Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Design and Statistical Analysis
3.2. Soil Nutrient Analysis
3.3. Analysis of Seed Minerals, N, S, and C
3.4. Determination of Seed P
3.5. Cottonseed Protein and Oil Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Yu, S.; Fan, S.; Song, M.; Zhai, H.; Li, X. Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross in bred line population. Euphytica 2012, 187, 191–201. [Google Scholar] [CrossRef]
- He, Z.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimiya, M. Mineral composition of cottonseed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Stetina, S.R.; Turley, R.B. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Front. Plant Sci. 2015, 6, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R. Water stress and foliar boron application altered cell wall boron and seed nutrition in near-isogenic cotton lines expressing fuzzless seed phenotype. PLoS ONE 2015, 10, e0130759. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-T.; Tsukaya, H.; Uchimiya, H. The curly leaf gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta 1998, 206, 175–183. [Google Scholar] [CrossRef]
- Coupland, G.; Dash, S.; Goodrich, J.; Lee, K.; Long, D.; Martin, M.; Puangsomlee, P.; Putterill, J.; Robson, F.; Wilson, K. Molecular and genetic analysis of the control of flowering time in response to daylength in Arabidopsis thaliana. Flower. Newslett. 1993, 16, 27–32. [Google Scholar]
- Sieburth, L.E.; Meyerowitz, E.M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell. 1997, 9, 355–365. [Google Scholar] [PubMed] [Green Version]
- Arkebuer, T.J.; Norman, J.M. From cell growth to leaf growth: I. Coupling cell division and cell expansion. Agron. J. 1995, 87, 99–105. [Google Scholar] [CrossRef]
- Poethig, R.S.; Sussex, I.M. The developmental morphology and growth dynamics of the tobacco leaf. Planta 1985, 165, 158–169. [Google Scholar] [CrossRef]
- Steeves, T.A.; Sussex, I.M. Organogenesis in the Shoot: Later Stages of Leaf Development. In Patterns in Plant Development, 2nd ed.; Steeves, T.A., Sussex, I.M., Eds.; Cambridge University Press: New York, NY, USA, 1989; pp. 147–175. [Google Scholar]
- Tsukaya, H.; Tsuge, T.; Uchimiya, H. The cotyledon: A superior system for studies of leaf development. Planta 1994, 195, 309–312. [Google Scholar] [CrossRef]
- Goodrich, J.; Puangsomlee, P.; Martin, M.; Long, D.; Meyerowitz, E.M.; Coupland, G. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 1997, 386, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Andres, R.J.; Bowman, D.T.; Jones, D.C.; Kuraparthy, V. Major leaf shapes of cotton: Genetics and agronomic effects in crop production. J. Cott. Sci. 2016, 20, 330–340. [Google Scholar]
- Jones, J.E.; Andries, J.A. Okra leaf cotton for boll rot control. La. Agric. 1967, 10, 4–5. [Google Scholar]
- Rao, M.J.; Weaver, J.B. Effect of leaf shape on response of cotton to plant population, N rate, and irrigation. Crop Sci. 1976, 68, 599–601. [Google Scholar] [CrossRef]
- Karami, E.; Weaver, J.B. Growth analysis of American Upland cotton, Gossypium hirsutum L., with different leaf shapes and colors. Crop Sci. 1972, 12, 317–320. [Google Scholar] [CrossRef]
- Andries, J.A.; Jones, J.E.; Sloane, L.W.; Marshall, J.G. Effects of super okra leaf shape on boll rot, yield, and other characters of Upland cotton, Gossypium hirsutum L. Crop Sci. 1970, 10, 403–407. [Google Scholar] [CrossRef]
- Heitholt, J.J.; Meredith, W.R. Yield, flowering, and leaf area index of okra-leaf and normal-leaf cotton isolines. Crop Sci. 1998, 38, 643–648. [Google Scholar] [CrossRef]
- Landivar, J.A.; Baker, D.N.; Jenkins, J.N. Application of GOSSYM to genetic feasibility studies. Analyses of fruit abscission and yield in okra-leaf cotton. Crop Sci. 1983, 23, 497–504. [Google Scholar] [CrossRef]
- Wilson, R.L.; Wilson, F.D.; George, B.W. Mutants of Gossypium hirsutum: Effect on pink bollworm in Arizona. J. Econ. Entomol. 1979, 72, 216–219. [Google Scholar] [CrossRef]
- Wilson, F.D.; George, B.W. Effects of okra-leaf, frego-bract, and smooth-leaf mutants on pink bollworm damage and agronomic properties of cotton. Crop Sci. 1982, 22, 798–801. [Google Scholar] [CrossRef]
- Wilson, F.D. Pink bollworm resistance, lint yield, and lint yield components of okra-leaf cotton in different genetic backgrounds. Crop Sci. 1986, 26, 1164–1167. [Google Scholar] [CrossRef]
- Liu, J.; Deng, S.; Wang, H.; Ye, J.; Wu, H.-W.; Sun, H.-Z.; Chua, N.-H. Curly leaf regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol. 2016, 171, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Oliva, M.; Hakim, O.; Ohad, N. FIE and curly leaf polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 2004, 37, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, C.W.; Park, G.T.; Yun, H.; Hsieh, T.F.; Choi, Y.D.; Choi, Y.; Lee, J.S. Control of paternally expressed imprinted upward curly leaf1, a gene encoding an F-box protein that regulates curly leaf polycomb protein, in the arabidopsis endosperm. PLoS ONE 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 3rd ed.; International Potash Institute: Worblaufen-Bern, Switzerland, 1982. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–243. [Google Scholar]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Schroeder, J.I.; Kwak, J.M.; Allen, G.J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 2001, 410, 327–330. [Google Scholar] [CrossRef]
- Furlan, A.; Llanes, A.; Luna, V.; Castro, S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. Agronomy 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.X.; Bilsborrow, P.E.; Hooley, P.; Fincham, D.A.; Lombi, E.; Forster, B.P. Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant golden promise. Plant Soil 2003, 250, 183–191. [Google Scholar] [CrossRef]
- Hsiao, T.C. Plant responses to water stress. Annu. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Andersen, M.N.; Jensen, C.R.; Lösch, R. The interaction effects of potassium and drought in field-grown barley. 1. Yield, water-use efficiency and growth. Acta Agric. Scand. Sect. B Soil Plant Sci. 1992, 42, 34–44. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 2005, 168, 541–549. [Google Scholar] [CrossRef]
- Brück, H.; Payne, W.A.; Sattelmacher, B. Effects of phosphorus and water supply on yield, transpirational water-use efficiency, and carbon isotope discrimination of pearl millet. Crop Sci. 2000, 40, 120–125. [Google Scholar] [CrossRef]
- Ackerson, R.C. Osmoregulation in cotton in response to water-stress. 3. Effects of phosphorus fertility. Plant Physiol. 1985, 77, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawwan, J.; Shibli, R.A.; Swaidat, I.; Tahat, M. Phosphorus regulates osmotic potential and growth of African violet under in vitro-induced water deficit. J. Plant Nutr. 2000, 23, 759–771. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Wimmer, R. Transley Review No. 104, Calcium physiology terrestrial ecosystem processes. New Phytol. 1999, 142, 373–417. [Google Scholar] [CrossRef]
- Sze, H.; Liang, F.; Hwang, I.; Curran, A.C.; Harper, J.F. Diversity and regulation of plant Ca2+ pumps: Insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 433–462. [Google Scholar] [CrossRef]
- Mississippi State University Extension Service. Delta Agricultural Weather Center. Available online: http://deltaweather.extension.msstate.edu/weather-station-result/ (accessed on 30 January 2021).
- Piper, E.L.; Boote, K.J. Temperature and cultivar effects of soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.A. Variation in fatty acid composition of the different acyl-lipids in seed oils from four Sesamun species. J. Am. Oil Chem. Soc. 1994, 71, 135–139. [Google Scholar] [CrossRef]
- May, W.E.; Hume, D.L.; Hale, B.A. Effects of agronomic practices on free fatty acid levels in the oil of Ontario-grown spring canola. Can. J. Plant Sci. 1993, 74, 267–274. [Google Scholar] [CrossRef]
- Dardanelli, J.L.; Balzarini, M.; Martinez, M.J.; Cuniberti, M.; Resnik, S.; Ramunda, S.F.; Herrero, R.; Baigorri, H. Soybean maturity groups, environments, and their interaction define mega-environments for seed composition in Argentina. Crop Sci. 2006, 46, 1939–1947. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Ebelhar, M.W.; Gillen, A.M.; Fisher, D.K.; Abbas, H.K.; Mengistu, A.; Reddy, K.N.; Paris, R.L. Soybean seed protein, oil, and fatty Acids are altered by S and S+N fertilizer under irrigated and non-irrigated environments. Agric. Sci. 2011, 2, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effects of maturity, genotypic background, and temperature on seed mineral composition in near isogenic soybean lines in the early soybean production system. Crop Sci. 2011, 51, 1161–1171. [Google Scholar] [CrossRef]
- Wells, R.; Meredith, W.R., Jr. Normal vs. okra leaf yield interactions in cotton. II. Analysis of vegetative and reproductive growth. Crop Sci. 1986, 26, 223–228. [Google Scholar] [CrossRef]
- Meredith, W.R., Jr.; Wells, R. Sub okra leaf influence on cotton yield. Crop Sci. 1987, 27, 47–48. [Google Scholar] [CrossRef]
- Grusak, M.A.; DellaPenna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Yang, M.; Hu, Y.; Liao, T.; Shi, L.; Xu, F.; Meng, J. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann. Bot. 2010, 105, 1221–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mississippi State University Extension Service. Cotton. Available online: http://msucares.com/crops/cotton/index.html (accessed on 30 January 2021).
