [Google Scholar] [CrossRef]
- Kanteh, S.M.; Norman, J.E. Diversity of plants with pesticidal and medicinal properties in southern Sierra Leone. Biol. Agric. Hort. 2014. [Google Scholar] [CrossRef]
- Prakash, A.; Rao, J. (Eds.) Botanical pesticides in Agriculture; CRC Press: Boca Raton, FL, USA; Lewis Publishers: Boca Raton, FL, USA, 1997; pp. 1–480. [Google Scholar]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides: For richer, for poorer. Pest Manag. Sci. 2008, 64, 8–11. [Google Scholar] [CrossRef]
- Isman, M.B. Problèmes et perspectives de commercialisation des insecticides d’origine botanique. In Biopesticides d’origine Végétale, 2nd ed.; Régnault-Roger, C., Philogène, B.J.R., Vincent, C., Eds.; Lavoisier Tec & Doc: Paris, France, 2008; pp. 465–476. [Google Scholar]
- Moore, S.; Lenglet, A.; Hill, N. Plant-based insect repellents. In Insect Repellents, Principles, Methods, and Uses; Debboun, M., France, S.P., Strickman, D., Eds.; CRC Press: Boca Raton, FL, USA ; Taylor and Francis Group: Abingdon, UK, 2006; pp. 275–303. [Google Scholar]
- Régnault-Roger, C.; Philogène, B.J.R.; Vincent, C. (Eds.) Biopesticides d’origine Végétale, 2nd ed.; Lavoisier Tec & Doc: Paris, France, 2008; pp. 1–576. [Google Scholar]
- Régnault-Roger, C. Botanicals in Pest Management. In Integrated Pest Management; Abrol, D.P., Shankar, U., Eds.; CAB International: Wallingford, UK, 2012; pp. 119–132. [Google Scholar]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Belmain, S.R. Pesticidal plants in African agriculture: Local uses and global perspectives. Outlooks Pest Manag. 2016, 27, 226–230. [Google Scholar] [CrossRef] [Green Version]
- Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.F.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Sec. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Pavela, R. Limitation of plant biopesticides. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: Lucknow, India, 2014; pp. 347–359. [Google Scholar]
- Singh, D. (Ed.) Advances in Plant Biopesticides; Springer: Lucknow, India, 2014; pp. 1–401. [Google Scholar]
- Isman, M.B. A renaissance for botanical insecticides? Pest Manag. Sci. 2015, 71, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Botanical insecticides in the Twenty-First Century—Fullfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalobos, M.J.P.; Stevenson, P.C.; Koul, O. (Eds.) The 2nd International Conference on Pesticidal Plants (ICPP2). Ind. Crops Prod. (Spec. Issue) 2017, 110, 1–130. [Google Scholar] [CrossRef]
- Laxmishree, C.; Nandita, S. Botanical pesticides—A major alternative to chemical pesticides: A review. Inst. J. Life Sci. 2017, 5, 722–729. [Google Scholar]
- Haddi, K.; Turchen, L.M.; Jumbo, L.O.V.; Guedes, R.N.C.; Pereira, E.J.G.; Aguiar, R.W.S.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef]
- Isman, M.B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Isman, M.B.; Machial, C.M. Pesticides based on plant essential oils: From traditional practice to commercialization. In Naturally Occurring Bioactive Compounds; Rai, M., Carpinella, M.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 29–44. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Tripathi, A.K.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A review on prospects of essential oils as biopesticides in insect-pest management. J. Pharmaco. Phytoth. 2009, 1, 52–63. [Google Scholar]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Régnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Moharramipour, S.; Negahban, M. Plant essential oils and pest management. In Basic and Applied Aspects of Biopesticides; Sahayaraj, K., Ed.; Springer: Lucknow, India, 2014; pp. 129–153. [Google Scholar] [CrossRef]
- Pavella, R.; Benelli, G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354–378. [Google Scholar] [CrossRef] [Green Version]
- ADAPPT. African Dryland Alliance for Pesticidal Plant Technologies. Available online: http://projects.nri.org/adappt/ (accessed on 1 November 2020).
- OPTIONs. Optimising Pesticidal Plants: Technology Innovation, Outreach and Networks. Available online: http://projects.nri.org/options/9-about-the-project (accessed on 1 November 2020).
- Sarasan, V.; Kite, G.C.; Sileshi, G.W.; Stevenson, P.C. Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell. Rep. 2011, 30, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.-Y.; Chi, Y.-L. A knowledge-based system to find over-the-counter medicines for self-medication. J. Biomed. Inform. 2020, 108, 103504. [Google Scholar] [CrossRef]
- One Health Commission. 2019. Available online: http://www.onehealthcommission.org (accessed on 1 September 2020).
