Next Article in Journal
High Throughput Profiling of Flavonoid Abundance in Agave lechuguilla Residue-Valorizing under Explored Mexican Plant
Next Article in Special Issue
The Orchid Velamen: A Model System for Studying Patterned Secondary Cell Wall Development?
Previous Article in Journal
An F2 Barley Population as a Tool for Teaching Mendelian Genetics

Pulse Root Ideotype for Water Stress in Temperate Cropping System

Agriculture Victoria Research, Horsham, VIC 3400, Australia
Author to whom correspondence should be addressed.
Academic Editors: Alexander Lux, Viktor Demko, Ján Jásik and Marek Vaculík
Plants 2021, 10(4), 692;
Received: 8 March 2021 / Revised: 1 April 2021 / Accepted: 1 April 2021 / Published: 3 April 2021
(This article belongs to the Special Issue Structure and Function of Roots)
Pulses are a key component of crop production systems in Southern Australia due to their rotational benefits and potential profit margins. However, cultivation in temperate cropping systems such as that of Southern Australia is limited by low soil water availability and subsoil constraints. This limitation of soil water is compounded by the irregular rainfall, resulting in the absence of plant available water at depth. An increase in the productivity of key pulses and expansion into environments and soil types traditionally considered marginal for their growth will require improved use of the limited soil water and adaptation to sub soil constrains. Roots serve as the interface between soil constraints and the whole plant. Changes in root system architecture (RSA) can be utilised as an adaptive strategy in achieving yield potential under limited rainfall, heterogenous distribution of resources and other soil-based constraints. The existing literature has identified a “‘Steep, Deep and Cheap” root ideotype as a preferred RSA. However, this idiotype is not efficient in a temperate system where plant available water is limited at depth. In addition, this root ideotype and other root architectural studies have focused on cereal crops, which have different structures and growth patterns to pulses due to their monocotyledonous nature and determinant growth habit. The paucity of pulse-specific root architectural studies warrants further investigations into pulse RSA, which should be combined with an examination of the existing variability of known genetic traits so as to develop strategies to alleviate production constraints through either tolerance or avoidance mechanisms. This review proposes a new model of root system architecture of “Wide, Shallow and Fine” roots based on pulse roots in temperate cropping systems. The proposed ideotype has, in addition to other root traits, a root density concentrated in the upper soil layers to capture in-season rainfall before it is lost due to evaporation. The review highlights the potential to achieve this in key pulse crops including chickpea, lentil, faba bean, field pea and lupin. Where possible, comparisons to determinate crops such as cereals have also been made. The review identifies the key root traits that have shown a degree of adaptation via tolerance or avoidance to water stress and documents the current known variability that exists in and amongst pulse crops setting priorities for future research. View Full-Text
Keywords: dicotyledon; indeterminacy; tolerance; avoidance; dryland cropping; constraints; morphology; phenology; legumes dicotyledon; indeterminacy; tolerance; avoidance; dryland cropping; constraints; morphology; phenology; legumes
Show Figures

Figure 1

MDPI and ACS Style

Rao, S.; Armstrong, R.; Silva-Perez, V.; Tefera, A.T.; Rosewarne, G.M. Pulse Root Ideotype for Water Stress in Temperate Cropping System. Plants 2021, 10, 692.

AMA Style

Rao S, Armstrong R, Silva-Perez V, Tefera AT, Rosewarne GM. Pulse Root Ideotype for Water Stress in Temperate Cropping System. Plants. 2021; 10(4):692.

Chicago/Turabian Style

Rao, Shiwangni, Roger Armstrong, Viridiana Silva-Perez, Abeya T. Tefera, and Garry M. Rosewarne 2021. "Pulse Root Ideotype for Water Stress in Temperate Cropping System" Plants 10, no. 4: 692.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop