Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Design and Statistical Analysis
3.2. Soil Nutrient Analysis
3.3. Analysis of Seed Minerals, N, S, and C
3.4. Determination of Seed P
3.5. Cottonseed Protein and Oil Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Yu, S.; Fan, S.; Song, M.; Zhai, H.; Li, X. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross in bred line population. Euphytica 2012, 187, 191–201. [Google Scholar] [CrossRef]
- He, Z.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimiya, M. Mineral composition of cottonseed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef]
- Bellaloui, N.; Stetina, S.R.; Turley, R.B. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Front. Plant Sci. 2015, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R. Water stress and foliar boron application altered cell wall boron and seed nutrition in near-isogenic cotton lines expressing fuzzless seed phenotype. PLoS ONE 2015, 10, e0130759. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-T.; Tsukaya, H.; Uchimiya, H. The curly leaf gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta 1998, 206, 175–183. [Google Scholar] [CrossRef]
- Coupland, G.; Dash, S.; Goodrich, J.; Lee, K.; Long, D.; Martin, M.; Puangsomlee, P.; Putterill, J.; Robson, F.; Wilson, K. Molecular and genetic analysis of the control of flowering time in response to daylength in Arabidopsis thaliana. Flower. Newslett. 1993, 16, 27–32. [Google Scholar]
- Sieburth, L.E.; Meyerowitz, E.M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell. 1997, 9, 355–365. [Google Scholar] [PubMed]
- Arkebuer, T.J.; Norman, J.M. From cell growth to leaf growth: I. Coupling cell division and cell expansion. Agron. J. 1995, 87, 99–105. [Google Scholar] [CrossRef]
- Poethig, R.S.; Sussex, I.M. The developmental morphology and growth dynamics of the tobacco leaf. Planta 1985, 165, 158–169. [Google Scholar] [CrossRef]
- Steeves, T.A.; Sussex, I.M. Organogenesis in the Shoot: Later Stages of Leaf Development. In Patterns in Plant Development, 2nd ed.; Steeves, T.A., Sussex, I.M., Eds.; Cambridge University Press: New York, NY, USA, 1989; pp. 147–175. [Google Scholar]
- Tsukaya, H.; Tsuge, T.; Uchimiya, H. The cotyledon: A superior system for studies of leaf development. Planta 1994, 195, 309–312. [Google Scholar] [CrossRef]
- Goodrich, J.; Puangsomlee, P.; Martin, M.; Long, D.; Meyerowitz, E.M.; Coupland, G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 1997, 386, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Andres, R.J.; Bowman, D.T.; Jones, D.C.; Kuraparthy, V. Major leaf shapes of cotton: Genetics and agronomic effects in crop production. J. Cott. Sci. 2016, 20, 330–340. [Google Scholar]
- Jones, J.E.; Andries, J.A. Okra leaf cotton for boll rot control. La. Agric. 1967, 10, 4–5. [Google Scholar]
- Rao, M.J.; Weaver, J.B. Effect of leaf shape on response of cotton to plant population, N rate, and irrigation. Crop Sci. 1976, 68, 599–601. [Google Scholar] [CrossRef]
- Karami, E.; Weaver, J.B. Growth analysis of American Upland cotton, Gossypium hirsutum L., with different leaf shapes and colors. Crop Sci. 1972, 12, 317–320. [Google Scholar] [CrossRef]
- Andries, J.A.; Jones, J.E.; Sloane, L.W.; Marshall, J.G. Effects of super okra leaf shape on boll rot, yield, and other characters of Upland cotton, Gossypium hirsutum L. Crop Sci. 1970, 10, 403–407. [Google Scholar] [CrossRef]
- Heitholt, J.J.; Meredith, W.R. Yield, flowering, and leaf area index of okra-leaf and normal-leaf cotton isolines. Crop Sci. 1998, 38, 643–648. [Google Scholar] [CrossRef]