- Martin, P.; Sarter, S.; Huchard, M.; Tagne, A.; Ilboudo, Z.; Marnotte, P.; Silvie, P. Connaître les plantes utiles pour l’Agriculture Biologique d’après la littérature: Construction et exploration d’une base de connaissances pour la santé végétale et animale. In Ecological and Organic Agriculture Strategies for Viable Continental and National Development in the Context of the African Union’s Agenda 2063, Scientific Track, Proceedings of the 4th African Organic Conference, Saly Portudal, Senegal, 5–8 November 2018; Rahmann, G., Olowe, V., Olabiyi, T., Azim, K., Adeoluwa, O., Eds.; Isofar, AfrOnet Publ.: Tanzania, 2018; pp. 137–141. Available online: https://hal.archives-ouvertes.fr/hal-01956380/ (accessed on 8 November 2018).
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco-friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—A review. J. Food Sci. Technol. 2015, 52, 1239–1257. [Google Scholar] [CrossRef] [PubMed]
- Mkenda, P.P.A.; Stevenson, P.C.P.; Ndakidemi, P.; Farman, D.I.; Belmain, S.R. Contact and fumigant toxicity of five pesticidal plants against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in stored cowpea (Vigna unguiculata). Int. J. Trop. Insect Sci. 2015, 35, 172–184. [Google Scholar] [CrossRef]
- Yang, R.Z.; Tang, C.S. Plants used for pest control in China: A literature review. Econ. Bot. 1988, 42, 376–406. [Google Scholar] [CrossRef]
- Gonzalez-Coloma, A.; Reina, M.; Diaz, C.E.; Fraga, B.M.; Santana-Meridas, O. Natural product-based biopesticides for insect control. Compr. Nat. Prod. II 2010, 3, 237–268. [Google Scholar] [CrossRef]
- Delétré, E.; Schatz, B.; Denis Bourguet, D.; Chandre, F.; Livy Williams, L.; Alain Ratnadass, A.; Martin, T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology 2016, 26, 127–142. [Google Scholar] [CrossRef]
- Antezana, E.; Kuiper, M.; Mironov, V. Biological knowledge management: The emerging role of the Semantic Web technologies. Brief. Inform. 2009, 10, 392–407. [Google Scholar] [CrossRef]
- Gruber, T.R. A translation approach to portable ontology specification. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Lagos-Ortiz, K.; Salas-Zárate, M.; Del, P.; Paredes-Valverde, M.A.; García-Díaz, J.A.; Valencia-García, R. AgriEnt: A knowledge-based web platform for managing insect pests of field crops. Appl. Sci. 2020, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Keip, P.; Ouzerdine, A.; Huchard, M.; Silvie, P.; Martin, P. Navigation conceptuelle dans une base de connaissances sur l’usage des plantes en santé animale et végétale. In Proceedings of the CORIA: COnférence en Recherche d’Informations et Applications, Lyon, France, 25–29 May 2019. [Google Scholar]
- Marchionini, G. Exploratory search: From finding to understanding. Comm. ACM 2006, 49, 41–46. [Google Scholar] [CrossRef]
- Barbut, M.; Monjardet, B. Ordre et Classification, Algèbre et Combinatoire, Tomes I et II; Hachette: Paris, France, 1970; pp. 1–374. [Google Scholar]
- Ganter, B.; Wille, R. Formal Concept Analysis, Mathematical Foundations; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–284. [Google Scholar]
- Wollbold, J.; Guthke, R.; Ganter, B. Constructing a knowledge base for gene regulatory dynamics by formal concept analysis methods. In Algebraic Biology, Proceedings of the Third International Conference, AB 2008, Castle of Hagenberg, Austria, 31 July–2 August 2008; Harimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 230–244. [Google Scholar]
- Nica, C.; Braud, A.; Dolques, X.; Huchard, M.; Le Ber, F. Exploring temporal data using relational concept analysis: An application to hydroecological data. In Concept Lattices and their Applications (CLA 2016), Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, 18-22 July 2016; Huchard, M., Kuznetsv, S., Eds.; CEUR-WS.org, 2016; pp. 299–311. [Google Scholar]
