Systematics, Phytochemistry, Biological Activities and Health Promoting Effects of the Plants from the Subfamily Bombacoideae (Family Malvaceae)
Abstract
:1. Introduction
2. Taxonomy of the Subfamily Bombacoideae
3. Habitat, Distribution, and Characteristics of the Subfamily Bombacoideae
4. Characteristics
5. Phytochemical Configuration of Bombacoideae Subfamily
6. Details of the Extraction and Isolation Procedure of Major Compounds from Bombacoideae for Industrial Applications
7. Application in Food/Use as Food
8. Traditional and Economic Uses
9. Ethnopharmacology
10. Pharmacological Potential of Bombacoideae
10.1. Antioxidant Properties
10.2. Anti-Inflammatory Activity
10.3. Antimicrobial Activity
10.4. Anticancer and Cytotoxicity Activity
10.5. Hepatoprotective Activity
10.6. Antidiabetic Activity
10.7. Miscellaneous Activities
11. Mechanism of Action of Extracts and Bioactive Compounds of the Plants’ Species with Pharmacological Properties
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, V.; Verma, S.; Katewa, S. Myths, traditions and fate of multipurpose Bombax ceiba L.—An appraisal. Indian J. Tradit. Knowl. 2009, 8, 638–644. [Google Scholar]
- Refaat, J.; Desoky, S.Y.; Ramadan, M.A.; Kamel, M.S. Bombacaceae: A phytochemical review. Pharm. Biol. 2013, 51, 100–130. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, H.P. Pollen morphology of the family Bombacaceae. Rev. Palaeobot. Palynol. 1967, 3, 119–132. [Google Scholar] [CrossRef]
- Carvalho-Sobrinho, J.G.; Alverson, W.S.; Alcantara, S.; Queiroz, L.P.; Mota, A.C.; Baum, D.A. Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses. Mol. Phylogenetics Evol. 2016, 101, 56–74. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.B.; Bovini, M.G.; da Souza Conceição, A. Bombacoideae, Byttnerioideae, Grewioideae and Helicterioideae (Malvaceae s.l.) in the Raso da Catarina Ecoregion, Bahia, Brazil. Biota Neotrop. 2019, 19, 1–21. [Google Scholar] [CrossRef]
- Singh, G. Plant Systematics: An Integrated Approach, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bayer, C.; Fay, M.; Bruijn, A.; Savolainen, V.; Morton, C.; Kubitzki, K.; Alverson, W.; Chase, M. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: A combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 1999, 129, 267–303. [Google Scholar] [CrossRef]
- Kubitzki, K.; Bayer, C. The Families and Genera of Vascular Plants; Springer: Berlin/Heidelberg, Germany, 2003; Volume 5. [Google Scholar]
- Christenhusz, M.J.M.; Fay, M.F.; Chase, M.W. Plants of the World: An Illustrated Encyclopedia of Vascular Plants; University of Chicago Press: Chicago, IL, USA, 2017. [Google Scholar]
- Duarte, M. Phylogenetic Analyses of Eriotheca and Related Genera (Bombacoideae, Malvaceae). Syst. Bot. 2011, 36, 690–701. [Google Scholar] [CrossRef]
- Zizka, A.; Carvalho-Sobrinho, J.G.; Pennington, R.T.; Queiroz, L.P.; Alcantara, S.; Baum, D.A.; Bacon, C.D.; Antonelli, A. Transitions between biomes are common and directional in Bombacoideae (Malvaceae). J. Biogeogr. 2020, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M. An updated review of Adansonia digitata: A commercially important African tree. S. Afr. J. Bot. 2011, 77, 908–919. [Google Scholar] [CrossRef]
- Barwick, M. Tropical & Subtropical Trees: A Worldwide Encyclopaedic Guide; Thames & Hudson: London, UK, 2004. [Google Scholar]
- Wickens, G.E. Edible Nuts; FAO: Rome, Italy, 1995; Volume 5. [Google Scholar]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2012; Volume 1. [Google Scholar]
- Roth, I.; Lindorf, H. South American Medicinal Plants: Botany, Remedial Properties and General Use; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Middeljans, M. The Species Composition of the Mangrove Forest along the Abatan River in Lincod, Maribojoc, Bohol, Philippines and the Mangrove Forest Structure and its Regeneration Status between Managed and Unmanaged Nipa palm (Nypa fruticans Wurmb); Wageningen University: Wageningen, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Infante-Mata, D.; Moreno-Casasola, P.; Madero-Vega, C. Pachira aquatica, un indicador del límite del manglar? Rev. Mex. Biodivers. 2014, 85, 143–160. [Google Scholar] [CrossRef]
- Gibbs, P.E.; Alverson, W.S. How many species of Spirotheca (Malvaceae sl, Bombacoideae)? Brittonia 2006, 58, 245–258. [Google Scholar] [CrossRef]
- Krutzsch, W. Paleogeography and historical phytogeography (paleochorology) in the Neophyticum. Plant Syst. Evol. 1989, 162, 5–61. [Google Scholar] [CrossRef]
- Croizat, L. Manual of Phytogeography: An Account of Plant-Dispersal Throughout the World; Springer Science + Business: Dordrecht, The Netherlands, 1952. [Google Scholar]
- Wickens, G.E.; Lowe, P. The Baobabs: Pachycauls of Africa, Madagascar and Australia; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Ehrendorfer, F. Woody Plants—Evolution and Distribution Since the Tertiary: Proceedings of a Symposium Organized by Deutsche Akademie Der Naturforscher LEOPOLDINA in Halle/Saale, German Democratic Republic, 9–11 October 1986; Springer: Vienna, Austria, 1989. [Google Scholar]
- Odetokun, S. The nutritive value of Baobab fruit (Adansonia digitata). Riv. Ital. Sostanze Grasse 1996, 73, 371–373. [Google Scholar]
- Chevalier, M.A. Les Baobabs (Adansonia) de lʹAfrique continentale. Bull. Société Bot. Fr. 1906, 53, 480–496. [Google Scholar] [CrossRef] [Green Version]
- Hostettmann, K.; Schaller, F. Antimicrobial Diterpenes. U.S. Patent US5929124A, 27 July 1999. [Google Scholar]
- Inngjerdingen, K.; Nergård, C.; Diallo, D.; Mounkoro, P.; Paulsen, B. An Ethnopharmacological survey of plants used for wound healing in Dogonland, Mali, West Africa. J. Ethnopharmacol. 2004, 92, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.; Carvalho-Sobrinho, J.; Zartman, C.; Komura, D.; Queiroz, L. Unexplored Amazonian diversity: Rare and phylogenetically enigmatic tree species are newly collected. Neodiversity 2015, 8, 55–73. [Google Scholar] [CrossRef]
- Mitré, M. Gyranthera darienensis. IUCN Red List Threat. Species 1998 1998, e.T30572A9554110. [Google Scholar] [CrossRef]
- Díaz-Pérez, C.N.; Puerto-Hurtado, M.A.; Fernández-Alonso, J.L. Evaluación Del Hábitat, Las Poblaciones Y El Estatus De Conservación Del Barrigón (Cavanillesia chicamochae, Malvaceae–Bombacoideae). Caldasia 2011, 33, 105–119. [Google Scholar]
- Bell, K.L.; Rangan, H.; Kull, C.A.; Murphy, D.J. The history of introduction of the African baobab (Adansonia digitata, Malvaceae: Bombacoideae) in the Indian subcontinent. R. Soc. Open Sci. 2015, 2, 150370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfeld, R.; Hanelt, P. Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops: (Except Ornamentals); Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Zidar, C.; Elisens, W. Sacred Giants: Depiction of Bombacoideae on Maya Ceramics in Mexico, Guatemala, and Belize. Econ. Bot. 2009, 63, 119–129. [Google Scholar] [CrossRef]
- Byng, J.W. The Flowering Plants Handbook: A Practical Guide to Families and Genera of the World; Plant Gateway Ltd.: Hertford, UK, 2014. [Google Scholar]
- Marinho, R.C.; Mendes-Rodrigues, C.; Balao, F.; Ortiz, P.L.; Yamagishi-Costa, J.; Bonetti, A.M.; Oliveira, P.E. Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l. Am. J. Bot. 2014, 101, 1456–1465. [Google Scholar] [CrossRef] [Green Version]
- Fay, M. Index to Plant Chromosome Numbers 2004–2006. Regnum Vegetabile 152; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Chauhan, S.; Sharma, A.; Upadhyay, N.K.; Singh, G.; Lal, U.R.; Goyal, R. In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of Bombax ceiba with quantification of Lupeol, gallic acid and β-sitosterol by HPTLC and HPLC. BMC Complement. Altern. Med. 2018, 18, 233. [Google Scholar] [CrossRef]
- Deepshikha, R.; Geetanjali; Ram, S. Phytochemistry and Pharmacology of Genus Bombax. Nat. Prod. J. 2019, 9, 184–196. [Google Scholar] [CrossRef]
- Osman, M.A. Chemical and nutrient analysis of baobab (Adansonia digitata) fruit and seed protein solubility. Plant Foods Hum. Nutr. 2004, 59, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Zennie, T.M.; Cassady, J.M.; Raffauf, R.F. Funebral, a new pyrrole lactone alkaloid from Quararibea funebris. J. Nat. Prod. 1986, 49, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Zennie, T.M.; Cassady, J.M. Funebradiol, a New Pyrrole Lactone Alkaloid from Quararibea funebris Flowers. J. Nat. Prod. 1990, 53, 1611–1614. [Google Scholar] [CrossRef] [PubMed]
- Raffauf, R.F.; Zennie, T.M.; Onan, K.D.; Le Quesne, P.W. Funebrine, a structurally novel pyrrole alkaloid, and other. gamma.-hydroxyisoleucine-related metabolites of Quararibea funebris (Llave) Vischer (Bombacaceae). J. Org. Chem. 1984, 49, 2714–2718. [Google Scholar] [CrossRef]
- Scogin, R. Reproductive phytochemistry of Bombacaceae: Floral anthocyanins and nectar constituents. Aliso: A J. Syst. Evol. Bot. 1986, 11, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Niranjan, G.; Gupta, P. Anthocyanins from the flowers of Bombax malabaricum. Planta Med. 1973, 24, 196–199. [Google Scholar] [CrossRef]
- Rizk, A.; Al-Nowaihi, A. The Phytochemistry of the Horticultural Plants of Qatar; Alden Press: Oxford, UK, 1989. [Google Scholar]
