Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells
Abstract
:1. Introduction
2. Results
2.1. Extraction Yields and Cannabinoid Composition in Crude Extracts of Cannabis sativa Obtained with Different Extraction Methods
2.2. Total Phenol Content and Antioxidant Activity of Cannabis Extracts
2.3. Preparation (Post-Processing) of Cannabis sativa Extracts for Cell Culture Treatment
2.4. Effect of Cannabis sativa on Colon Cancer Cell Survival
2.5. Stimulatory Effects of Cannabis sativa Extracts on Untransformed Intestinal Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material
4.3. Extraction Methods
4.3.1. Soxhlet Extraction
4.3.2. Dynamic Maceration
4.3.3. Supercritical Fluid Extraction
4.3.4. Ultrasound-Assisted Extraction
4.4. LC-MS/MS Analysis
4.5. Determination of Total Phenolic Content
4.6. Antioxidant Assay
4.7. Cell Cultures
4.8. Cell Viability Assay
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ElSohly, M.A.; Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Aizpurua-Olaizola, O.; Elezgarai, I.; Rico-Barrio, I.; Zarandona, I.; Etxebarria, N.; Usobiaga, A. Targeting the endocannabinoid system: Future therapeutic strategies. Drug Discov. Today 2017, 22, 105–110. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, P.; Futoran, K.; Lewitus, G.M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci. Rep. 2018, 8, 14280. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Cao, Z.; Wang, W.; Zhou, N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr. Mol. Pharmacol. 2019, 12, 239–248. [Google Scholar] [CrossRef]
- Wijnen, B.; Armstrong, N.; Ramaekers, B.; Witlox, W.; Westwood, M.; Fayter, D.; Ryder, S.; Buksnys, T.; Worthy, G.; Misso, K.; et al. Cannabidiol for Adjuvant Treatment of Seizures Associated with Lennox–Gastaut Syndrome and Dravet Syndrome: An Evidence Review Group Perspective of a NICE Single Technology Appraisal. Pharm. Econ. 2020, 38, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Borgelt, L.M.; Blackmer, A.B. Cannabidiol: A New Hope for Patients With Dravet or Lennox-Gastaut Syndromes. Ann. Pharm. 2019, 53, 603–611. [Google Scholar] [CrossRef]
- Badowski, M.E.; Yanful, P.K. Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer. Ther. Clin. Risk Manag. 2018, 14, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Abrams, D.; Guzman, M. Cannabis in cancer care. Clin. Pharmacol. Ther. 2015, 97, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Dzierżanowski, T. Prospects for the Use of Cannabinoids in Oncology and Palliative Care Practice: A Review of the Evidence. Cancers 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahn, E.J.; Hohmann, A.G. Cannabinoids as pharmacotherapies for neuropathic pain: From the bench to the bedside. Neurotherapeutics 2009, 6, 713–737. [Google Scholar] [CrossRef] [PubMed]
- Fine, P.G.; Rosenfeld, M.J. Cannabinoids for Neuropathic Pain. Curr. Pain Headache Rep. 2014, 18, 451. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.; Cameron, M. Cannabinoids for Treatment of MS Symptoms: State of the Evidence. Curr. Neurol. Neurosci. Rep. 2018, 18, 50. [Google Scholar] [CrossRef]
- Ruggieri, M.R., Sr. Cannabinoids: Potential targets for bladder dysfunction. Handb. Exp. Pharmacol. 2011. [Google Scholar] [CrossRef]
- Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018, 17, 623–639. [Google Scholar] [CrossRef]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Al-Ghezi, Z.Z.; Miranda, K.; Nagarkatti, M.; Nagarkatti, P.S. Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways. Front. Immunol. 2019, 10, 1921. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; Garcia-Taboada, E.; Wade, J.; Smith, S.; Guzman, M.; Perez-Gomez, E.; et al. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis Phenolics and their Bioactivities. Curr. Med. Chem. 2018, 25, 1160–1185. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Dixit, M. Role of Polyphenols and Other Phytochemicals on Molecular Signaling. Oxidative Med. Cell. Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Ramer, R. Anti-tumour actions of cannabinoids. Br. J. Pharmacol. 2019, 176, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Sánchez, C.; Guzmán, M. Anticancer mechanisms of cannabinoids. Curr. Oncol. 2016, 23, S23–S32. [Google Scholar] [CrossRef] [Green Version]
- Baram, L.; Peled, E.; Berman, P.; Yellin, B.; Besser, E.; Benami, M.; Louria-Hayon, I.; Lewitus, G.M.; Meiri, D. The heterogeneity and complexity of Cannabis extracts as antitumor agents. Oncotarget 2019, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massi, P.; Vaccani, A.; Bianchessi, S.; Costa, B.; Macchi, P.; Parolaro, D. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell. Mol. Life Sci. CMLS 2006, 63, 2057–2066. [Google Scholar] [CrossRef]
- Velasco, G.; Carracedo, A.; Blázquez, C.; Lorente, M.; Aguado, T.; Haro, A.; Sánchez, C.; Galve-Roperh, I.; Guzmán, M. Cannabinoids and Gliomas. Mol. Neurobiol. 2007, 36, 60–67. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med. 2016, 16, 335. [Google Scholar] [CrossRef] [Green Version]
- Garrett, E.R.; Hunt, C.A. Physiochemical properties, solubility, and protein binding of delta9-tetrahydrocannabinol. J. Pharm. Sci. 1974, 63, 1056–1064. [Google Scholar] [CrossRef]
- Rosenkrantz, H.; Thompson, G.R.; Braude, M.C. Oral and Parenteral Formulations of Marijuana Constituents. J. Pharm. Sci. 1972, 61, 1106–1112. [Google Scholar] [CrossRef]
- Perrotin-Brunel, H.; Kroon, M.C.; van Roosmalen, M.J.E.; van Spronsen, J.; Peters, C.J.; Witkamp, G.-J. Solubility of non-psychoactive cannabinoids in supercritical carbon dioxide and comparison with psychoactive cannabinoids. J. Supercrit. Fluids 2010, 55, 603–608. [Google Scholar] [CrossRef]
- Gülck, T.; Møller, B.L. Phytocannabinoids: Origins and Biosynthesis. Trends Plant. Sci. 2020, 25, 985–1004. [Google Scholar] [CrossRef] [PubMed]
- Marcu, J.P. Chapter 62—An Overview of Major and Minor Phytocannabinoids. In Neuropathology of Drug Addictions and Substance Misuse; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 672–678. [Google Scholar] [CrossRef]
- Brighenti, V.; Pellati, F.; Steinbach, M.; Maran, D.; Benvenuti, S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J. Pharm. Biomed. 2017, 143, 228–236. [Google Scholar] [CrossRef]