- Tilley, T.; Cole, R.; Becker, P.; Eklund, P.W. A Survey of Formal Concept Analysis Support for Software Engineering Activities, Formal Concept Analysis 2005, Lecture Notes in Computer Science 3626; Springer: Berlin/Heidelberg, Germany, 2005; pp. 250–271. [Google Scholar]
- Rouane-Hacene, M.; Huchard, M.; Napoli, A.; Valtchev, P. Relational concept analysis: Mining concept lattices from multi-relational data. Ann. Math. Artif. Intell. 2013, 67, 81–108. [Google Scholar] [CrossRef]
- Kaytoue, M.; Codocedo, V.; Buzmakov, A.; Baixeries, J.; Kuznetsov, S.O.; Napoli, A. Pattern structures and concept lattices for data mining and knowledge processing. ECML/PKDD 2015, 3, 227–231. [Google Scholar]
- Dolques, X.; Le Ber, F.; Huchard, M.; Nebut, C. Relational concept analysis for relational data exploration. Explor. Adv. Knowl. Discov. Manag. 2016, 5, 57–77. [Google Scholar]
- Keip, P.; Ferré, S.; Gutierrez, A.; Huchard, M.; Silvie, P.; Martin, P. Practical comparison of FCA extensions to model indeterminate value of ternary data. In Concept Lattices and their Applications (CLA 2020), Proceedings the Fifthteenth International Conference on Concept Lattices and Their Applications, Tallinn, Estonia, 29 June–1 July 2020; Valverde-Albacete, F.J., Trnecka, M., Eds.; CEUR-WS.org, 2020; pp. 197–208. [Google Scholar]
- Gusmão, N.M.S.; de Oliveira, J.V.; Navarro, D.M.d.A.F.; Dutra, K.A.; da Silva, W.A.; Wanderley, M.J.A. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. Essential oils in the management of Callosobruchus maculatus (Fabr.) (Coleoptera: Chrysomelidae, Bruchinae). J. Stored Prod. Res. 2013, 54, 41–47. [Google Scholar]
- Sharma, P.P.; Roy, R.K.; Anurag; Gupta, D.; Vipin, K.S. Hyptis suaveolens (L.) Poit: A phyto-pharmacological review. Int. J. Chem. Pharm. Sci. 2013, 4, 1–11. [Google Scholar]
- Pavunraj, M.; Baskar, K.; Paulraj, M.G.; Ignacimuthu, S.; Janarthanan, S. Phagodeterrence and insecticidal activity of Hyptis suaveolens (Poit.) against four important lepidopteran pests. Arch. Phyt. Plant Prot. 2014, 47, 113–121. [Google Scholar]
- Ngom, S.; Diome, T.; Diop, B.; Sembene, M. Effet des extraits aqueux de Calotropis procera sur les principaux ravageurs du chou en culture au Sénégal. Int. J. Biol. Chem. Sci. 2020, 14, 1600–1610. [Google Scholar] [CrossRef]
- Rioba, N.R.; Stevenson, P.C. Opportunities and scope for botanical extracts and products for the management of Fall Armyworm (Spodoptera frugiperda) for smallholders in Africa. Plants 2020, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phambala, K.; Tembo, Y.; Kasambala, T.; Kabambe, V.H.; Stevenson, P.C.; Belmain, S.R. Bioactivity of common pesticidal plants on Fall Armyworm larvae (Spodoptera frugiperda). Plants 2020, 9, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutyambai, D.M.; Bass, E.; Luttermoser, T.; Poveda, K.; Midega, C.A.O.; Khan, Z.K.; Kessler, A. More than “Push” and “Pull”? Plant-soil feedbacks of maize companion cropping increase chemical plant defenses against herbivores. Front. Ecol. Evol. 2019, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- D’Annolfo, R.; Barbara Gemmill-Herren, B.; David Amudavi, D.; Shiraku, H.W.; Piva, M.; Garibaldi, L.A. The effects of agroecological farming systems on smallholder livelihoods: A case study on push–pull system from Western Kenya. Int. J. Agric. Sustain. 2020. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant. Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Belmain, S.R.; Amoah, B.A.; Nyirenda, S.P.; Kamanula, J.F.; Stevenson, P.C. Highly variable insect control efficacy of Tephrosia vogelii chemotypes. J. Agric. Food Chem. 2012, 60, 10055–10063. [Google Scholar] [CrossRef]
- Stevenson, P.C.; Kite, G.C.; Lewis, G.P.; Forest, F.; Nyirenda, S.P.; Belmain, S.R.; Sileshi, G.W.; Veitch, N.C. Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry 2012, 78, 135–146. [Google Scholar] [CrossRef]
- Soro, L.C.; Grosmaire, L.; Ocho-Anin Atchibri, A.L.; Munier, S.; Menut, C.; Pelissier, Y. Variabilité de la composition chimique de l’huile essentielle des feuilles de Lippia multiflora cultivées en Côte d’Ivoire. J. Appl. Biosc. 2015, 88, 8180–8193. [Google Scholar] [CrossRef]