- Paula, V.F.; Barbosa, L.C.; Demuner, A.J.; Howarth, O.W.; Veloso, D.P. Chemical constituents of Ochroma lagopus Swartz. Quim. Nova 1996, 19, 225–229. [Google Scholar]
- Joshi, K.R.; Devkota, H.P.; Yahara, S. Chemical analysis of flowers of Bombax ceiba from Nepal. Nat. Prod. Commun. 2013, 8, 1934578X1300800508. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.-Y.; Liao, H.-R.; Chen, L.-C.; Wang, S.-W.; Kuo, Y.-H.; Chung, M.-I.; Chen, J.-J. Naphthofuranone derivatives and other constituents from Pachira aquatica with inhibitory activity on superoxide anion generation by neutrophils. Fitoterapia 2017, 117, 16–21. [Google Scholar] [CrossRef] [PubMed]
- El-Hagrassi, A.M.; Ali, M.M.; Osman, A.F.; Shaaban, M. Phytochemical investigation and biological studies of Bombax malabaricum flowers. Nat. Prod. Res. 2011, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; Sinisgalli, C.; De Leo, M.; Muscatello, B.; Cioni, P.L.; Milella, L.; Ostuni, A.; Giani, S.; Sanogo, R. Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules 2018, 23, 3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Alfy, T.; El-Sawi, S.; Sleem, A.; Moawad, D. Investigation of flavonoidal content and biological activities of Chorisia insignis Hbk. leaves. Aust. J. Basic Appl. Sci. 2010, 4, 1334–1348. [Google Scholar]
- Noreen, Y.; El-Seedi, H.; Perera, P.; Bohlin, L. Two new isoflavones from Ceiba pentandra and their effect on cyclooxygenase-catalyzed prostaglandin biosynthesis. J. Nat. Prod. 1998, 61, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, E.; Martínez, E.M.; Cogordán, J.A.; Delgado, G. Triterpenes, Phenols, and Other Constituents from the leaves of Ochroma pyramidale (Balsa Wood, Bombacaceae): Preferred Conformations of 8-C-β-D-Glucopyranosyl-apigenin (vitexin). Rev. Soc. Química México 2002, 46, 254–258. [Google Scholar]
- Shahat, A.A. Procyanidins from Adansonia digitata. Pharm. Biol. 2006, 44, 445–450. [Google Scholar] [CrossRef]
- Qi, Y.; Guo, S.; Xia, Z.; Xie, D. Chemical constituents of Gossampinus malabarica (L.) Merr.(II). Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 1996, 21, 234. [Google Scholar]
- Ueda, H.; Kaneda, N.; Kawanishi, K.; Alves, S.M.; Moriyasu, M. A new isoflavone glycoside from Ceiba pentandra (L.) Gaertner. Chem. Pharm. Bull. 2002, 50, 403–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sichaem, J.; Siripong, P.; Khumkratok, S.; Tip-Pyang, S. Chemical constituents from the roots of Bombax anceps. J. Chil. Chem. Soc. 2010, 55, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Paula, V.F.; Cruz, M.P.; Barbosa, L.C.d.A. Chemical constituents of Bombacopsis glabra (Bombacaceae). Química Nova 2006, 29, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, J.; Kumar, S.; Chaturvedi, R. A new flavanonol glycoside from Adansonia digitata roots. Planta Med. 1984, 50, 113. [Google Scholar] [CrossRef]
- Gopal, H.; Gupta, R. Chemical constituents of Salmalia malabarica Schott and Endl. flowers. J. Pharm. Sci. 1972, 61, 807–808. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Lavaud, C.; Bourdy, G.; Giménez, A.; Sauvainc, M. First bioguided phytochemical approach to Cavanillesia Aff. hylogeiton. Rev. Boliv. Química 2002, 19, 18–24. [Google Scholar]
- Ngounou, F.; Meli, A.; Lontsi, D.; Sondengam, B.; Choudhary, M.I.; Malik, S.; Akhtar, F. New isoflavones from Ceiba pentandra. Phytochemistry 2000, 54, 107–110. [Google Scholar] [CrossRef]
- Chauhan, J.; Chaturvedi, R.; Kumar, S. A new flavonol glycoside from the stem of Adansonia-Digitata. Indian J. Chem. B Org. Incl. Med. Chem. 1982, 21, 254–255. [Google Scholar]
- Coussio, J. Isolation of rhoifolin from Chorisia species (Bombacaceae). Experientia 1964, 20, 562. [Google Scholar] [CrossRef] [PubMed]
- Nasr, E.M.; Assaf, M.H.; Darwish, F.M.; Ramadan, M.A. Phytochemical and biological study of Chorisia speciosa A. St. Hil. cultivated in Egypt. J. Pharmacogn. 2018, 7, 649–656. [Google Scholar]
- Faizi, S.; Ali, M. Shamimin: A new flavonol C-glycoside from leaves of Bombax ceiba. Planta Med. 1999, 65, 383–385. [Google Scholar] [CrossRef]
- Saleem, R.; Ahmad, S.I.; Ahmed, M.; Faizi, Z.; Zikr-ur-Rehman, S.; Ali, M.; Faizi, S. Hypotensive activity and toxicology of constituents from Bombax ceiba stem bark. Biol. Pharm. Bull. 2003, 26, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, J.; Kumar, S.; Chaturvedi, R. A new flavanone glycoside from the roots of Adansonia digitata. Natl. Acad. Sci. Lett. India 1987, 10, 177–179. [Google Scholar]
- Paula, V.F.; Barbosa, L.C.; Howarth, O.W.; Demuner, A.J.; Cass, Q.B.; Vieira, I.J. Lignans from Ochroma lagopus Swartz. Tetrahedron 1995, 51, 12453–12462. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.-H.; Zhang, S.-W.; Xuan, L.-J. Three Novel Compounds from the Flowers of Bombax malabaricum. Helv. Chim. Acta 2008, 91, 136–143. [Google Scholar] [CrossRef]
- Wang, G.K.; Lin, B.B.; Rao, R.; Zhu, K.; Qin, X.Y.; Xie, G.Y.; Qin, M.J. A new lignan with anti-HBV activity from the roots of Bombax ceiba. Nat. Prod. Res. 2013, 27, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Paula, V.F.; Rocha, M.E.; Barbosa, L.C.d.A.; Howarth, O.W. Aquatidial, a new bis-Norsesquiterpenoid from Pachira aquatica Aubl. J. Braz. Chem. Soc. 2006, 17, 1443–1446. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.-H.; Chen, J.-M.; Tsai, S.-F.; Lee, S.-S. Chemical investigation on the root bark of Bombax malabarica. Fitoterapia 2019, 139, 104376. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Zhang, S.; Yu, Q.; Xuan, L. Sesquiterpenoids from Bombax malabaricum. J. Nat. Prod. 2007, 70, 1526–1528. [Google Scholar] [CrossRef]
- Sankaram, A.V.B.; Reddy, N.S.; Shoolery, J.N. New sesquiterpenoids of Bombax malabaricum. Phytochemistry 1981, 20, 1877–1881. [Google Scholar] [CrossRef]
- Puckhaber, L.; Stipanovic, R. Revised structure for a sesquiterpene lactone from Bombax malbaricum. J. Nat. Prod. 2001, 64, 260–261. [Google Scholar] [CrossRef]
- Rao, K.V.; Sreeramulu, K.; Gunasekar, D.; Ramesh, D. Two new sesquiterpene lactones from Ceiba pentandra. J. Nat. Prod. 1993, 56, 2041–2045. [Google Scholar] [CrossRef]
- Sood, R.P.; Suri, K.A.; Suri, O.P.; Dhar, K.L.; Atal, C.K. Sesquiterpene lactone from Salmalia malbarica. Phytochemistry 1982, 21, 2125–2126. [Google Scholar] [CrossRef]
- Bianchini, J.-P.; Ralaimanarivo, A.; Gaydou, E.M.; Waegell, B. Hydrocarbons, sterols and tocopherols in the seeds of six Adansonia species. Phytochemistry 1982, 21, 1981–1987. [Google Scholar] [CrossRef]
- Tundis, R.; Rashed, K.; Said, A.; Menichini, F.; Loizzo, M.R. In vitro cancer cell growth inhibition and antioxidant activity of Bombax ceiba (Bombacaceae) flower extracts. Nat. Prod. Commun. 2014, 9, 691–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhar, D.; Munjal, R. Chemical examination of the seeds of Bombax malabaricum. Planta Med. 1976, 29, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Sipra, D.; Dan, S.S. Phytochemical study of Adansonia digitata, Coccoloba excoriata, Psychotria adenophylla and Schleichera oleosa. Fitoterapia 1986, 57, 445–446. [Google Scholar]
- Matsuda, M.; Endo, Y.; Fushiya, S.; Endo, T.; Nozoe, S. Cytotoxic 6-substituted 5, 6-dihydro-2H-pyran-2-ones from a Brazilian medicinal plant, Chorisia crispiflora. Heterocycles 1994, 38, 1229–1232. [Google Scholar] [CrossRef]
- Vijaya Bhaskar Reddy, M.; Kesava Reddy, M.; Gunasekar, D.; Marthanda Murthy, M.; Caux, C.; Bodo, B. A new sesquiterpene lactone from Bombax malabaricum. Chem. Pharm. Bull. 2003, 51, 458–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, A.A.; Stipanovic, R.D.; O’Brien, D.H.; Fryxell, P.A. Sesquiterpenoid aldehyde quinones and derivatives in pigment glands of Gossypium. Phytochemistry 1978, 17, 1297–1305. [Google Scholar] [CrossRef]
- Kishore, P.H.; Reddy, M.V.B.; Gunasekar, D.; Caux, C.; Bodo, B. A new naphthoquinone from Ceiba pentandra. J. Asian Nat. Prod. Res. 2003, 5, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Shibatani, M.; Hashidoko, Y.; Tahara, S. A Major fungitoxin from Pachira aquatica and its accumulation in outer bark. J. Chem. Ecol. 1999, 25, 347–353. [Google Scholar] [CrossRef]
- Li, X.-N.; Sun, J.; Shi, H.; Yu, L.L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int. 2017, 99, 755–761. [Google Scholar] [CrossRef]
- Tsetegho Sokeng, A.J.; Sobolev, A.P.; Di Lorenzo, A.; Xiao, J.; Mannina, L.; Capitani, D.; Daglia, M. Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach. Food Chem. 2019, 272, 93–108. [Google Scholar] [CrossRef]
- Tembo, D.T.; Holmes, M.J.; Marshall, L.J. Effect of thermal treatment and storage on bioactive compounds, organic acids and antioxidant activity of baobab fruit (Adansonia digitata) pulp from Malawi. J. Food Compos. Anal. 2017, 58, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, S.; Ervik, F.; Knudsen, J.T. Floral scent of bat-pollinated species: West Africa vs. the New World. Biol. J. Linn. Soc. 2004, 82, 161–168. [Google Scholar] [CrossRef]
- Gaydou, E.; Bianchini, D.J.P.; Ralaimanarivo, A. Cyclopropenoid fatty acids in Malagasy baobab: Adansonia grandidieri (Bombacaceae) seed oil. Fette Seifen Anstrichm. 1982, 84, 468–472. [Google Scholar] [CrossRef]