- Rovetto, L.J.; Aieta, N.V. Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. J. Supercrit. Fluids 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 extraction of hemp (Cannabis sativa L.) seed oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Pellati, F.; Brighenti, V.; Sperlea, J.; Marchetti, L.; Bertelli, D.; Benvenuti, S. New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules 2018, 23, 2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glivar, T.; Eržen, J.; Kreft, S.; Zagožen, M.; Čerenak, A.; Čeh, B.; Tavčar Benković, E. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind. Crops Prod. 2020, 145, 112082. [Google Scholar] [CrossRef]
- Lewis-Bakker, M.M.; Yang, Y.; Vyawahare, R.; Kotra, L.P. Extractions of Medical Cannabis Cultivars and the Role of Decarboxylation in Optimal Receptor Responses. Cannabis Cannabinoid Res. 2019, 4, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, C.; Máthé, K.; Hofmann, T.; Csóka, L. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa, L. Optimized by Response Surface Methodology. J. Food Sci. 2018, 83, 700–710. [Google Scholar] [CrossRef]
- Nuapia, Y.; Tutu, H.; Chimuka, L.; Cukrowska, E. Selective Extraction of Cannabinoid Compounds from Cannabis Seed Using Pressurized Hot Water Extraction. Molecules 2020, 25, 1335. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shabat, S.; Fride, E.; Sheskin, T.; Tamiri, T.; Rhee, M.-H.; Vogel, Z.; Bisogno, T.; De Petrocellis, L.; Di Marzo, V.; Mechoulam, R. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 1998, 353, 23–31. [Google Scholar] [CrossRef]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharm. 2017, 80, 67–134. [Google Scholar] [CrossRef]
- Kőszegi, K.; Vatai, G.; Békássy-Molnár, E. Comparison the Soxhlet and Supercritical Fluid Extraction of Nettle Root (Urtica dioica L.). Period. Polytech. Chem. Eng. 2015, 59. [Google Scholar] [CrossRef] [Green Version]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Martínez-Ávila, G.C.; Wong-Paz, J.E.; Belmares-Cerda, R.; Rodríguez-Herrera, R.; Aguilar, C.N. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 2013, 20, 1149–1154. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 266. [Google Scholar] [CrossRef]
- Atakan, Z. Cannabis, a complex plant: Different compounds and different effects on individuals. Ther. Adv. Psychopharmacol. 2012, 2, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradisnik, L.; Trapecar, M.; Rupnik, M.S.; Velnar, T. HUIEC, Human intestinal epithelial cell line with differentiated properties: Process of isolation and characterisation. Wien. Klin. Wochenschr. 2015, 127 (Suppl. 5), S204–S209. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.J.; Fenton, T.; King, J.W. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- De Vita, D.; Madia, V.N.; Tudino, V.; Saccoliti, F.; De Leo, A.; Messore, A.; Roscilli, P.; Botto, A.; Pindinello, I.; Santilli, G.; et al. Comparison of different methods for the extraction of cannabinoids from cannabis. Nat. Prod. Res. 2020, 34, 2952–2958. [Google Scholar] [CrossRef]
- Namdar, D.; Mazuz, M.; Ion, A.; Koltai, H. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind. Crops Prod. 2018, 113, 376–382. [Google Scholar] [CrossRef]
- Pegoraro, C.N.; Nutter, D.; Thevenon, M.; Ramirez, C.L. Chemical profiles of Cannabis sativa medicinal oil using different extraction and concentration methods. Nat. Prod. Res. 2019, 1–4. [Google Scholar] [CrossRef]