- Mkindi, A.G.; Tembo, Y.; Ndakidemi, P.A.; Belmain, S.R.; Stevenson, P.C. Phytochemical Analysis of Tephrosia vogelii across East Africa reveals three chemotypes that influence its use as a pesticidal plant. Plants 2019, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.d.P.; de Souza, C.M.; Bicalho, K.U.; Baldin, E.L.L.; Forim, M.R.; Fernandes, J.B.; Vendramim, J.D. The potential use of Annona (Annonaceae) by products as a soruce of botanical insecticides. Boletin SEEA 2017, 2, 26–29. [Google Scholar]
- Bernardi, D.; Ribeiro, L.; Andreazza, F.; Neitzke, C.; Oliveira, E.E.; Botton, M.; Nava, D.E.; Vendramim, J.D. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crops Prod. 2017, 110, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Vega, L.; Krosse, S.; de Graaf, R.M.; Garvi, J.; Garvi-Bode, R.D.; van Dam, N.M. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water. Front. Plant Sci. 2015, 6, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guèye, M.T.; Seck, D.; Ba, S.; Hell, K.; Sembene, M.; Wathelet, J.-P.; Lognay, G. Insecticidal activity of Boscia senegalensis (Pers.) Lam ex Poir. on Caryedon serratus (Ol.) pest of stored groundnuts. Afr. J. Agric. Res. 2011, 6, 6348–6353. [Google Scholar] [CrossRef]
- Pavela, R.; Murugan, K.; Canale, A.; Benelli, G. Saponaria officinalis –synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind. Crops Prod. 2017, 97, 338–344. [Google Scholar] [CrossRef]
- Rocha, A.G.; Oliveira, B.M.S.; Melo, C.R.; Sampaio, T.S.; Blanck, A.F.; Lima, A.D.; Nunes, R.S.; Araújo, A.P.A.; Cristaldo, P.F.; Bacci, L. Lethal effect and behavioural responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop. Entomol. 2018, 47, 769–779. [Google Scholar] [CrossRef]
- De Oliveira, J.L.; Campos, E.V.R.; Fraceto, L.F. Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. J. Agric. Food Chem. 2018, 66, 8898–8913. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, A.K.; Dwivedy, A.K.; Singh, V.K.; Das, S.; Singh, A.; Dubey, N.K. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ. Sci. Poll. Res. 2019, 26, 25414–25431. [Google Scholar] [CrossRef]
- Neuwinger, H.D. Plants used for poison fishing in tropical Africa. Toxicon 2004, 44, 417–430. [Google Scholar] [CrossRef]
- Xavier, V.M.; Message, D.; Picanço, M.C.; Chediak, M.; Santana Júnior, P.A.; Ramos, R.S.; Martins, J.C. Acute toxicity and sublethal effects of botanical insecticides to honey bees. J. Insect Sci. 2015, 15, 137. [Google Scholar] [CrossRef] [Green Version]
- Tunca, H.; Kilinçer, N.; Özkan, C. Side-effects of some botanical insecticides and extracts on the parasitoid, Venturia canescens (Grav.) (Hymenoptera: Ichneumonidae). Türk. Entomol. Derg. 2012, 36, 205–2014. [Google Scholar]
- Tunca, H.; Kilinçer, N.; Özkan, C. Toxicity and repellent effects of some botanical insecticides on the egg-larval parasitoid Chelonus oculator Panzer (Hymenoptera: Braconidae). Sci. Res. Essays 2014, 9, 106–113. [Google Scholar]
- Qi, B.; Gordon, G.; Gimme, W. Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera: Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biol. Control 2001, 22, 185–190. [Google Scholar] [CrossRef]
- Medina, P.; Budia, F.; Del Estal, P.; Viñuela, E. Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: Toxicity and ultrastructural approach. J. Econ. Entomol. 2004, 97, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraiss, H.; Cullen, E.M. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididade) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae). Pest Manag. Sci. 2008, 64, 660–668. [Google Scholar] [CrossRef]
- Randrianarivo, H.R.; Ratsimanohatra, H.C.; Razafindrakoto, A.R.; Rajemiarimoelisoa, C.F.; Randriamampianina, L.J.; Ramamonjisoa, L.; Rakoto, D.A.D.; Jeannoda, V.L. Phytotoxic property of seed methanolic extracts from Albizia (Fabacae) endemic species of Madagascar. J. Plant Sci. 2014, 2, 256–265. [Google Scholar]
- Keip, P.; Gutierrez, A.; Huchard, M.; Le Ber, F.; Sarter, S.; Silvie, P.; Martin, P. Effects of input data formalisation in relational concept analysis for a data model with a ternary relation. In Lecture Notes in Computer Science; Cristea, D., Le Ber, F., Sertkaya, B., Eds.; International Conference on Formal Concept Analysis (ICFCA 2009); Springer: Cham, Switzerland, 2019; Volume 11511, pp. 191–207. [Google Scholar] [CrossRef] [Green Version]
- Bazin, A.; Carbonnel, J.; Huchard, M.; Kahn, G.; Keip, P. Ouzerdine, On-demand Relational Concept Analysis. In Lecture Notes in Computer Science; Cristea, D., Le Ber, F., Sertkaya, B., Eds.; International Conference on Formal Concept Analysis (ICFCA 2009); Springer: Cham, Switzerland, 2019; Volume 11511, pp. 155–172. [Google Scholar] [CrossRef] [Green Version]
- Blanchart, E.; Villenave, C.; Viallatoux, A.; Barthès, B.; Girardin, C.; Azontonde, A.; Feller, C. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Europ. J. Soil Biol. 2006, 42, 136–144. [Google Scholar] [CrossRef]
- Couëdel, A.; Kirkegaard, J.; Alletto, L.; Justes, E. Crucifer-legume cover crop mixtures for biocontrol: Toward a new multi-servcie paradigm. Adv. Agron. 2019. [Google Scholar] [CrossRef]
- Ben-Issa, R.; Gomez, L.; Gautier, H. Companion plants for aphid pest management. Insects 2017, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Amoabeng, B.W.; Johnson, A.C.; Gurr, G.M. Natural enemy enhancement and botanical insecticide source: A review of dual companion plants. Appl. Entomol. Zool. 2019, 54, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Benelli, G. Plan-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: A systematic review. Parasitol. Res. 2015, 114, 3201–3212. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef] [PubMed]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; pepey, E.; Pouyaud, L.; Vega-Heredía, S.; de Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef] [Green Version]
- Wunderlich, A.C.; Zica, E.d.O.P.; Ayres, V.F.d.S.; Guimarães, A.C.; Takeara, R. Plant-Derived Compounds as an Alternative Treatment against Parasites in Fish Farming: A Review; IntechOpen: London, UK, 2017; pp. 115–135. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.H.; Abdel-Tawwab, M. The use of caraway seed meal as a feed additive in fish diets: Growth performance, feed utilization, and whole-body composition of Nile tilapia, Oreochromis niloticus (L.) fingerlings. Aquaculture 2011, 314, 110–114. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Givskov, M.; de Nys, R.; Manefield, M.; Gram, L.; Maximilien, R.; Eberl, L.; Molin, S.; Steinberg, P.D.; Kjelleberg, S. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 1996, 178, 6618–6622. [Google Scholar] [CrossRef] [Green Version]
- Defoirdt, T.; Crab, R.; Wood, T.K.; Sorgeloos, P.; Verstraete, W.; Bossier, P. Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl. Environ. Microbiol. 2006, 72, 6419–6423. [Google Scholar] [CrossRef] [Green Version]
- Rasch, M.; Buch, C.; Austin, B.; Slierendrecht, W.J.; Ekmann, K.S.; Larsen, J.L.; Johansen, C.; Riedel, K.; Eberl, L.; Givskov, M.; et al. An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst. Appl. Microbiol. 2004, 27, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Kiran, G.S.; Hassan, S.; Sajayan, A.; Selvin, J. Quorum quenching compounds from natural sources. In Bioresources and Bioprocess in Biotechnology; Springer: Singapore, 2017; pp. 351–364. [Google Scholar]
- Gormo, J.; Nizesete, B.D. Des végétaux et leurs usages chez les peuples du Nord-Cameroun: Sélection et mode d’emploi du XIXe au XXe siècle. História Ciências Saúde Manguinhos 2013, 20, 587–607. [Google Scholar] [CrossRef] [Green Version]