- Ralaimanarivo, A.; Gaydou, E.M.; Bianchini, J.P. Fatty acid composition of seed oils from six Adansonia species with particular reference to cyclopropane and cyclopropene acids. Lipids 1982, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, D.; Dennis, T.; Shingare, M. Constituents of Adansonia digitata root bark. Fitoterapia 1992, 63, 278–279. [Google Scholar]
- Rosselli, S.; Tundis, R.; Bruno, M.; Leporini, M.; Falco, T.; Gagliano Candela, R.; Badalamenti, N.; Loizzo, M.R. Ceiba speciosa (A. St.-Hil.) Seeds Oil: Fatty Acids Profiling by GC-MS and NMR and Bioactivity. Molecules 2020, 25, 1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, S.K. The characteristics of the kapok (Ceiba pentadra, Gaertn.) seed oil. Pertanika 1979, 2, 1–4. [Google Scholar]
- Ravi Kiran, C.; Raghava Rao, T. Lipid Profiling by GC-MS and Anti-inflammatory Activities of Ceiba pentandra Seed Oil. J. Biol. Act. Prod. Nat. 2014, 4, 62–70. [Google Scholar]
- Sunday, A.S.; Gillian, I.O.; John, I.O. Fatty acid composition of seed oil from Pachira aquatica Grown in Nigeria. J. Agric. Ecol. Res. Int. 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Chandran, M.N.; Vadivel, V.; Rajan, K. Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 2016, 170, 224–233. [Google Scholar] [CrossRef]
- Wang, X.-H.; Wang, J.-P. Effective extraction with deep eutectic solvents and enrichment by macroporous adsorption resin of flavonoids from Carthamus tinctorius L. J. Pharm. Biomed. Anal. 2019, 176, 112804. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Serradilla, J.; Japon-Lujan, R.; de Castro, M.L. Simultaneous microwave-assisted solid–liquid extraction of polar and nonpolar compounds from Alperujo. Anal. Chim. Acta 2007, 602, 82–88. [Google Scholar] [CrossRef]
- Buchmann, C.; Prehsler, S.; Hartl, A.; Vogl, C.R. The Importance of Baobab (Adansonia digitata L.) in Rural West African Subsistence—Suggestion of a Cautionary Approach to International Market Export of Baobab Fruits. Ecol. Food Nutr. 2010, 49, 145–172. [Google Scholar] [CrossRef]
- Friday, E.T.; James, O.; Olusegun, O.; Gabriel, A. Investigations on the nutritional and medicinal potentials of Ceiba pentandra leaf: A common vegetable in Nigeria. Int. J. Plant Physiol. Biochem. 2011, 3, 95–101. [Google Scholar]
- Brown, T. Tom Brown’s Guide to Wild Edible and Medicinal Plants; Berkley Books: New York, NY, USA, 1986. [Google Scholar]
- Paula, V.F.; Barbosa, L.C.A.; Demuner, A.J.; Piló-Veloso, D. A química da família bombacaceae. Química Nova 1997, 20, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Chadare, F.J.; Linnemann, A.; Hounhouigan, D.; Nout, M.J.; Boekel, M. Baobab Food Products: A Review on their Composition and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2009, 49, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Divakar, T.; Rao, Y.H. Biological synthesis of silver nano particles by using Bombax ceiba plant. J. Chem. Pharm. Sci. 2017, 10, 574–576. [Google Scholar]
- R Nayagam, D.J. IBA Induced Rooting Characteristics in Marathi Moggu Stem Cuttings: Evaluation Using SVI Concept. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Assogba, G.A.; Fandohan, A.B.; Gandji, K.; Salako, V.K.; Assogbadjo, A.E. Bombax costatum (Malvaceae): State of knowns, unknowns and prospects in West Africa. BASE 2018, 22, 267–275. [Google Scholar]
- Van Roosmalen, M.G. Fruits of the Guianan Flora; Institute of Systematic Botany, Utrecht University: Utrecht, The Netherlands, 1985. [Google Scholar]
- Macbride, J.F. Flora of Peru; Field Museum of Natural History: Chicago, IL, USA, 1936; Volume 13. [Google Scholar]
- Rosengarten, F. An unusual spice from Oaxaca: The flowers of Quararibea funebris. Bot. Mus. Leafl. Harv. Univ. 1977, 25, 183–202. [Google Scholar]
- Vickers, W.T.; Plowman, T. Useful Plants of the Siona and Secoya Indians of Eastern Ecuador; Field Museum of Natural History: Chicago, IL, USA, 1984. [Google Scholar]
- Tripathi, S.; Farooqui, A.; Singh, V.; Singh, S.; Kumar Roy, R. Morphometrical analysis of Ceiba Mill. (Bombacoideae, Malvaceae) pollen: A sacred plant of the Mayan (Mesoamerican) civilisation. Palynology 2019, 43, 551–573. [Google Scholar] [CrossRef]
- Easterling, K.; Harrysson, R.; Gibson, L.; Ashby, M.F. On the mechanics of balsa and other woods. Proc. R. Soc. Lond. A Math. Phys. Sci. 1982, 383, 31–41. [Google Scholar]
- Zheng, Y.; Wang, A. Kapok Fiber: Applications. In Biomass and Bioenergy: Applications; Hakeem, K.R., Jawaid, M., Rashid, U., Eds.; Springer: Cham, Switzerland, 2014; pp. 251–266. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Rani, S.; Rana, J. Traditionally used common fibre plants in outer siraj area, Himachal Pradesh. Indian J. Nat. Prod. Resour. 2014, 5, 190–194. [Google Scholar]
- Sidibe, M.; Williams, J.T. Baobab: Adansonia digitata L.; International Centre for Underutilised Crops: Southampton, UK, 2002; Volume 4. [Google Scholar]
- Watt, G. A Dictionary of the Economic Products of India; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sint, K.M.; Adamopoulos, S.; Koch, G.; Hapla, F.; Militz, H. Wood Anatomy and Topochemistry of Bombax ceiba L. and Bombax insigne Wall. BioResources 2013, 8, 530–544. [Google Scholar] [CrossRef]
- Oyen, L.P.A. Bombax costatum Pellegr. & Vuillet. In Record from PROTA4U; PROTA: Wageningen, The Netherlands, 2011. [Google Scholar]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Günter, S.; Weber, M.; Stimm, B.; Mosandl, R. Silviculture in the Tropics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ballesteros, J.L.; Bracco, F.; Cerna, M.; Vita Finzi, P.; Vidari, G. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador. BioMed Res. Int. 2016, 2016, 9105746. [Google Scholar] [CrossRef]
- Weniger, B.; Estrada, A.; Aragon, R.; Deharo, E.; Arango, G.; Lobstein, A.; Anton, R. Ethnopharmacology in the search for new leishmanicidal drugs. Etudes Chim. Pharmacol. 2002, 1, 391–394. [Google Scholar]
- DeWalt, S.J.; Geneviève, B.; Lia, R.C.d.M.; Celin, Q. Ethnobotany of the Tacana: Quantitative Inventories of Two Permanent Plots of Northwestern Bolivia. Econ. Bot. 1999, 53, 237–260. [Google Scholar] [CrossRef]
- Ruffinatto, F.; Crivellaro, A. Atlas of Macroscopic Wood Identification: With a Special Focus on Timbers Used in Europe and CITES-Listed Species; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Lorenzi, H. Instituto Plantarum de Estudos da Flora. Brazilian Trees: A Guide to the Identification and Cultivation of Brazilian Native Trees; Instituto Plantarum de Estudos da Flora: Nova Odessa, Brazil, 2002. [Google Scholar]
- Jain, V.; Verma, S. Assessment of credibility of some folk medicinal claims on Bombax ceiba L. Indian J. Tradit. Knowl. 2014, 13, 87–94. [Google Scholar]
- Elumalai, A.; Mathangi, N.; Didala, A.; Kasarla, R.; Venkatesh, Y. A Review on Ceiba pentandra and its medicinal features. Asian J. Pharma. Technol. 2012, 2, 83–86. [Google Scholar]
- Watt, J.M.; Breyer-Brandwijk, M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa Being an Account of Their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal; E & S Livingstone Ltd.: Edinburgh, UK, 1962. [Google Scholar]
- Van Wyk, B.E.; Gericke, N. People’s Plants: A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000. [Google Scholar]
- Adesanya, S.A.; Idowu, T.B.; Elujoba, A.A. Antisickling activity of Adansonia digitata. Planta Med. 1988, 54, 374. [Google Scholar] [CrossRef]
- Tapsoba, H.; Deschamps, J.P. Use of medicinal plants for the treatment of oral diseases in Burkina Faso. J. Ethnopharmacol. 2006, 104, 68–78. [Google Scholar] [CrossRef]
- Rosado, F.L. Manual de los Árboles de Tikal; Agencia Española de Cooperación Internacional, Programa de Preservación del Patrimonio Cultural en Iberoamérica: Barcelona, Spain, 1996. [Google Scholar]
- Rameshwar, V.; Kishor, D.; Tushar, G.; Siddharth, G.; Sudarshan, G. A Pharmacognostic and pharmacological overview on Bombax ceiba. Sch. Acad. J. Pharm. 2014, 3, 100–107. [Google Scholar]
- Chaudhary, P.H.; Khadabadi, S.S. Bombax ceiba Linn.: Pharmacognosy, ethnobotany and phyto-pharmacology. Pharmacogn. Commun. 2012, 2, 2–9. [Google Scholar] [CrossRef] [Green Version]
- DeFilipps, R.; Maina, S.; Crepin, J. Medicinal Plants of the Guianas (Guyana, Surinam, French Guiana); DC Department of Botany: Washington, DC, USA, 2004. [Google Scholar]
- Nsimba, M.M.; Lami, J.N.; Hayakawa, Y.; Yamamoto, T.K. Decreased thrombin activity by a Congolese herbal medicine used in sickle cell anemia. J. Ethnopharmacol. 2013, 148, 895–900. [Google Scholar] [CrossRef]
- Weniger, B.; Robledo, S.; Arango, G.J.; Deharo, E.; Aragón, R.; Muñoz, V.; Callapa, J.; Lobstein, A.; Anton, R. Antiprotozoal activities of Colombian plants. J. Ethnopharmacol. 2001, 78, 193–200. [Google Scholar] [CrossRef]
- Pabon, A.; TV, V.M.; Cardona, F.; Blair, S.; Ramírez, O. Ethnobotany of medicinal plants used to treat malaria by traditional healers from ten indigenous Colombian communities located in Waupes Medio. Biodivers. Int. J. 2017, 1, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Mors, W.B.; Rizzini, C.T.; Pereira, N.A. Medicinal Plants of Brazil; Reference Publications Inc.: Algonac, MI, USA, 2000. [Google Scholar]