- Izzo, A.A.; Capasso, R.; Aviello, G.; Borrelli, F.; Romano, B.; Piscitelli, F.; Gallo, L.; Capasso, F.; Orlando, P.; Di Marzo, V. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br. J. Pharmacol. 2012, 166, 1444–1460. [Google Scholar] [CrossRef] [Green Version]
- Romano, B.; Borrelli, F.; Fasolino, I.; Capasso, R.; Piscitelli, F.; Cascio, M.; Pertwee, R.; Coppola, D.; Vassallo, L.; Orlando, P.; et al. The cannabinoid TRPA1 agonist cannabichromene inhibits nitric oxide production in macrophages and ameliorates murine colitis. Br. J. Pharmacol. 2013, 169, 213–229. [Google Scholar] [CrossRef]
- Nallathambi, R.; Mazuz, M.; Namdar, D.; Shik, M.; Namintzer, D.; Vinayaka, A.C.; Ion, A.; Faigenboim, A.; Nasser, A.; Laish, I.; et al. Identification of Synergistic Interaction between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis Cannabinoid Res. 2018, 3, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Velasco, G.; Sánchez, C.; Guzmán, M. Towards the use of cannabinoids as antitumour agents. Nat. Rev. Cancer 2012, 12, 436–444. [Google Scholar] [CrossRef]
- Dariš, B.; Tancer Verboten, M.; Knez, Ž.; Ferk, P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic Med. Sci. 2019, 19, 14–23. [Google Scholar] [CrossRef]
- Raja, A.; Ahmadi, S.; de Costa, F.; Li, N.; Kerman, K. Attenuation of Oxidative Stress by Cannabinoids and Cannabis Extracts in Differentiated Neuronal Cells. Pharmaceuticals 2020, 13, 328. [Google Scholar] [CrossRef]
- Hadolin, M.; Skerget, M.; Knez, Z.E.; Bauman, D. High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chem. 2001, 74, 355–364. [Google Scholar] [CrossRef]
- Christinat, N.; Savoy, M.-C.; Mottier, P. Development, validation and application of a LC-MS/MS method for quantification of 15 cannabinoids in food. Food Chem. 2020, 318, 126469. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- van de Loosdrecht, A.A.; Beelen, R.H.J.; Ossenkoppele, G.J.; Broekhoven, M.G.; Langenhuijsen, M.M.A.C. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 1994, 174, 311–320. [Google Scholar] [CrossRef]
Sample | Extraction Method | CBC | CBD | CBDA | CBGA | CBN | THC | THCA | Total CBD | Total THC |
---|---|---|---|---|---|---|---|---|---|---|
CAN1 | Maceration with MeOH | 4.743 ± 0.210 | 79.107 ± 0.759 | 33.073 ± 0.211 | 1.761 ± 0.009 | 0.4010 ± 0.005 | 4.421 ± 0.111 | 0.452 ± 0.003 | 108.11 | 4.82 |
CAN2 | Maceration with EtOH | 3.543 ± 0.091 | 33.258 ± 0.112 | 66.597 ± 0.425 | 4.889 ± 0.015 | 0.189 ± 0.002 | 4.340 ± 0.98 | 2.023 ± 0.01 | 91.66 | 6.11 |
CAN3 | Soxhlet with MeOH | 3.908 ± 0.088 | 56.936 ± 0.119 | 51.674 ± 0.359 | 2.041 ± 0.066 | 0.311 ± 0.003 | 3.478 ± 0.89 | 0.522 ± 0.002 | 102.25 | 3.94 |
CAN4 | UAE with MeOH | 2.083 ± 0.076 | 30.402 ± 0.112 | 80.633 ± 0.891 | 3.284 ± 0.102 | 0.196 ± 0.004 | 3.018 ± 0.85 | 1.083 ± 0.009 | 101.12 | 3.97 |
CAN5 | SFE CO2 at 100 bar, 40 °C | 3.701 ± 0.106 | 18.119 ± 0.104 | 100.948 ± 1.26 | 1.760 ± 0.071 | 0.212 ± 0.005 | 0.722 ± 0.009 | 2.467 ± 0.009 | 106.65 | 2.89 |
CAN6 | SFE CO2 at 100 bar, 60 °C | 0.096 ± 0.005 | 19.908 ± 0.099 | 98.634 ± 0.775 | 1.223 ± 0.009 | 0.668 ± 0.023 | 3.291 ± 0.103 | 1.708 ± 0.008 | 106.41 | 4.79 |