- Tiétiambou, F.R.S.; Lykke, A.M.; Korbéogo, G.; Thiombiano, A.; Ouédraogo, A. Perceptions et savoirs locaux sur les espèces oléagineuses locales dans le Kénédougou, Burkina Faso. Bois et Forêts des Trop. 2016, 327, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Ratnadass, A.; Zakari-Moussa, O.; Salha, H.; Minet, J.; Seyfoulaye, A.A. Noorda blitealis Walker, un ravageur majeur du Moringa au Niger (Lepidoptera, Crambidae). Bull. Soc. Entomol. Fr. 2011, 116, 401–404. [Google Scholar]
- Cilliers, C.J.; Neser, S. Biological control of Lantana camara (Verbenaceae) in South Africa. Agric. Ecosyst. Environ. 1991, 37, 57–75. [Google Scholar] [CrossRef]
- Martin, P.; Silvie, P.; Marnotte, P.; Goebel, F.-R. A decision support system for determining sugarcane pest reservoir. Sugar Tech 2020, 22, 655–661. [Google Scholar] [CrossRef]
Botanical Family | Species | Botanical Family | Species |
---|---|---|---|
Amaranthaceae | Dysphania ambrosioides | Lythraceae | Lawsonia inermis |
Amaryllidaceae | Allium cepa | Meliaceae | Azadirachta indica |
Allium sativum | Entandrophragma angolense | ||
Apiaceae | Coriandrum sativum | Melia azedarach | |
Eryngium foetidum | Trichilia pallida | ||
Apocynaceae | Allamanda cathartica | Moraceae | Ficus elastica |
Calotropis gigantea | Musaceae | Musa sp. | |
Calotropis procera | Myrtaceae | Callistemon citrinus | |
Vincetoxicum canescens | Eucalyptus camaldulensis | ||
Vincetoxicum fuscatum | Eucalyptus saligna | ||
Vincetoxicum parviflorum | Eucalyptus tereticornis | ||
Asteraceae | Acanthostyles buniifolius | Eugenia egensis | |
Acmella oleracea | Syzygium aromaticum | ||
Ageratum conyzoides | Nitrariaceae | Peganum harmala | |
Ageratum houstonianum | Nyctaginaceae | Bougainvillea glabra | |
Artemisia absinthium | Oxalidaceae | Oxalis barrelieri | |
Artemisia annua | Papaveraceae | Argemone mexicana | |
Artemisia cina | Piperaceae | Piper aduncum | |
Artemisia vulgaris | Piper amalago | ||
Bidens pilosa | Piper augustum | ||
Calendula officinalis | Piper glabratum | ||
Eclipta prostrata | Piper mikanianum | ||
Emilia coccinea | Piper mollicomum | ||
Erigeron floribundus | Poaceae | Cymbopogon citratus | |
Guizotia abyssinica | Digitaria eriantha | ||
Tagetes erecta | Podocarpaceae | Podocarpus milanjianus | |
Bignoniaceae | Spathodea campanulata | Primulaceae | Clavija weberbaueri |
Brassicaceae | Brassica rapa | Rosaceae | Rosa damascena |
Capparaceae | Crateva religiosa | Rutaceae | Citrus × aurantium |
Clusiaceae | Garcinia smeathmanii | Citrus limon | |
Commelinaceae | Commelina benghalensis | Citrus reticulata | |
Cupressaceae | Tetraclinis articulata | Citrus sinensis | |
Dilleniaceae | Curatella americana | Clausena anisata | |
Dipterocarpaceae | Shorea robusta | Salicaceae | Banara guianensis |
Euphorbiaceae | Euphorbia hirta | Salicaceae | Banara nitida |
Jatropha curcas | Mayna parvifolia | ||
Ricinus communis | Ryania speciosa | ||
Fabaceae | Bauhinia variegata | Sapindaceae | Deinbollia saligna |
Copaifera duckei | Sapotaceae | Argania spinosa | |
Ononis natrix | Madhuca longifolia | ||
Pongamia pinnata | Simmondsiaceae | Simmondsia chinensis | |
Sesbania bispinosa | Siparunaceae | Siparuna poeppigii | |
Tephrosia vogelii | Solanaceae | Nicotiana sp. | |
Geraniaceae | Pelargonium zonale | Solanum delagoense | |
Lamiaceae | Ajuga chamaepitys | Tropaeolaceae | Tropaeolum majus |
Mentha spicata | Urticaceae | Urtica dioica | |
Ocimum basilicum | Verbenaceae | Lippia javanica | |
Ocimum gratissimum | Lippia multiflora | ||
Thymbra capitata | Zingiberaceae | Elettaria cardamomum | |
Thymus vulgaris | |||
Zataria multiflora |
Botanical Family | Species | Parts of the Plant Used |
---|---|---|
Amaranthaceae | Chenopodium opulifolium | All, dried leaves |
Dysphania ambrosioides | Leaves | |
Amaryllidaceae | Allium sativum | Cloves |
Asphodelaceae | Aloe spp. | All |
Asteraceae | Tithonia diversifolia | Dried leaves |
Vernonia amygdalina | Dried leaves | |
Dryopteridaceae | Dryopteris filix-mas | Leaves |
Fabaceae | Gliricidia sepium | Fresh or dried leaves, seeds |
Senna siamea | All | |
Tephrosia vogelii | All | |
Lamiaceae | Ocimum gratissimum | All, leaves |