- Landivar, J.A.; Baker, D.N.; Jenkins, J.N. Application of GOSSYM to genetic feasibility studies. Analyses of fruit abscission and yield in okra-leaf cotton. Crop Sci. 1983, 23, 497–504. [Google Scholar] [CrossRef]
- Wilson, R.L.; Wilson, F.D.; George, B.W. Mutants of Gossypium hirsutum: Effect on pink bollworm in Arizona. J. Econ. Entomol. 1979, 72, 216–219. [Google Scholar] [CrossRef]
- Wilson, F.D.; George, B.W. Effects of okra-leaf, frego-bract, and smooth-leaf mutants on pink bollworm damage and agronomic properties of cotton. Crop Sci. 1982, 22, 798–801. [Google Scholar] [CrossRef]
- Wilson, F.D. Pink bollworm resistance, lint yield, and lint yield components of okra-leaf cotton in different genetic backgrounds. Crop Sci. 1986, 26, 1164–1167. [Google Scholar] [CrossRef]
- Liu, J.; Deng, S.; Wang, H.; Ye, J.; Wu, H.-W.; Sun, H.-Z.; Chua, N.-H. Curly leaf regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol. 2016, 171, 424–436. [Google Scholar] [CrossRef]
- Katz, A.; Oliva, M.; Hakim, O.; Ohad, N. FIE and curly leaf polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 2004, 37, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.W.; Park, G.T.; Yun, H.; Hsieh, T.F.; Choi, Y.D.; Choi, Y.; Lee, J.S. Control of paternally expressed imprinted upward curly leaf1, a gene encoding an F-box protein that regulates curly leaf polycomb protein, in the arabidopsis endosperm. PLoS ONE 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 3rd ed.; International Potash Institute: Worblaufen-Bern, Switzerland, 1982. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–243. [Google Scholar]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Kwak, J.M.; Allen, G.J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 2001, 410, 327–330. [Google Scholar] [CrossRef]
- Furlan, A.; Llanes, A.; Luna, V.; Castro, S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. Agronomy 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Wei, W.X.; Bilsborrow, P.E.; Hooley, P.; Fincham, D.A.; Lombi, E.; Forster, B.P. Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant golden promise. Plant Soil 2003, 250, 183–191. [Google Scholar] [CrossRef]
- Hsiao, T.C. Plant responses to water stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Andersen, M.N.; Jensen, C.R.; Lösch, R. The interaction effects of potassium and drought in field-grown barley. 1. Yield, water-use efficiency and growth. Acta Agric. Scand. Sect. B Soil Plant Sci. 1992, 42, 34–44. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Brück, H.; Payne, W.A.; Sattelmacher, B. Effects of phosphorus and water supply on yield, transpirational water-use efficiency, and carbon isotope discrimination of pearl millet. Crop Sci. 2000, 40, 120–125. [Google Scholar] [CrossRef]
- Ackerson, R.C. Osmoregulation in cotton in response to water-stress. 3. Effects of phosphorus fertility. Plant Physiol. 1985, 77, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Sawwan, J.; Shibli, R.A.; Swaidat, I.; Tahat, M. Phosphorus regulates osmotic potential and growth of African violet under in vitro-induced water deficit. J. Plant Nutr. 2000, 23, 759–771. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Wimmer, R. Transley Review No. 104, Calcium physiology terrestrial ecosystem processes. New Phytol. 1999, 142, 373–417. [Google Scholar] [CrossRef]
- Sze, H.; Liang, F.; Hwang, I.; Curran, A.C.; Harper, J.F. Diversity and regulation of plant Ca2+ pumps: Insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 433–462. [Google Scholar] [CrossRef]
- Mississippi State University Extension Service. Delta Agricultural Weather Center. Available online: http://deltaweather.extension.msstate.edu/weather-station-result/ (accessed on 30 January 2021).