- Standley, P.C.; Steyermark, J.A. Flora of Guatemala; Natural History Museum: Chicago, IL, USA, 1946. [Google Scholar]
- Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; Martins, D.T.d.O. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J. Ethnopharmacol. 2017, 205, 69–102. [Google Scholar] [CrossRef]
- Moraes, L.L.C.; Freitas, J.L.; Matos Filho, J.R.; Silva, R.B.L.; Borges, C.H.A.; Santos, A.C. Ethno-knowledge of medicinal plants in a community in the eastern Amazon. Revista Ciências Agrárias 2019, 42, 291–300. [Google Scholar]
- Rahul, J.; Jain, M.K.; Singh, S.P.; Kamal, R.K.; Anuradha; Naz, A.; Gupta, A.K.; Mrityunjay, S.K. Adansonia digitata L. (baobab): A review of traditional information and taxonomic description. Asian Pac. J. Trop. Biomed. 2015, 5, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Talari, S.; Gundu, C.; Koila, T.; Nanna, R.S. In vitro free radical scavenging activity of different extracts of Adansonia digitata L. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238781. [Google Scholar] [CrossRef]
- Ebaid, H.; Bashandy, S.A.; Alhazza, I.M.; Hassan, I.; Al-Tamimi, J. Efficacy of a methanolic extract of Adansonia digitata leaf in alleviating hyperglycemia, hyperlipidemia, and oxidative stress of diabetic rats. BioMed Res. Int. 2019, 2019, 2835152. [Google Scholar] [CrossRef] [Green Version]
- Kiyawa, S.A.; Mukhtar, Z.G. Antioxidant and Antipyretic Activities of Adansonia Digitata (African Baobab) Fruit, Leaf And Bark Extracts. Chem. J. 2019, 3, 1–8. [Google Scholar]
- Irondi, E.A.; Akintunde, J.K.; Agboola, S.O.; Boligon, A.A.; Athayde, M.L. Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase. Food Sci. Nutr. 2017, 5, 233–242. [Google Scholar] [CrossRef]
- Yu, Y.-G.; He, Q.-T.; Yuan, K.; Xiao, X.-L.; Li, X.-F.; Liu, D.-M.; Wu, H. In vitro antioxidant activity of Bombax malabaricum flower extracts. Pharm. Biol. 2011, 49, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Verma, S.; Katewa, S.; Anandjiwala, S.; Singh, B. Free radical scavenging property of Bombax ceiba Linn. root. Res. J. Med. Plant 2011, 5, 462–470. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.H.; Rashid, M.A.; Chowdhury, T.A. Studies of Biological Activities of the Roots of Bombax ceiba L. Bangladesh Pharm. J. 2019, 22, 219–223. [Google Scholar] [CrossRef]
- Hossain, S.; Islam, J.; Ahmed, F.; Hossain, M.; Siddiki, M.; Hossen, S. Free radical scavenging activity of six medicinal plants of Bangladesh: A potential source of natural antioxidant. J. Appl. Pharm. 2015, 7, 96–104. [Google Scholar] [CrossRef]
- Hoque, N.; Rahman, S.; Jahan, I.; Shanta, M.A.; Tithi, N.S.; Nasrin, N. A Comparative Phytochemical and Biological Study between Different Solvent Extracts of Bombax ceiba Roots Available in Bangladesh. Pharmacol. Pharm. 2018, 9, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Gandhare, B.; Soni, N.; Dhongade, H.J. In vitro antioxidant activity of Bombax ceiba. Int. J. Biomed. Res 2010, 1, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Masood Ur, R.; Akhtar, N.; Mustafa, R. Antibacterial And Antioxidant Potential Of Stem Bark Extract Of Bombax ceiba Collected Locally From South Punjab Area Of Pakistan. Afr. J. Tradit. Complementary Altern. Med. 2017, 14, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Shyur, L.-F.; Tsung, J.-H.; Chen, J.-H.; Chiu, C.-Y.; Lo, C.-P. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Int. J. Appl. Sci. Eng. 2005, 3, 195–202. [Google Scholar]
- Wanjari, M.M.; Gangoria, R.; Dey, Y.N.; Gaidhani, S.N.; Pandey, N.K.; Jadhav, A.D. Hepatoprotective and antioxidant activity of Bombax ceiba flowers against carbon tetrachloride-induced hepatotoxicity in rats. Hepatoma Res. 2016, 2, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Batish, D.R.; Singh, H.P. In vitro antioxidant potential of the edible flowers of Bombax ceiba—An underutilized tropical tree. In Proceedings of the 6th International Conference on Recent Trends in Engineering, Science & Management, Punjab, India, 8 January 2017; pp. 364–374. [Google Scholar]
- Rathore, D.; Srivastava, R.; Geetanjali, G.; Singh, R. Phytochemical screening, antioxidant and antibacterial activities of Bombax ceiba flower. Alger. J. Nat. Prod. 2019, 7, 651–656. [Google Scholar]
- Donipati, R.S.; Subhasini, P. Determining the Antioxidant Activity of Bombax ceiba Flower Extracts. Int. J. Pharm. Res. Sch. 2016, 5, 146–150. [Google Scholar]
- Komati, A.; Anand, A.; Shaik, H.; Mudiam, M.K.R.; Babu, K.S.; Tiwari, A.K. Bombax ceiba (Linn.) calyxes ameliorate methylglyoxal-induced oxidative stress via modulation of RAGE expression: Identification of active phytometabolites by GC-MS analysis. Food Funct. 2020, 11, 5486–5497. [Google Scholar] [CrossRef]
- Kiran, C.R.; Rao, D.B.; Sirisha, N.; Rao, T.R. Assessment of phytochemicals and antioxidant activities of raw and germinating Ceiba pentandra (kapok) seeds. J. Biomed. Res. 2015, 29, 414. [Google Scholar]
- Fofie, C.K.; Wansi, S.L.; Nguelefack-Mbuyo, E.P.; Atsamo, A.D.; Watcho, P.; Kamanyi, A.; Nole, T.; Nguelefack, T.B. In vitro anti-hyperglycemic and antioxidant properties of extracts from the stem bark of Ceiba pentandra. J. Complementary Integr. Med. 2014, 11, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Fitria, Z.; Efdi, A.; Efdi, M. Isolation and characterization of antioxidative constituent from stem bark extract of Ceiba pentandra L. J. Chem. Pharm. Res. 2015, 7, 257–260. [Google Scholar]
- Bhavani, R.; Bhuvaneswari, E.; Rajeshkumar, S. Antibacterial and Antioxidant activity of Ethanolic extract of Ceiba pentandra leaves and its Phytochemicals Analysis using GC-MS. Res. J. Pharm. Technol. 2016, 9, 1922–1926. [Google Scholar] [CrossRef]
- Nguelefack, T.B.; Fofie, C.K.; Nguelefack-Mbuyo, E.P.; Wuyt, A.K. Multimodal α-Glucosidase and α-Amylase Inhibition and Antioxidant Effect of the Aqueous and Methanol Extracts from the Trunk Bark of Ceiba pentandra. BioMed Res. Int. 2020, 2020, 3063674. [Google Scholar] [CrossRef] [Green Version]
- Datsugwai, M.S.S.; Yusuf, A.S. Phytochemical analysis and antimicrobial activity of baobab (Adansonia digitata) leaves and stem bark extracts on Staphylococcus aureus and Escherichia coli. J. Biosci. Biotechnol. 2017, 6, 9–16. [Google Scholar]
- Osuntokun, O.; AjayiAyodele, A.M. Assessment of Antimicrobial and Phytochemical Properties of Crude Leaf and Bark Extracts of Ceiba Pentandra on Selected Clinical Isolates. JBMOA 2017, 4, 17–23. [Google Scholar]
- Parulekar, G. Antibacterial and phytochemical analysis of Ceiba pentandra (L.) seed extracts. J. Pharmacogn. Phytochem. 2017, 6, 586–589. [Google Scholar]
- Kadam, S.D.; Kondawar, M. Evaluation of In-Vitro Anticancer Activity and Quantitation of Active Ingredient of Adansonia digitata L. Fruit. Int. J. Pharm. Sci. Drug Res. 2019, 11, 358–369. [Google Scholar]
- Kumar, R.; Kumar, N.; Ramalingayya, G.V.; Setty, M.M.; Pai, K.S. Evaluation of Ceiba pentandra (L.) Gaertner bark extracts for in vitro cytotoxicity on cancer cells and in vivo antitumor activity in solid and liquid tumor models. Cytotechnology 2016, 68, 1909–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, M.A.; Mir, B.A.; Bisht, A.; Rao, Z.; Singh, D. Antidiabetic properties and metal analysis of Bombax ceiba flower extracts. Glob. J. Addict. Rehabil. Med. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- De, D.; Ali, K.M.; Chatterjee, K.; Bera, T.K.; Ghosh, D. Antihyperglycemic and antihyperlipidemic effects of n-hexane fraction from the hydro-methanolic extract of sepals of Salmalia malabarica in streptozotocin-induced diabetic rats. J. Complement. Integr. Med. 2012, 9, 12. [Google Scholar] [CrossRef]
- Sharmin, R.; Joarder, H.; Alamgir, M.; Mostofa, G.; Islam, M. Antidiabetic and hepatoprotective activities of Bombax ceiba young roots in alloxan-induced diabetic mice. J. Nutr. Health Food Sci. 2018, 6, 1–7. [Google Scholar]
- Guang-Kai, X.; Xiao-Ying, Q.; Guo-Kai, W.; Guo-Yong, X.; Xu-Sen, L.; Chen-Yu, S.; Bao-Lin, L.; Min-Jian, Q. Antihyperglycemic, antihyperlipidemic and antioxidant effects of standard ethanol extract of Bombax ceiba leaves in high-fat-diet-and streptozotocin-induced Type 2 diabetic rats. Chin. J. Nat. Med. 2017, 15, 168–177. [Google Scholar]
- Bhavsar, C.; Talele, G.S. Potential anti-diabetic activity of Bombax ceiba. Bangladesh J. Pharmacol. 2013, 8, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Fofié, C.K.; Nguelefack-Mbuyo, E.P.; Tsabang, N.; Kamanyi, A.; Nguelefack, T.B. Hypoglycemic properties of the aqueous extract from the stem bark of Ceiba pentandra in dexamethasone-induced insulin resistant rats. Evid. Based Complement. Altern. Med. 2018, 2018, 4234981. [Google Scholar] [CrossRef]
- Satyaprakash, R.; Rajesh, M.; Bhanumathy, M.; Harish, M.; Shivananda, T.; Shivaprasad, H.; Sushma, G. Hypoglycemic and antihyperglycemic effect of Ceiba pentandra L. gaertn in normal and streptozotocininduced diabetic rats. Ghana Med. J. 2013, 47, 121–127. [Google Scholar]
- Ayele, Y.; Kim, J.-A.; Park, E.; Kim, Y.-J.; Retta, N.; Dessie, G.; Rhee, S.-K.; Koh, K.; Nam, K.-W.; Kim, H.S. A methanol extract of Adansonia digitata L. leaves inhibits pro-inflammatory iNOS possibly via the inhibition of NF-κB activation. Biomol. Ther. 2013, 21, 146. [Google Scholar] [CrossRef] [Green Version]
- Selvarani, V. Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds. J. Med. Plants Res. 2009, 3, 576–582. [Google Scholar]
- Anandarajagopal, K.; Sunilson, J.A.J.; Ajaykumar, T.; Ananth, R.; Kamal, S. In-vitro anti-inflammatory evaluation of crude Bombax ceiba extracts. Eur. J. Med. Plants 2013, 3, 99–104. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Orabi, M.A.; Abdelhamid, R.A.; Abdelkader, M.S.; Madkor, H.R.; Darwish, F.M.; Hatano, T.; Elsadek, B.E. Ethyl acetate extract of Ceiba pentandra (L.) Gaertn. reduces methotrexate-induced renal damage in rats via antioxidant, anti-inflammatory, and antiapoptotic actions. J. Tradit. Complement. Med. 2019, 10, 478–486. [Google Scholar] [CrossRef]
- Basipogu, D.; Basha Syed, N.; Chitta, S.K. Cytotoxic effect of Adansonia digitata L. on breast cancer cell lines. Eur. J. Biomed. Pharm. Sci. 2018, 5, 956–959. [Google Scholar]
- Sa’id, A.; Musa, A.; Mashi, J.; Maigari, F.; Nuhu, M. Phytochemical Screening and Hepatoprotective Potential of Aqueous Fruit Pulp Extract of Adansonia digitata against CCL4 Induced Liver Damage in Rats. Asian J. Biochem. Genet. Mol. Biol. 2020, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.A.; Mohamed, I.; El-Din, T.T.; Hassan, A.; Hassan, M. Hepatoprotective effect of Adansonia digitata L.(Baobab) fruits pulp extract on CCl4-induced hepatotoxicity in rats. World J. Pharm. Res. 2015, 4, 368–377. [Google Scholar]
- Al-Qarawi, A.; Al-Damegh, M.; El-Mougy, S. Hepatoprotective influence of Adansonia digitata pulp. J. Herbs Spices Med. Plants 2003, 10, 1–6. [Google Scholar] [CrossRef]
- Badr-Eldin, S.M.; Aldawsari, H.M.; Hanafy, A.; Abdlmoneim, M.S.; Abdel-Hady, S.E.-S.; Hasan, A. Enhanced Hepatoprotective Effect of Adansonia Digitata Extract on Paracetamol-Induced Hepatotoxicity. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 787–794. [Google Scholar]
- Lin, C.-c.; Chen, S.-y.; Lin, J.-m.; Chiu, H.-f. The Pharmacological and Pathological Studies on Taiwan Folk Medicine (Vlll): The Anti-inflammatory and Liver Protective Effects of Mu-mien. Am. J. Chin. Med. 1992, 20, 135–146. [Google Scholar] [CrossRef]
- Bairwa, N.K.; Sethiya, N.K.; Mishra, S. Protective effect of stem bark of Ceiba pentandra linn. against paracetamol-induced hepatotoxicity in rats. Pharmacogn. Res. 2010, 2, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.O.; Said, A.; Aboutabl, E.; Azzam, M.; Creczynski-Pasa, T.B. Antioxidant activity of methanolic extract of Bombax ceiba. Redox Rep. 2009, 14, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ch, R.K.; Madhavi, Y.; Raghava Rao, T. Evaluation of phytochemicals and antioxidant activities of Ceiba pentandra (kapok) seed oil. J. Bioanal. Biomed. 2012, 4, 068–073. [Google Scholar]
- Jalalpure, S.; Gadge, N. Diuretic effects of young fruit extracts of Bombax ceiba L. in rats. Indian J. Pharm. Sci. 2011, 73, 306. [Google Scholar] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Silva, N.C.C.; Fernandes Júnior, A. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 402–413. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Kumaran, A. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Sarkar, D. The anti-inflammatory activity of plant derived ingredients: An analytical review. Int. J. Pharm. Sci. Res. 2020, 11, 496–506. [Google Scholar] [CrossRef]
- Das, S.K.; Samantaray, D.; Patra, J.K.; Samanta, L.; Thatoi, H. Antidiabetic potential of mangrove plants: A review. Front. Life Sci. 2016, 9, 75–88. [Google Scholar] [CrossRef] [Green Version]
Genus | Morphological Character | Number of Species | Distribution |
---|---|---|---|
Adansonia L. | Trunks swollen; leaves simple sometimes lobed; ovary 5–10 locular; fruits indehiscent; 2n = 72, 88, 144, 160. Adansonia digitata (2n = 144, 160) | 8 species | Mainland Africa, Madagascar introduced to many countries |
Aguiaria Ducke | Lepidote hairs; leaves simple; staminal tube short with various elongated free filaments; fruits dehiscent; seed ellipsoid | 1 species | Amazon region of Brazil |
Bernoullia Oliv. | Trees leave digitate, staminal tube long, stamens 15–20, fruits dehiscent; seeds numerous, winged | 3 species | Mexico to Colombia |
Bombax L. | Deciduous tree, trunk spiny; leaves digitate; deciduous sepals, fruits dehiscent, seeds winged, determined columella; 2n = 72, 92, 96. | 9 species | Tropical Africa, Asia, and Australia |
Camptostemon Mast. * | Mangrove tree or shrubs; epicalyx fused, enclosing flower; calyx fused; ovary bilocular; fruits dehiscent | 3 species | Australia, New Guinea, Borneo, Phillippines |
Catostemma Benth. | Trees, leaves simple, calyx campanulate; ovary trilocular, fruits dehiscent; cotyledons folded, unequal | 15 species | The northern part of South America |
Cavanillesia Ruiz. & Pav. | Trunks swollen sometimes, leaves simple or palmately lobed, ovary 3–5 locular; fruits winged, indehiscent; 2n = 72, 86, 88 | 5 species | Panama to Brazil and Peru |
Ceiba Mill. | Trunks spiny, sometimes swollen; leaves digitate; staminal tube sometimes thickened, stamens 5–15, fruits dehiscent, seeds winged; 2n = 72, 74, 75, 76, 80, 84, 86, 88, 92 | 21 species | Tropical America, now introduced into the Old World |
Chiranthodendron Sesse ex Larreat. | Leaves simple to lobed; flowers leaf-opposed; sepals dark red, petals absent, fruits dehiscent | 1 species | Mexico, Guatemala |
Eriotheca Schott & Endl. | Trees unarmed, leaves digitate, staminal tube without phalanges; fruits dehiscent; seeds small, winged; 2n = 92, 210, 270, 6n = 276 | 23 species | Tropical South America |
Fremontodendron Coville | Shrubs; leaves simple or lobed, sepals yellow-orange, petals absent, fruits dehiscent | 2 species | The southern part of North America |
Gyranthera Pittier | Tall deciduous tree, leaves digitate, anthers spirally twisted, fruits dehiscent, seeds winged; 2n = 96 | 2 species | Panama, Venezuela |
Huberodendron Ducke | Tall trees, hairs stellate, leaves simple; calyx campanulate; fruits dehiscent, seeds winged | 3 species | Costa Rica to Brazil, Bolivia, and Peru. |
Lagunaria (DC.) Rchb. * | Leaves simple, hairs lepidote, epicalyx fused, filaments diverging at different levels; fruits stinging, dehiscent | 1 species | Norfolk and Howe Islands, Australia |
Matisia Humb & Bonpl. | Leaves simple, inflorescences cauliflowers, flowers zygomorphic, fruit drupe | 26 species | Tropical America |
Neobuchia Urb. | Trunk spiny, leaves digitate, stamens 5, anthers twisted; stigmatic branches short; seeds exalbuminous | 1 species | Haiti |
Ochroma Sw. | Tree, leaves simple to lobed, venation palmate; stigma spirally grooved; fruits dehiscent; 2n = 78, 88, 90 | 1 species | Tropical America |
Pachira Aubl. | Trunk spiny sometimes; leaves digitate; stamens 90–1000; fruits large, dehiscent, 2n = 72, 82, 88, 92 (neotropical species), 144, 150 (palaeotropical species) | 47 species | Tropical Africa, neotropical regions |
Patinoa Cuatrec. | Trees with verticillate branches, leaves simple, sessile anthers, ovules many, fruits indehiscent | 4 species | Colombia to Brazil and Peru; |
Pentaplaris L.O. Williams & Standl. * | Leaves simple, stipules fused; epicalyx fused, ovary bilocular, fruits indehiscent; cotyledons foliose | 3 species | Costa Rica, Ecuador, Bolivia, and Peru |
Phragmotheca Cuatrec. | Trees, lepidote hairs rare, leaves simple, flowers leaf-opposed; fruit a drupe; cotyledons flat or folded | 5 species | Panama to Peru |
Pseudobombax Dugand | Trunks swollen sometimes, leaves usually digitate, ovary 5 to 8 locular, fruits dehiscent, seeds winged; 2n = 72, 84, 88 | 22 species | Mexico, Tropical South America |
Quararibea Aubl. | Trees; lepidote hairs sometimes, calyx usually ridged; ovary 2 to 4 locular, fruit a drupe; n = 72(?) | 88 species | Neotropical regions |
Scleronema Benth. | Tall tree leaves simple, staminal tube short, ovary 2 to 4 locular, fruits dehiscent or indehiscent | 3 species | Venezuela, Guyana and Brazil |
Septotheca Ulbr. | Tall tree, lepidote hairs, simple leaves, cordate, anthers sessile; fruits dehiscent, seeds winged | 1 species | Peru, Colombia, and Brazil. |
Spirotheca Ulbr. | Epiphytic stranglers to the tree, trunk spiny sometimes, leaves digitate, stamens 5, anthers spirally twisted, fruits dehiscent; 2n = 88, 92 | 5 species | Panama to Peru and Brazil |
Uladendron Marc.-Berti * | Leaves simple, slightly lobed, fruits dehiscent, seeds winged; cotyledon distorted | 1 species | Venezuela |
Compound | Plant | Part | Reference |
---|---|---|---|
Alkaloids | |||
Adansonin | A. digitata | Seeds and pulp Flowers | [39] |
Funebral | Quararibea funebris | [40] | |
Funebradiol | [41] | ||
Funebrine | [42] | ||
Anthocyanins | |||
Cyanidin-3-glucoside | Ceiba acuminata | [43] | |
Chorisia speciose (Ceiba speciosa (A.St.-Hil., A.Juss. & Cambess.) Ravenna) | |||
Ochroma lagopus (Ochroma pyramidale (Cav. ex Lam.) Urb.) | Calyx | ||
Pachira aquatica | Flowers | ||
Cyanidin-3,5-diglucoside | Bombax ceiba | ||
C. speciosa | |||
Pseudobombax ellipticum | |||
P. grandiflorum | |||
Cyanidin-3-rutinoside | Pachira aquatica | ||
Cyanidin-7-methyl ether-3-β-d-glucoside | B. ceiba | [44] | |
Pelargonidin-5-β-d-glucoside | B. ceiba | ||