Meliaceae | Azadirachta indica | All |
Melia azedarach | Dried leaves | |
Myrtaceae | Callistemon viminalis | Leaves |
Eucalyptus spp. | All | |
Solanaceae | Capsicum annuum | Not indicated |
Capsicum spp. | All, fresh fruits | |
Nicotiana tabacum | All | |
Urticaceae | Urtica dioica | Leaves |
Botanical Family | Species | Botanical Family | Species |
---|---|---|---|
Amaranthaceae | Dysphania ambrosioides | Meliaceae | Azadirachta indica |
Annonaceae | Annona muricata | Khaya senegalensis | |
Annona senegalensis | Melia azedarach | ||
Monodora myristica | Moraceae | Ficus exasperata | |
Xylopia aethiopica | Moringaceae | Moringa oleifera | |
Apiaceae | Foeniculum vulgare | Myrtaceae | Callistemon rigidus |
Apocynaceae | Pergularia daemia | Corymbia citriodora | |
Asparagaceae | Dracaena arborea | Eucalyptus saligna | |
Asteraceae | Blumea oloptera | Eucalyptus staigeriana | |
Blumea viscosa | Opiliaceae | Opilia amentacea | |
Helianthus annuus | Poaceae | Cymbopogon citratus | |
Tagetes minuta | Cymbopogon flexuosus | ||
Tithonia diversifolia | Cymbopogon giganteus | ||
Vernonia amygdalina | Cymbopogon nardus | ||
Boraginaceae | Heliotropium indicum | Cymbopogon schoenanthus | |
Capparaceae | Boscia senegalensis | Cymbopogon winterianus | |
Crateva religiosa | Polygalaceae | Securidaca longipedunculata | |
Caricaceae | Carica papaya | Rutaceae | Clausena anisata |
Combretaceae | Combretum imberbe | Solanaceae | Capsicum annuum |
Combretum micranthum | Capsicum spp. | ||
Cucurbitaceae | Momordica charantia | Nicotiana tabacum | |
Euphorbiaceae | Euphorbia lateriflora | Verbenaceae | Lantana camara |
Spirostachys africana | Lippia javanica | ||
Fabaceae | Chamaecrista nigricans | Lippia multiflora | |
Gliricidia sepium | Lippia rugosa | ||
Tephrosia densiflora | Zingiberaceae | Alpinia calcarata | |
Tephrosia vogelii | |||
Lamiaceae | Hyptis spicigera | ||
Hyptis suaveolens | |||
Ocimum americanum | |||
Ocimum basilicum | |||
Ocimum gratissimum | |||
Plectranthus glandulosus | |||
Tetradenia multiflora |
Scheme 710. | Botanical Family | Number of Lines | Rank |
---|---|---|---|
Azadirachta indica | Meliaceae | 710 | 79 |
Ocimum gratissimum | Lamiaceae | 306 | 78 |
Not indicated | Not indicated | 237 | 77 |
Dysphania ambrosioides | Amaranthaceae | 211 | 76 |
Allium sativum | Amaryllidaceae | 194 | 75 |
Lantana camara | Verbenaceae | 178 | 74 |
Cymbopogon citratus | Poaceae | 164 | 73 |
Tephrosia vogelii | Fabaceae | 156 | 72 |
Ocimum basilicum | Lamiaceae | 142 | 71 |
Carica papaya | Caricaceae | 130 | 70 |
Callistemon citrinus | Myrtaceae | 120 | 69 |
Melia azedarach | Meliaceae | 120 | 69 |
Citrus sinensis | Rutaceae | 114 | 68 |
Ageratum conyzoides | Asteraceae | 91 | 67 |
Melia volkensii | Meliaceae | 89 | 66 |
Rosmarinus officinalis | Lamiaceae | 86 | 65 |
Senna crotalarioides | Fabaceae | 85 | 64 |
Citrus limon | Rutaceae | 79 | 63 |
Nicotiana tabacum | Solanaceae | 73 | 62 |
Thymus vulgaris | Lamiaceae | 71 | 61 |
Syzygium aromaticum | Myrtaceae | 69 | 60 |
Tithonia diversifolia | Asteraceae | 69 | 60 |
Moringa oleifera | Moringaceae | 67 | 59 |
Euphorbia hirta | Euphorbiaceae | 66 | 58 |
Xylopia aethiopica | Annonaceae | 66 | 58 |
Citrus reticulata | Rutaceae | 64 | 57 |
Capsicum annuum | Solanaceae | 63 | 56 |
Ricinus communis | Euphorbiaceae | 63 | 56 |
Monodora myristica | Annonaceae | 62 | 55 |
Erigeron floribundus | Asteraceae | 61 | 54 |
Euphorbia lateriflora | Euphorbiaceae | 61 | 54 |
Pimpinella anisum | Apiaceae | 60 | 53 |
Eucalyptus camaldulensis | Myrtaceae | 59 | 52 |
Foeniculum vulgare | Apiaceae | 57 | 51 |
Bidens pilosa | Asteraceae | 55 | 50 |
Vernonia amygdalina | Asteraceae | 54 | 49 |
Hyptis spicigera | Lamiaceae | 53 | 48 |
Boscia senegalensis | Capparaceae | 52 | 47 |
Mentha × piperita | Lamiaceae | 52 | 47 |
Cuminum cyminum | Apiaceae | 51 | 46 |
Eclipta prostrata | Asteraceae | 51 | 46 |
Eucalyptus tereticornis | Myrtaceae | 51 | 46 |
Commelina benghalensis | Commelinaceae | 50 | 45 |
Emilia coccinea | Asteraceae | 50 | 45 |
Oxalis barrelieri | Oxalidaceae | 50 | 45 |
Podocarpus milanjianus | Podocarpaceae | 50 | 45 |
Botanical Family | Genus or Species | Botanical Family | Genus or Species |
---|---|---|---|
Amaranthaceae | Dysphania ambrosioides | Meliaceae | Azadirachta indica |
Amaryllidaceae | Allium cepa | Melia azedarach | |
Allium sativum | Trichilia pallida | ||
Apiaceae | Coriandrum sativum | Myrtaceae | Eucalyptus camaldulensis |
Apocynaceae | Allamanda cathartica | Eugenia egensis | |
Asteraceae | Acanthostyles buniifolius | Syzygium aromaticum | |
Acmella oleracea | Nitrariaceae | Peganum harmala | |
Ageratum conyzoides | Nyctaginaceae | Bougainvillea glabra | |
Artemisia absinthium | Papaveraceae | Argemone mexicana | |
Artemisia annua | Piperaceae | Piper aduncum | |
Artemisia cina | Piper amalago | ||
Artemisia vulgaris | Piper augustum | ||
Calendula officinalis | Piper glabratum | ||
Bignoniaceae | Spathodea campanulata | Piper mikanianum | |
Capparaceae | Crateva religiosa | Piper mollicomum | |
Cupressaceae | Tetraclinis articulata | Poaceae | Cymbopogon citratus |
Dilleniaceae | Curatella americana | Primulaceae | Clavija weberbaueri |
Euphorbiaceae | Jatropha curcas | Rosaceae | Rosa damascena |
Ricinus communis | Rutaceae | Citrus × aurantium | |
Fabaceae | Bauhinia variegata | Citrus limon | |
Copaifera duckei | Citrus reticulata | ||
Ononis natrix | Citrus sinensis | ||
Geraniaceae | Pelargonium zonale | Salicaceae | Banara guianensis |
Lamiaceae | Ajuga chamaepitys | Banara nitida | |
Mentha spicata | Mayna parvifolia | ||
Ocimum basilicum | Ryania speciosa | ||
Ocimum gratissimum | Sapotaceae | Argania spinosa | |
Thymbra capitata | Simmondsiaceae | Simmondsia chinensis | |
Thymus vulgaris | Siparunaceae | Siparuna poeppigii | |
Zataria multiflora | Solanaceae | Nicotiana sp. | |
Lythraceae | Lawsonia inermis | Tropaeolaceae | Tropaeolum majus |
Urticaceae | Urtica dioica | ||
Zingiberaceae | Elettaria cardamomum |
Pesticidal Plant | Targeted Spodoptera Species | Plant to Be Protected |
---|---|---|
Azadirachta indica | Spodoptera frugiperda | Zea mays |
Spodoptera littoralis | Abelmoschus esculentus | |
Brassica oleracea | ||
Croton macrostachyus | Spodoptera frugiperda | Zea mays |
Curcuma longa | ||
Cymbopogon martini | ||
Dysphania ambrosioides | ||
Eucalyptus globulus | ||
Jatropha curcas | ||
Juniperus communis | ||
Lantana camara | ||
Limnanthes alba | ||
Melaleuca alternifolia | ||
Millettia ferruginea | ||
Nicotiana tabacum | ||
Phytolacca dodecandra | ||
Schinus molle | ||
Syzygium aromaticum | ||
Trichilia casaretti | ||
Trichilia catigua | ||
Trichilia claussenii | ||
Trichilia elegans | ||
Trichilia pallens | ||
Trichilia pallida | ||
Carica papaya | Spodoptera littoralis | Abelmoschus esculentus |
Brassica oleracea | ||
Dioscorea dumetorum | Spodoptera littoralis | Gossypium hirsutum |
Vincetoxicum canescens | Solanum lycopersicum | |
Vincetoxicum fuscatum | ||
Vincetoxicum parviflorum | ||
Wollastonia dentata | Spodoptera litura | Ricinus communis |
Capsicum spp. | Spodoptera spp. | Zea mays |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvie, P.J.; Martin, P.; Huchard, M.; Keip, P.; Gutierrez, A.; Sarter, S. Prototyping a Knowledge-Based System to Identify Botanical Extracts for Plant Health in Sub-Saharan Africa. Plants 2021, 10, 896. https://doi.org/10.3390/plants10050896
Silvie PJ, Martin P, Huchard M, Keip P, Gutierrez A, Sarter S. Prototyping a Knowledge-Based System to Identify Botanical Extracts for Plant Health in Sub-Saharan Africa. Plants. 2021; 10(5):896. https://doi.org/10.3390/plants10050896
Chicago/Turabian StyleSilvie, Pierre J., Pierre Martin, Marianne Huchard, Priscilla Keip, Alain Gutierrez, and Samira Sarter. 2021. "Prototyping a Knowledge-Based System to Identify Botanical Extracts for Plant Health in Sub-Saharan Africa" Plants 10, no. 5: 896. https://doi.org/10.3390/plants10050896