- Piper, E.L.; Boote, K.J. Temperature and cultivar effects of soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.A. Variation in fatty acid composition of the different acyl-lipids in seed oils from four Sesamun species. J. Am. Oil Chem. Soc. 1994, 71, 135–139. [Google Scholar] [CrossRef]
- May, W.E.; Hume, D.L.; Hale, B.A. Effects of agronomic practices on free fatty acid levels in the oil of Ontario-grown spring canola. Can. J. Plant Sci. 1993, 74, 267–274. [Google Scholar] [CrossRef]
- Dardanelli, J.L.; Balzarini, M.; Martinez, M.J.; Cuniberti, M.; Resnik, S.; Ramunda, S.F.; Herrero, R.; Baigorri, H. Soybean maturity groups, environments, and their interaction define mega-environments for seed composition in Argentina. Crop Sci. 2006, 46, 1939–1947. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef]
- Bellaloui, N.; Ebelhar, M.W.; Gillen, A.M.; Fisher, D.K.; Abbas, H.K.; Mengistu, A.; Reddy, K.N.; Paris, R.L. Soybean seed protein, oil, and fatty Acids are altered by S and S+N fertilizer under irrigated and non-irrigated environments. Agric. Sci. 2011, 2, 465–476. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effects of maturity, genotypic background, and temperature on seed mineral composition in near isogenic soybean lines in the early soybean production system. Crop Sci. 2011, 51, 1161–1171. [Google Scholar] [CrossRef]
- Wells, R.; Meredith, W.R., Jr. Normal vs. okra leaf yield interactions in cotton. II. Analysis of vegetative and reproductive growth. Crop Sci. 1986, 26, 223–228. [Google Scholar] [CrossRef]
- Meredith, W.R., Jr.; Wells, R. Sub okra leaf influence on cotton yield. Crop Sci. 1987, 27, 47–48. [Google Scholar] [CrossRef]
- Grusak, M.A.; DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Yang, M.; Hu, Y.; Liao, T.; Shi, L.; Xu, F.; Meng, J. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann. Bot. 2010, 105, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Mississippi State University Extension Service. Cotton. Available online: http://msucares.com/crops/cotton/index.html (accessed on 30 January 2021).
- Statistical Analysis Systems (SAS); SAS Institute: Cary, NC, USA, 2002–2012.
- Bellaloui, N.; Mengistu, A.; Walker, R.R.; Young, L.D. Soybean seed composition affected by seeding rates and row spacing in the Midsouth USA. Crop Sci. 2014, 54, 1782–1795. [Google Scholar] [CrossRef]
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim. Phys. 1883, 247, 198–213. [Google Scholar]
- Childs, C.E.; Henner, E.B. A direct comparison of the Pregl, Dumas, Perkin-Elmer, and Hewlett-Packard (F&M) Carbon-ydrogen-nitrogen procedures. Microchem. J. 1970, 15, 590–597. [Google Scholar] [CrossRef]
- Cavell, A.J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 1955, 6, 479–480. [Google Scholar] [CrossRef]
- Wilcox, J.R.; Shibles, R.M. Interrelationships among seed quality attributes in soybean. Crop Sci. 2001, 41, 11–14. [Google Scholar] [CrossRef]
- AOAC. Method 988.05. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Rockville, MD, USA; Elsevier Science Publishing: Arlington, VA, USA, 1990; p. 70. [Google Scholar]
- AOAC. Method 920.39. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Rockville, MD, USA; Elsevier Science Publishing: Arlington, VA, USA, 1990; p. 71. [Google Scholar]
- Bellaloui, N.; Turley, R.B. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Front. Plant Sci. 2013, 4, 516. [Google Scholar] [CrossRef]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R.; Molin, W.T. Cottonseed protein, oil, and mineral nutrition in near-isogenic Gossypium hirsutum cotton lines expressing leaf color phenotypes under field conditions. Food Nutr. Sci. 2019, 10, 834–859. [Google Scholar] [CrossRef]
Protein | Oil | Calcium | Magnesium | Potassium | |||||||
Effect | DF | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level |
Year | 1 | 3.76 | * | 71.53 | *** | 7.05 | * | 80.82 | *** | 30.41 | *** |
Line | 2 | 3.77 | * | 74.88 | *** | 41.99 | *** | 18.69 | *** | 120 | *** |
Year*Line | 2 | 4.99 | * | 5.36 | * | 0.41 | ns | 17.32 | *** | 4 | * |
Residuals | 61.27 | 76.68 | 0.006 | 0.071 | 0.81 | ||||||
Phosphorus | Sulfur | Carbon | Nitrogen | ||||||||
Effect | DF | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level | ||
Year | 1 | 5.02 | * | 17.95 | ** | 13.08 | *** | 46.27 | *** | ||
Line | 2 | 34.58 | *** | 69.97 | *** | 121.82 | *** | 39.18 | *** | ||
Year*Line | 2 | 0.6 | ns | 0.15 | ns | 2.75 | ns | 4.55 | *** | ||
Residuals | 0.71 | 0.033 | 0.281 | 0.039 |
Line | Protein | Oil | Ca | K | Mg | P | S | N | C |
---|---|---|---|---|---|---|---|---|---|
Uzbek CRL | 273 | 299 | 1.51 | 21.17 | 7.07 | 11.23 | 4.27 | 5.83 | 59.07 |
DP 5690 wild type | 267 | 291 | 1.33 | 18.93 | 7.13 | 10.67 | 4.14 | 4.95 | 58.97 |
DP 5690 CRL | 268 | 251 | 1.76 | 12.30 | 5.50 | 7.03 | 3.17 | 4.67 | 55.27 |
LSD | 4.5 | 4.49 | 0.59 | 0.71 | 0.34 | 0.79 | 0.10 | 0.085 | 0.33 |
Line | Protein | Oil | Ca | K | Mg | P | S | N | C |
---|---|---|---|---|---|---|---|---|---|
Uzbek CRL | 271 | 345 | 1.3 | 17.17 | 3.96 | 11.23 | 4.27 | 4.87 | 58.50 |
DP 5690 wild type | 268 | 327 | 1.2 | 17.10 | 3.97 | 10.67 | 4.60 | 4.68 | 58.04 |
DP 5690 CRL | 292 | 273 | 1.6 | 11.10 | 3.20 | 7.03 | 3.63 | 4.02 | 53.55 |
LSD | 4.66 | 5.7 | 0.059 | 0.22 | 0.097 | 0.14 | 0.13 | 0.14 | 0.29 |
Protein | Oil | Ca | K | Mg | P | S | C | |
---|---|---|---|---|---|---|---|---|
Oil | ns | |||||||
Ca | ns | −0.629 * | ||||||
K | ns | 0.903 *** | −0.663 * | |||||
Mg | ns | 0.827 ** | ns | 0.773 ** | ||||
P | ns | 0.778 * | −0.738 * | 0.880 ** | ns | |||
S | ns | 0.907 *** | −0.785 * | 0.876 ** | 0.857 ** | 0.783 ** | ||
C | ns | 0.948 *** | −0.686 * | 0.951 *** | 0.853 ** | 0.779 ** | 0.921 *** | |
N | ns | 0.733 * | ns | 0.809 ** | ns | 0.671 * | 0.669 * | 0.742 * |
Protein | Oil | Ca | K | Mg | P | S | C | |
---|---|---|---|---|---|---|---|---|
Oil | −0.849 ** | |||||||
Ca | ns | −0.872 ** | ||||||
K | −0.865 ** | 0.930 *** | −0.861 ** | |||||
Mg | ns | ns | ns | ns | ||||
P | −0.865 ** | 0.906 *** | −0.818 ** | 0.982 *** | ns | |||
S | −0.802 ** | 0.843 ** | −0.826 ** | 0.908 *** | ns | 0.940 *** | ||
C | −0.796 ** | 0.925 *** | −0.844 ** | 0.974 *** | ns | 0.965 *** | 0.917 *** | 0.859 ** |
N | −0.853 ** | 0.835 ** | −0.710 * | 0.878 ** | ns | 0.887 ** | 0.899 *** | 0.859 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellaloui, N.; Turley, R.B.; Stetina, S.R. Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants 2021, 10, 525. https://doi.org/10.3390/plants10030525
Bellaloui N, Turley RB, Stetina SR. Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants. 2021; 10(3):525. https://doi.org/10.3390/plants10030525
Chicago/Turabian StyleBellaloui, Nacer, Rickie B. Turley, and Salliana R. Stetina. 2021. "Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology" Plants 10, no. 3: 525. https://doi.org/10.3390/plants10030525
APA StyleBellaloui, N., Turley, R. B., & Stetina, S. R. (2021). Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants, 10(3), 525. https://doi.org/10.3390/plants10030525