Pelargonidin-3,5-diglucoside | B. ceiba | [45] | |
Coumarins | |||
Cleomiscosine A | Ochroma lagopus | Heartwood | [46] |
Esculetin | B. ceiba | Flowers | [47] |
Fraxetin | |||
Scopoletin | |||
Scopolin | |||
Scopoletin | P. aquatica | Stems | [48] |
Flavonoids | |||
Apigenin | B. ceiba | Flowers | [49] |
Apigenin O-pentoside | A. digitata | Fruits | [50] |
Apigenin-7-O-β-d-rutinoside | Chorisia insignis (Ceiba insignis (Kunth) P.E.Gibbs & Semir) | Leaves | [51] |
Catechin | A. digitata | Fruits | [50] |
Ceiba pentandra | Stem bark | [52] | |
Ochroma pyramidale | Leaves | [53] | |
Cosmetin | B. ceiba | Flowers | [49] |
5,4′-Dihydroxy-3,6,7,8-tetramethoxyflavone | P. aquatica | Stems | [48] |
5,4′-Dihydroxy-3,7-dimethoxyflavone | |||
Epicatechin | A. digitata | Fruits | [50,54] |
Epicatechin | O. pyramidale | Leaves | [53] |
3,5,6,7,8,3′,4′-Heptamethoxyflavone | P. aquatica | Stems | [48] |
Hesperidin (5,3’-dihydroxy- 4’-methoxy-flavan-7-O-α-Lrhamnopyranosyl- (1→ 6)-β-d-lucopyranoside | B. ceiba | Roots | [55] |
5-Hydroxy-7,4′,5′-trimethoxy isoflavone- 3′-O-α-l-arabinofuranosyl( 1→6)-β-d-glucopyranoside | Ceiba pentandra | Stem bark | [56] |
5-Hydroxyauranetin | P. aquatica | Stems | [48] |
5-Hydroxy-7,4’-dimethoxy-flavone | Bombax anceps | Roots | [57] |
5-Hydroxy-3,7,4’-trimethoxy- flavone | Bombacopsis glabra (Pachira glabra Pasq.) | Stem bark, root bark | [58] |
5-Hydroxy-3,6,7,4’-tetra-methoxyflavone | |||
5-Hydroxy-3,6,7,8,4’-penta-methoxyflavone | [58] | ||
Isovitexin | B. ceiba | Flowers | [49] |
Linarin | |||
3,7-Dihydroxy-flavan-4-one- 5-O-β-d-galactopyranosyl- (1→ 4)-β-d-glucopyranoside | A. digitata | Roots | [59] |
5,7-Dimethoxy-flavone | Bombax anceps | Roots | [57] |
3,5,7-Trimethoxy-flavone | B. anceps | Roots | |
Luteolin-7-O-β-d-rutinoside | C. insignis | Leaves | [51] |
Kaempferol | A. digitata | Fruits | [50] |
B. ceiba | Flowers | [60] | |
C. pentandra | . | [61] | |
Kaempferol 3-O-galactoside | A. digitata | Fruits | [50] |
Kaempferol 3-O-glucoside | A. digitata | Fruits | |
Kaempferol 3,7,4′-trimethyl ether | P. aquatica | Stems | [48] |
Pentandrin | C. pentandra | Stem bark | [62] |
Pentandrin glucoside | C. pentandra | Stem bark | |
Quercetin | B. ceiba | Flowers | [60] |
A. digitata | Fruits | [50] | |
C. pentandra | - | [61] | |
Quercetin-3-O-glucoside | A. digitata | Fruits | [50,54] |
Quercetin-7-O-xylopyranoside | A. digitata | Stem | [63] |
Retusin | P. aquatica | Stems | [48] |
Rhoifolin | Chorisia crispiflora | Leaves | [64] |
Chorisia pubiflora | Leaves | ||
C. speciosa | Leaves | [64,65] | |
Rutin | A. digitata | Leaves | [50] |
C. insignis | Leaves | [51] | |
Saponarin | B. ceiba | Flowers | [49] |
Santin-7-methyl ether | P. aquatica | Stems | [48] |
Shamimin | B. ceiba | Leaves | [66] |
Shamimicin | B. ceiba | Stem bark | [67] |
Tiliroside | C. speciosa | Leaves | [65] |
Tiliroside isomer | A. digitata | Fruits, leaves | [50] |
Tiliroside I | |||
Tiliroside II | |||
3,3’,4’-Trihydroxy flavan-4-one-7-O- α-L-rhamnopyranoside | A. digitata | Roots | [54,68] |
Vicenin 2 | B. ceiba | Flowers | [49] |
Vitexin | O. pyramidale | Leaves | [53] |
Xanthomicrol | B. ceiba | Flowers | [49] |
Lignans and neolignans | |||
Boehmenan | Ochroma lagopus | Heart wood | [46] |
Boehmenan B | O. lagopus | Heart wood | [69] |
Boehmenan C | |||
Boehmenan D | |||
Bombasin | B. ceiba | Flowers | [70] |
Bombasin-4-O-glucoside | |||
Bombasinol A | [71] | ||
Carolignan A | O. lagopus | Heart wood | [69] |
Carolignan B | |||
Carolignan C | |||
Carolignan D | |||
Carolignan E | |||
Carolignan F | |||
Dihydro-dehydro-diconiferyl alcohol- 4-O-glucopyranoside | B. ceiba | Flowers | [70] |
5,6-Dihydroxymatairesinol | B. ceiba | Flowers | [71] |
Matairesinol | |||
(+)-Pinoresinol | |||
Secoisolariciresinol diferulate | O. lagopus | Heart wood | [46] |
Sesquiterpenes and sesquiterpene lactones | |||
Aquatidial | Pachira aquatica | Root bark | [72] |
Bombamalabin | B. malabaricum | Root bark | [73] |
Bombamalone A | Roots | [74] | |
Bombamalone B | |||
Bombamalone C | |||
Bombamalone D | |||
Bombamaloside | |||
7-Hydroxy-cadalene | Roots | [75] | |
Isohemigossypol-1-methyl ether | B. anceps | Roots | [57] |
B. ceiba | Root bark | [73,75] | |
Isohemigossypol-2-methyl ether | B. anceps | Roots | [57] |
B. ceiba | Roots, root bark | [75,76] | |
Isohemigossypol-1,2-dimethyl ether | |||
Isohemigossypol-2,7-dimethyl ether | B. ceiba | Roots | [74,75] |
Lacinilene C | |||
Hemigossylic acid lactone-2-hydroxy- 7-methyl ether | |||
Hemigossylic acid lactone-2-hydroxy- 7-methyl ether | C. pentandra | Root bark | [77] |
6-Hydroxy-5-isopropyl-3-methyl-7- methoxy-8,1- naphthalene carbolactone | B. ceiba | Roots | [78] |
Isohemigossylic acid lactone-2- methyl ether | B. ceiba | Roots | [74,76] |
Isohemigossylic acid lactone-2- methyl ether | C. pentandra | Root bark | [77] |
5-Isopropyl-3-methyl-2,7-dimethoxy- 8,1-naphthalene carbolactone | B. ceiba | Roots | [75] |
5-Isopropyl-3-methyl-2,7-dimethoxy- 8,1-naphthalene carbolactone | C. pentandra | Root bark | [77] |
Sterols | |||
Campesterol | A. digitata | Seeds | [79] |
B. ceiba | Flowers | [49] | |
A. fony | Seeds | [79] | |
A. za | |||
A. suarezensis | |||
A. grandidieri | |||
A. madagascariensis | |||
β-Sitosterol | B. ceiba | Stem bark | [37] |
B. ceiba | Root bark | [73] | |
B. ceiba | Flowers | [80] | |
A. digitata | Seeds | [79] | |
C. pentandra | Stem bark | [62] | |
Stigmasterol | A. digitata | Seed | [79] |
B. ceiba | Flowers | [80] | |
A. grandidieri | Seeds | [79] | |
A. madagascariensis | |||
A. fony | |||
A. za | |||
A. suarezensis | |||
Tannins | |||
Epicatechin-(4β→8)-epicatechin | A. digitata | Fruits | [54] |
Epicatechin-(4β→6)-epicatechin | |||
Epicatechin-(2β→O→7, 4β→ 8)-epicatechin | |||
Epicatechin-(4→β8)-epicatechin- (4→β8)-epicatechin | |||
Ethyl gallate | B. ceiba | Seeds | [81] |
Gallic acid | Stem bark | [37] | |
Seeds | [81] | ||
1-Galloyl-β-d-glucose | |||
Tannic acid | |||
Triterpenes | |||
β-Amyrin | C. speciosa | Leaves | [65] |
Lupeol | B. glabra | Stem bark, root bark | [58] |
B. ceiba | Stem bark | [37] | |
B. malabarica | Root bark | [73] | |
B. anceps | Roots | [57] | |
Cavanillesia hylogeiton | Stem bark | [61] | |
O. pyramidale | Leaves | [53] | |
P. aquatica | Root bark | [72] | |
Oleanolic acid | B. ceiba | Roots | [55] |
O. pyramidale | Leaves | [53] | |
Ursolic acid | A. digitata | Fruits | [82] |
Other compounds | |||
Argentilactone I | Chorisia crispiflora | - | [83] |
Argentilactone II | C. crispiflora | - | [83] |
Bombalin | B. ceiba | Flowers | [70] |
Bombaxquinone B | B. anceps | Roots | [57] |
B. ceiba | Roots | [74] | |
C. pentandra | Root bark | [77] | |
B. ceiba | Root bark | [84] | |
(R)-6-[(Z)-1-Heptenyl)]-5,6-dihydro- 2H-pyran-2-one | C. crispiflora | - | [83] |
Hemigossypolon-6-methyl ether | B. ceiba | Root bark | [85] |
Isohemigossypolone | B. glabra | Stem bark, root bark | [58] |
B. ceiba | Root bark | [85] | |
C. pentandra | Heart wood | [86] | |
P. aquatica | Root bark | [58,87] | |
Isohemigossypolone-2-methyl ether | P. aquatica | Root bark | [87] |
Neochlorogenic acid | B. ceiba | Flowers | [70] |
trans-3-(p-Coumaroyl)-quinic acid | |||
3-Methyl-2(3H)-benzofuranone |
Name of the Species | Parts Used | Mode of Usage | Country | Reference |
---|---|---|---|---|
Adansonia digitata L. | Leaves and seeds | Soup, sauce, fermentation, gruel | Southern Africa, Italy | [15,106] |
Adansonia gregorii F.Muell. | roots, fruit pulp, seeds, tuberous, young leaves, | Food | Aborigines in Australia | [15] |
Bombax ceiba L. | Dry cores of the flower | soup | Shan State (Myanmar) and Northern Thailand | [107] |
Flower buds | Vegetable | South India | [108] | |
Seeds | Roasted and eaten | [32] | ||
Bombax costatum Pellegr. & Vuillet | Unripe fruits and flowers | Soup | Burkina Faso | [109] |
Catostemma fragrans Benth. | Aril | Fresh | Guianas | [110] |
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth | Seed, Root | Sweet, water source | Peru | [104,111] |
Ceiba pentandra (L.) Gaertn. | Young leaves, petals, capsules | Vegetable | Tropical countries of Asia and America, Thailand | [15,32] |
Ceiba aesculifolia (Kunth) Britten & Baker f. | Young leaves, ripe fruits | Vegetable, Stew | Mexico | [32] |
Pachira glabra Pasq. | Young Leaves | Vegetable | Equatorial Africa | [32] |
Pachira insignis (Sw.) Savigny | Seeds, young leaves, flowers | Vegetable | South America | [15] |
Patinoa almirajo Cuatrec. | Fruit | Edible fruit | Brazil, Colombia | [32] |
Pseudobombax ellipticum (Kunth) Dugand | Beverage | South America | [33] | |
Quararibea cordata (Bonpl.) Vischer | Fruit | Juice, drinks | South America | [15] |
Quararibea funebris (La Llave) Vischer | Flowers | Chocolate Drinks, desserts | South America | [33] |
Flowers | Spice | South America | [112] | |
Quararibea obliquifolia (Standl.) Standl. | Fruit | Fresh | Ecuador | [113] |
Name of the Species | Parts Used | Purpose | Country | Reference |
---|---|---|---|---|
Adansonia digitata L. | Fruit shell | Fuel | Tanzania | [118] |
Leaves | Fodder | The Sahelian region, Africa | [118] | |
Fiber from bark | Ropes, textile, basketry, fishing lines | Africa | [118] | |
Tree trunk | Reservoir of water | Sudan | [15] | |