SAMPLE | Extraction Method | Total Phenols | DPPH |
---|---|---|---|
CAN1 | Maceration with MeOH | 111.7 ± 1.1 | 15.5 ± 0.5 |
CAN2 | Maceration with EtOH | 126.4 ± 1 | 17.4 ± 0.45 |
CAN3 | Soxhlet with MeOH | 126.1 ± 1.6 | 20 ± 0.66 |
CAN4 | UAE with MeOH | 145.9 ± 0.9 | 22.2 ± 0.09 |
CAN5 | SFE CO2 at 100 bar, 40 °C | 98.8 ± 1 | 3.4 ± 0.05 |
CAN6 | SFE CO2 at 100 bar, 60 °C | 38.2 ± 0.6 | 3 ± 0.02 |
Sample | Extraction Method | CBC | CBD | CBDA | CBGA | CBN | THC | THCA |
---|---|---|---|---|---|---|---|---|
CAN1 | Maceration with MeOH | 0.669 ± 0.009 | 17.96 ± 0.12 | 14.687 ± 0.015 | 0.279 ± 0.008 | 0.098 ± 0.001 | 0.646 ± 0.002 | 0.022 ± 0.001 |
CAN2 | Maceration with EtOH | 0.735 ± 0.005 | 10.37 ± 0.096 | 38.948 ± 0.21 | 0.982 ± 0.068 | 0.058 ± 0.002 | 0.582 ±0.003 | 0.124 ± 0.001 |
CAN3 | Soxhlet with MeOH | 0.265 ± 0.009 | 14.776 ± 0.112 | 18.542 ± 0.06 | 0.262 ± 0.009 | 0.075 ± 0.001 | 0.353 ± 0.001 | 0.022 ± 0.001 |
CAN4 | UAE with MeOH | 1.825 ± 0.012 | 5.757 ± 0.009 | 23.548 ± 0.205 | 0.537 ± 0.031 | 0.042 ± 0.002 | 0.177 ± 0.001 | 0.055 ± 0.001 |
CAN5 | SFE CO2 at 100 bar, 40 °C | 0.884 ± 0.01 | 5.27 ± 0.005 | 33.769 ± 0.199 | 0.522 ± 0.012 | 0.058 ± 0.002 | 0.362 ± 0.001 | 0.147 ± 0.002 |
CAN6 | SFE CO2 at 100 bar, 60 °C | 0.051 ± 0.002 | 0.238 ± 0.002 | 2.135 ± 0.005 | 0.018 ± 0.005 | 0.007 ± 0.002 | 0.031 ± 0.001 | 0.038 ± 0.001 |
SAMPLE | IC50 Values (µg/mL) Caco-2 |
---|---|
CAN1 | 12.46 ± 0.35 a |
CAN2 | 8.63 ± 0.54 b |
CAN3 | 13.35 ± 0.51 c |
CAN4 | 12.17 ± 0.72 a |
CAN5 | 14.10 ± 1.17 a,c |
CAN6 | 16.83 ± 2.14 c |
THC | 14.33 ± 0.79 c |
CBD | 6.06 ± 0.58 d |
Sample | Description |
---|---|
CAN1 | Maceration with MeOH |
CAN2 | Maceration with EtOH |
CAN3 | Soxhlet with MeOH |
CAN4 | UAE with MeOH |
CAN5 | SFE CO2 at 100 bar, 40 °C |
CAN6 | SFE CO2 at 100 bar, 60 °C |
Component | Ion Precursor | Ion Product | Fragmentation | Collision Energy |
---|---|---|---|---|
CBGA | 361 | 343 | 100 | 10 |
361 | 317 | 100 | 10 | |
CBDA | 359 | 341 | 100 | 10 |
359 | 218.8 | 100 | 30 | |
CBD | 315.2 | 193.1 | 45 | 20 |
315.2 | 123 | 45 | 36 | |
THCA | 357.4 | 313.1 | 100 | 10 |
357.4 | 245.1 | 100 | 20 | |
THC | 311.2 | 293.2 | 50 | 10 |
311.2 | 222.9 | 50 | 15 | |
CBN | 311.3 | 293.1 | 50 | 16 |
311.3 | 223.1 | 50 | 20 | |
CBC | 315.3 | 259.1 | 100 | 12 |
315.3 | 81.1 | 100 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rožanc, J.; Kotnik, P.; Milojević, M.; Gradišnik, L.; Knez Hrnčič, M.; Knez, Ž.; Maver, U. Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. Plants 2021, 10, 566. https://doi.org/10.3390/plants10030566
Rožanc J, Kotnik P, Milojević M, Gradišnik L, Knez Hrnčič M, Knez Ž, Maver U. Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells. Plants. 2021; 10(3):566. https://doi.org/10.3390/plants10030566
Chicago/Turabian StyleRožanc, Jan, Petra Kotnik, Marko Milojević, Lidija Gradišnik, Maša Knez Hrnčič, Željko Knez, and Uroš Maver. 2021. "Different Cannabis sativa Extraction Methods Result in Different Biological Activities against a Colon Cancer Cell Line and Healthy Colon Cells" Plants 10, no. 3: 566. https://doi.org/10.3390/plants10030566