Roots | Red dye | East Africa | [118] | |
Aguiaria excelsa Ducke | Wood | Boat, construction | Brazil | [28] |
Bombax ceiba L. | Fiber | Mattress, pillows, cloth | Asia | [117] |
Bombax insigne Wall. | Wood | Timber, boat construction, matches, plywood | India, Sri Lanka, Nepal | [119,120] |
Bombax costatum Pellegr. & Vuillet | Wood | Drum, xylophone, match stick, home appliances, door frame, fuelwood | Africa | [109] |
Tannin | Dye | Africa | [109] | |
Fruits | Mattress, cushion, pillow | Africa | [109,121] | |
Bombax rhodognaphalon K. Schum. | Leaves, roots | Witchcraft | Africa | [122] |
Catostemma commune Sandwith | Wood | Timber | Central and Latin America | [123] |
Cavanillesia umbellata Ruiz & Pav. | Bark | Drum hoops | Peru | [111] |
Wood | Door fillings, light boxes, toothpicks, paper pulps | Peru | [111] | |
Ceiba aesculifolia (Kunth) Britten & Baker f. | Fiber | Fiber | Mexico, Guatemala | [32] |
Ceiba pentandra (L.) Gaertn. | Fiber, wood | Paper, fiber, insulation material, pillows, toys | Tropical countries | [32,116] |
Ceiba samauma (Mart. & Zucc.) K.Schum. | Seed | Thermal insulation | Ecuador | [124] |
Ceiba trischistandra (A.Gray) Bakh. | Fruit wall | Fiber | Java, Peru, and Brazil | [32] |
Huberodendron patinoi Cuatrec. | Wood | Timber | Colombia | [125] |
Ochroma pyramidale (Cav. ex Lam.) Urb. | Wood | Bowls, rafts, canoes, toys, carvings (Balsa) | Venezuela | [16] |
Pachira aquatica Aubl. | Whole tree | Ornamental, fortune tree | East Asia, South East Asia | [15] |
Pachira insignis (Sw.) Savigny | Wood | Paper | South America | [32] |
Pentaplaris davidsmithii Dorr & C. Bayer | Wood | Firewood | Bolivia | [126] |
Quararibea funebris (La Llave) Vischer | Flowers | Perfume | South America | [33] |
Quararibea malacocalyx A.Robyns & S.Nilsson | Seed fiber | Thermal and acoustic insulation | Ecuador | [124] |
Scleronema micranthum (Ducke) Ducke | Wood | Construction, joinery, flooring, furniture | Brazil | [127] |
Spirotheca rivieri (Decne.) Ulbr. | Wood | Box, Linings | Brazil | [128] |
Species | Country | Parts Used | Disease | Mode of Usage | Reference |
---|---|---|---|---|---|
Adansonia digitata L. | India | Pulp | Diarrhea and dysentery | External application | [118] |
India | Leaves | Swellings | Crushed and applied | [118] | |
South and East Africa | Leaves | Malaria and fever | Mixed with water | [131] | |
Cameroon, Central Africa | Fruits, seeds | Dysentery, fever | Decoction | [131] | |
South Africa | Leaves | Diarrhea, fever, kidney and liver diseases, inflammation, asthma | Infusion | [132] | |
Nigeria | Bark | Sickle-cell anemia | Aqueous extract | [15,133] | |
Burkina Faso | Leaves | Toothache, gingivitis | [134] | ||
Bernoullia flammea Oliv. | Guatemala | Seeds | Intoxication | Smoke | [135] |
Bombax ceiba L. | India | Root | A nocturnal emission, cold, and cough, dysentery, diarrhea, snake bite, gonorrhea, leucorrhea | Drink the powdered solution; applied the paste | [1,136] |
India, Nepal | Bark | Wounds, diarrhea, digestive disorder, heartburn, kidney stone | Paste, Juice | [1,136,137] | |
India, Pakistan | Stem, root | Acne, skin blemishes, pimples | Powder | [136,137] | |
India, Pakistan | Root | Diabetes | [129,137] | ||
China | Bark, root | Muscular injury | [137] | ||
Bangladesh | Seeds, roots | Leprosy | [137] | ||
India | Fruits | Urolithiasis | Oral administration | [129] | |
India | Gum | Asthma, piles, diarrhea and dysentery, dental caries, scabies | [1] | ||
India | Flower | Hematuria, anemia, leucorrhea, hydrocoele, gonorrhea, menstrual disorders, boils and sores | [1] | ||
Bombax insigne Wall. | India | Bark | Dysentery | Tea | [122] |
Bombax buonopozense P.Beauv. | Africa | Leaves | Venereal disease, constipation, infections | [122] | |
Bombax costatum Pellegr. & Vuillet | Senegal, Sierra Leone, Burkina Faso | Bark | Diuretic properties, dysentery, epilepsy | [109,122] | |
Senegal | Leaves | Oedema, snake bite, convulsions, measles | Extract, decoction, paste | [109,121] | |
Bombax rhodognaphalon K. Schum. | Tanzania, Mozambique | Bark | Diarrhea | [122] | |
Catostemma fragrans Benth. | Guianas | Bark | Fever | Decoction | [138] |
Catostemma commune Sandwith | Guianas | Seed | Snoring | [138] | |
Cavanillesia platanifolia (Humb. & Bonpl.) Kunth | South America, Peru | Bark, oil | Underweight | Infusion | [111,122] |
Ceiba pentandra (L.) Gaertn. | South America | Immature fruits, roots, leaves barks | Cough, hair shampoo; component of ayahuasca, psychoactive drugs | [15,32] | |
Java | Leaves | Intestinal catarrh and urethritis, gonorrhea | Infusion | [15] | |
Congo | Bark | Management of sickle cell anemia | Aqueous extracts | [139] | |
Philippines | Bark | Vomitive and aphrodiastic | Decoction | [15] | |
Ceiba ventricosa (Nees & Mart.) Ravenna | Brazil | Skin disease, inflammation | [122] | ||
Chiranthodendron pentadactylon Larreat. | Mexico | Flowers | Gastrointestinal disorder, diarrhea, dysentery, blood pressure | Infusion | [122] |
Eriotheca globosa (Aubl.) A.Robyns | South America | Ripe fruits | Cuts, wounds | Application | [122] |
Fremontodendron californicum (Torr.) Coult. | North America | Bark | Throat irritation | Infusion | [122] |
Huberodendron patinoi Cuatrec. | Colombia | Bark | Leishmania | [140] | |
Huberodendron swietenioides (Gleason) Ducke | Ecuador | Leaves | Diabetes | Aqueous infusion | [124] |
Matisia glandifera Planch. & Triana | Colombia | Bark, leaves | Malaria | [141] | |
Ochroma pyramidale (Cav. ex Lam.) Urb. | Brazil | Root bark | Emetic | [142] | |
Pachira aquatica Aubl. | Nicaragua | Bark | Stomach complaint, headache | [15] | |
Pachira glabra Pasq. | India | Leave | Blood pressure, Anemia | [122] | |
Pseudobombax ellipticum (Kunth) Dugand | Guatemala | Bark | Cough and catarrh | Decoction | [143] |
Pseudobombax grandiflorum (Cav.) A.Robyns | Brazil | Bark | Wound healing | Decoction | [144] |
Quararibea cordata (Bonpl.) Vischer | South America | Astringent, tonic, antiseptic, for skin infections | [122] | ||
Quararibea funebris (La Llave) Vischer | South America | Flowers | Hallucinogenic, psychopathic fears | [40] | |
Scleronema micranthum (Ducke) Ducke | Brazil | Leaf | Toothache | [145] |
Plant Species and Part | Part (s) and Solvent | Assay | Results | References |
---|---|---|---|---|
Antioxidant activity | ||||
Adansonia digitata L. | Methanolic leaf extracts; ethanolic leaf | In vitro DPPH, ABTS, FRAP, β-carotene bleaching test, superoxide scavenging assay; CAT and SOD, and GSH assay | The DPPH scavenging activity recorded highest in seed extract (27.69%) and lowest in fruit wall (20.69%) extract. The antioxidant status of the STZ induced diabetic rats are normalized by reducing the elevated levels of reduced glutathione (GSH) superoxide dismutase (SOD), and catalase (CAT) | [50,147,148,149,150] |
Methanolic fruit extracts; | DPPH, ABTS, FRAP assay, β-carotene bleaching test, superoxide scavenging assay | Scavenge the DPPH free radicals with the percentage of inhibition of 13.4, 29.23, and 39.21%, respectively | [50,149] | |
Bombax malabaricum DC. | n-hexane and methanol extracts of flower | DPPH radical scavenging, lipid peroxidation, myeloperoxidase activity | Scavenged DPPH radicals over a concentration range of 0.55–0.0343 mg/mL and 0.5–0.0312 mg/mL, respectively | [49,151] |
Bombax ceiba L. | Methanolic root; aqueous soluble partitioned of the methanolic root; methanol, dichloromethane, and petroleum ether extracts of roots | The extract exhibited dose-dependent DPPH and reducing power assay. Phenolic constituents donate. OH leading to resonance stabilization | Methanolic root extract could scavenge DPPH radicals, lipid peroxidation, and ascorbyl radicals with an EC50 value of 87 µg/mL | [152,153,154,155] |
Aqueous and ethanolic bark Methanolic stem bark | DPPH, ABTS, nitric oxide and superoxide radical scavenging activity, lipid peroxidation, metal chelating, and total antioxidant capacity | Inhibited lipid peroxidation in rat liver microsome induced by ascorbyl and peroxynitrite radicals with an IC50 value of 141 µg/mL and 115 µg/mL, respectively | [156,157] | |
Methanolic extract of the whole plant | DPPH scavenging assay | IC50 values of aqueous extracts of B. ceiba varied between 85.71 and 102.45 µg/mL and for ethanolic extract, it varied between 85.48 and 103.4 µg/mL | [158] | |
Diethyl ether and light petroleum ether extracts of flowers; Aqueous flower extracts; Methanolic flower extracts | DPPH, metal chelating and beta carotene bleaching test, hydroxyl radical, hydrogen peroxide radical, FRAP assay, reducing power assay | Petroleum ether of B. ceiba flowers exhibited DPPH and Fe-chelating activities with IC50 values of 37.6 and 33.5 μg/mL and diethyl ether extracts exhibited beta-carotene bleaching test with an IC50 value of 58.3 μg/mL. | [80,159,160,161,162] | |
the aqueous methanol extract of the calyx | Methylglyoxal induced oxidative stress in HEK-293 cells | Reduced the level of reactive oxygen species (ROS), NADPH oxidase (NOX), and thereby lowered the mitochondrial dysfunction in methylglyoxal induced protein glycation | [163] | |
Ceiba pentandra (L.) Gaertn | seed extracts | DPPH, FRAP, reducing assay, and hydroxyl radical scavenging assay | Decoction, maceration, and methanol scavenged DPPH radical with IC50 values of 87.84, 54.77, and 6.15 µg/mL, respectively. | [164] |
Methanol extracts of stem bark; ethyl acetate fraction of stem bark | hydroxyl radical, against lipid peroxidation; DPPH radical scavenging | Scavenge DPPH, nitric oxide, and hydroxyl radicals with IC50 values of 27.4, 24.45, and 51.65 µg/mL | [165,166] | |
ethanol leaf extract; aqueous and methanol extracts of stem bark | DPPH, nitric oxide, and hydroxyl radical scavenging | The aqueous and methanol stem bark extracts inhibited superoxide (IC50 values of 51.81 and 34.26 μg/mL), hydrogen peroxide (44.84 and 1.78 μg/mL) and protein oxidation induced by H2O2 (120.60 and 140.40 μg/mL). | [167,168] | |
Antimicrobial activity | ||||
Adansonia digitata L. | Methanolic, ethanolic leaf, and stem bark extracts | agar well diffusion method | [169] | |
Bombax ceiba L. | Methanolic stem bark | Agar well diffusion method | The order of sensitivity from highest to least was Staphylococcus aureus > Escherechia coli > Pseudomonas aeruginosa > Bacillus subtilis > Salmonella typhi | [157] |
Methanolic flower extracts | Agar disc diffusion assay and MIC study. | Exhibited antibacterial activity against Klebsiella pneumonia, E. coli, P. aeruginosa (Gram-negative), and S. aureus, B. subtilis (Gram-positive) bacteria with the MIC value ranging between 3.125 and 12.500 μg/mL | [38,161] | |
methanol, dichloromethane, and petroleum ether extracts of roots | Agar disc diffusion assay | The methanol, dichloromethane, and PE extracts exhibited mild to moderate antibacterial activity against different bacterial strains including Sarcina lutea, Bacillus megaterium, B. subtilis, S. aureus, B. cereus, P. aeruginosa, Salmonella typhi, E. coli, Vibrio mimicus, Shigella boydii, and Shigella dysenteriae with 7–13 mm zone of inhibition | [155] | |
Bombax malabaricum DC. | n-hexane and methanol extracts of flower | Agar disc diffusion method | n-hexane and methanol extracts (at 100 µg/mL) of demonstrated antimicrobial activities | [49] |
Ceiba pentandra (L.) Gaertn | Ethyl acetate fraction of leaf and bark; ethanol leaf extract | Agar dilution method | ethyl acetate fraction of leaf and bark of C. pentandra showed antimicrobial activity against E. coli, Salmonella typhi, B. subtilis, Kleibsiella pneumonia, and S. aureus | [167,170] |
aqueous, methanol, ethanol, and acetone extract of seed | Disc diffusion method | dose-dependently inhibits antibacterial activity against E. coli and S. aureus | [171] | |
Anticancer activity | ||||
Adansonia digitata L. | seed and pulp extracts | MTT assay | At 10, 100, and 500 µg/mL dose, the inhibition ranges between 22.57 and 29.96% for MCF-7 cell line; 25.85 and 37.81% for Hep-G2 cell line and 20.75 and 27.34% for COLO-205 cell line. Dichloromethane and methanolic extract demonstrated cytotoxic activity against human bBreast development cell lines BT474 with IC50 value of 15.3 ± 0.4 µg/mL | [172] |
Bombax ceiba L. | diethyl ether and light petroleum ether extracts of flowers | sulforhodamine B (SRB) assay brine shrimp lethality bioassay | Antiproliferative activity against human renal adenocarcinoma cell (ACHN) with respective IC50 values of 53.2 and 45.5 μg/mL The petroleum ether, dichloromethane, and methanol extracts of B. ceiba roots exhibited cytotoxic effect with LC50 values of 22.58, 37.72, and 70.72 μg/mL, respectively | [80] |
Ceiba pentandra (L.) Gaertn | petroleum and acetone stem bark extracts | Dalton’s lymphoma ascites (DLA or solid tumor) model | At 15 and 30 mg/kg doses could reduce tumor weight by >50% and tumor volume on the 30th day in Dalton’s lymphoma ascites. The petroleum ether, benzene, chloroform, acetone, and ethanolic extract of this plant demonstrated cytotoxicity in a concentration dependent manner after 3 h of incubation with EAC cells with EC50values of 53.30, 70.58, 250.48, 67.30, and 56.11 µg/mL, respectively | [173 |
Antidiabetic activity | ||||
Adansonia digitata L. | methanolic fruit pulp and leaf extracts | α-glucosidase inhibition assay; α-amylase inhibition assay; STZ induced diabetic rats | IC50 values of the fruit extracts ranged between 1.71 ± 0.23 and 2.39 ± 0.22 µg/mL while the leaf extract had an IC50 value of 1.71 ± 0.23 µg/mL. Methanolic leaf extract reduced elevated blood glucose, glycosylated hemoglobin levels in streptozotocin (STZ) induced diabetic rats. | [50,148,150] |
Bombax ceiba L. | dichloromethane, ethanol, and aqueous extracts of thalamus and flower; n-hexane fraction of sepal | Alpha-amylase and alpha-glucosidase inhibition assay | The IC50 values for alpha amylase inhibition for water extract of thalamus, ethanolic extract of thalamus, ethanolic extract of flower, dichloromethane extract of thalamus, water extract of flower, and dichloromethane extract of flower were 32.95, 33.45, 33.85, 34.95, 35.15, and 35.65 µg/mL, respectively. | [174,175] |
ethanolic root extracts | Alloxan induced diabetic rat | At 400 mg/kg decreased the blood glucose level in diabetic mice | [176] | |
Ethanolic leaf extracts | STZ- induced diabetic mice | At 70, 140, and 280 mg/kg doses it decreased fasting blood glucose, glycosylated hemoglobin in diabetic rats | [177] | |
Bark extracts | STZ- induced diabetic rats | At 600 mg/kg dose the extract could significantly decrease elevated levels of blood glucose in diabetic rats. | [178] | |
Ceiba pentandra (L.) Gaertn | Aqueous stem bark extracts; aqueous (AE) and methanol (ME) extracts of bark | Dexamethasone-induced insulin resistant rats; STZ- induced diabetic rats; Alpha-amylase and alpha-glucosidase assay | At 75 or 150 mg/kg doses could decrease the level of glycemia in insulin resistant rats. Aqueous stem bark extracts of inhibited alpha-amylase and glucosidase with IC50 values of 6.15 and 76.61 μg/mL, respectively, whereas the methanol extract inhibited alpha-amylase and glucosidase with IC50 values of 54.52 and 86.49 μg/mL, respectively | [165,168,179,180] |
Anti-inflammatory activity | ||||
Adansonia digitata L. | methanol leaf extracts, aqueous leaf extract | iNOS and NF-kB expression in LPS-stimulated RAW264.7 cell | Inhibit NO production with an IC50 value of 28.6 µg/mL. | [181] |
fruit pulp extract | inhibition of proinflammatory cytokine IL-8 expression | Leaf extract (70 µg/mL) exhibited better anti-inflammatory activity when compared to pulp extract (247 µg/mL). | [182] | |
Bombax ceiba L. | Petroleum ether, ethanol, and aqueous extracts | HRBC membrane stabilization method. | At 1000 µg/mL concentration exhibited anti-inflammatory potential by stabilizing the HRBC membrane | [183] |
Ceiba pentandra (L.) Gaertn | ethyl acetate extract of aerial part | MTX-induced nephrotoxic rats | At 400 mg/kg dose could inhibit methotrexate (MTX)-initiated apoptotic and inflammatory cascades | [184] |
Hepatoprotective activity | ||||
Adansonia digitata L. | aqueous extract of fruit; methanolic extract of the fruit | CCL4 induced hepatotoxic rats; paracetamol-induced hepatotoxicity in rats | Reduction in serum AST, ALT, ALP, bilirubin levels were observed in carbon tetrachloride (CCL4) induced hepatotoxic rat. Level of ALT, AST, ALP, total bilirubin, and total protein measurements were normalized in paracetamol-induced hepatotoxic rats. | [185,186,187,188,189] |
Bombax ceiba L. | Aqueous flower extracts; Methanolic flower extracts | Histological studies; enzyme assay alkaline phosphates, alanine transaminases, aspartate transaminases, and total bilirubin assay | Decreased elevated levels of glutamic-oxaloacetic transaminase (SGOT), glutamic pyruvic transaminase (SGPT), alkaline phosphatize (ALP), bilirubin, and triglycerides, total protein. | [159,190] |
ethanolic root extracts | Enzyme assay in alloxan induced diabetic mice | At 400 mg/kg decreased the hepatotoxicity in diabetic mice by reducing the elevated levels of SGOT and SGPT | [176] | |
Ceiba pentandra (L.) Gaertn | the methanol extract of stem bark | Enzyme assay paracetamol-induced liver damage in rats | Reduces levels of SGOT, SGPT, ALP, and total bilirubin content. | [191] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, G.; Shin, H.-S.; Ningthoujam, S.S.; Talukdar, A.D.; Upadhyaya, H.; Tundis, R.; Das, S.K.; Patra, J.K. Systematics, Phytochemistry, Biological Activities and Health Promoting Effects of the Plants from the Subfamily Bombacoideae (Family Malvaceae). Plants 2021, 10, 651. https://doi.org/10.3390/plants10040651
Das G, Shin H-S, Ningthoujam SS, Talukdar AD, Upadhyaya H, Tundis R, Das SK, Patra JK. Systematics, Phytochemistry, Biological Activities and Health Promoting Effects of the Plants from the Subfamily Bombacoideae (Family Malvaceae). Plants. 2021; 10(4):651. https://doi.org/10.3390/plants10040651
Chicago/Turabian StyleDas, Gitishree, Han-Seung Shin, Sanjoy Singh Ningthoujam, Anupam Das Talukdar, Hrishikesh Upadhyaya, Rosa Tundis, Swagat Kumar Das, and Jayanta Kumar Patra. 2021. "Systematics, Phytochemistry, Biological Activities and Health Promoting Effects of the Plants from the Subfamily Bombacoideae (Family Malvaceae)" Plants 10, no. 4: 651. https://doi.org/10.3390/plants10040651