- Statistical Analysis Systems (SAS); SAS Institute: Cary, NC, USA, 2002–2012.
- Bellaloui, N.; Mengistu, A.; Walker, R.R.; Young, L.D. Soybean seed composition affected by seeding rates and row spacing in the Midsouth USA. Crop Sci. 2014, 54, 1782–1795. [Google Scholar] [CrossRef]
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim. Phys. 1883, 247, 198–213. [Google Scholar]
- Childs, C.E.; Henner, E.B. A direct comparison of the Pregl, Dumas, Perkin-Elmer, and Hewlett-Packard (F&M) Carbon-ydrogen-nitrogen procedures. Microchem. J. 1970, 15, 590–597. [Google Scholar] [CrossRef]
- Cavell, A.J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 1955, 6, 479–480. [Google Scholar] [CrossRef]
- Wilcox, J.R.; Shibles, R.M. Interrelationships among seed quality attributes in soybean. Crop Sci. 2001, 41, 11–14. [Google Scholar] [CrossRef]
- AOAC. Method 988.05. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Rockville, MD, USA; Elsevier Science Publishing: Arlington, VA, USA, 1990; p. 70. [Google Scholar]
- AOAC. Method 920.39. In Official Methods of Analysis, 15th ed.; Helrich, K., Ed.; AOAC: Rockville, MD, USA; Elsevier Science Publishing: Arlington, VA, USA, 1990; p. 71. [Google Scholar]
- Bellaloui, N.; Turley, R.B. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Front. Plant Sci. 2013, 4, 516. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R.; Molin, W.T. Cottonseed protein, oil, and mineral nutrition in near-isogenic Gossypium hirsutum cotton lines expressing leaf color phenotypes under field conditions. Food Nutr. Sci. 2019, 10, 834–859. [Google Scholar] [CrossRef]
Protein | Oil | Calcium | Magnesium | Potassium | |||||||
Effect | DF | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level |
Year | 1 | 3.76 | * | 71.53 | *** | 7.05 | * | 80.82 | *** | 30.41 | *** |
Line | 2 | 3.77 | * | 74.88 | *** | 41.99 | *** | 18.69 | *** | 120 | *** |
Year*Line | 2 | 4.99 | * | 5.36 | * | 0.41 | ns | 17.32 | *** | 4 | * |
Residuals | 61.27 | 76.68 | 0.006 | 0.071 | 0.81 | ||||||
Phosphorus | Sulfur | Carbon | Nitrogen | ||||||||
Effect | DF | F Value | P Level | F Value | P Level | F Value | P Level | F Value | P Level | ||
Year | 1 | 5.02 | * | 17.95 | ** | 13.08 | *** | 46.27 | *** | ||
Line | 2 | 34.58 | *** | 69.97 | *** | 121.82 | *** | 39.18 | *** | ||
Year*Line | 2 | 0.6 | ns | 0.15 | ns | 2.75 | ns | 4.55 | *** | ||
Residuals | 0.71 | 0.033 | 0.281 | 0.039 |
Line | Protein | Oil | Ca | K | Mg | P | S | N | C |
---|---|---|---|---|---|---|---|---|---|
Uzbek CRL | 273 | 299 | 1.51 | 21.17 | 7.07 | 11.23 | 4.27 | 5.83 | 59.07 |
DP 5690 wild type | 267 | 291 | 1.33 | 18.93 | 7.13 | 10.67 | 4.14 | 4.95 | 58.97 |
DP 5690 CRL | 268 | 251 | 1.76 | 12.30 | 5.50 | 7.03 | 3.17 | 4.67 | 55.27 |
LSD | 4.5 | 4.49 | 0.59 | 0.71 | 0.34 | 0.79 | 0.10 | 0.085 | 0.33 |
Line | Protein | Oil | Ca | K | Mg | P | S | N | C |
---|---|---|---|---|---|---|---|---|---|
Uzbek CRL | 271 | 345 | 1.3 | 17.17 | 3.96 | 11.23 | 4.27 | 4.87 | 58.50 |
DP 5690 wild type | 268 | 327 | 1.2 | 17.10 | 3.97 | 10.67 | 4.60 | 4.68 | 58.04 |
DP 5690 CRL | 292 | 273 | 1.6 | 11.10 | 3.20 | 7.03 | 3.63 | 4.02 | 53.55 |
LSD | 4.66 | 5.7 | 0.059 | 0.22 | 0.097 | 0.14 | 0.13 | 0.14 | 0.29 |
Protein | Oil | Ca | K | Mg | P | S | C | |
---|---|---|---|---|---|---|---|---|
Oil | ns | |||||||
Ca | ns | −0.629 * | ||||||
K | ns | 0.903 *** | −0.663 * | |||||
Mg | ns | 0.827 ** | ns | 0.773 ** | ||||
P | ns | 0.778 * | −0.738 * | 0.880 ** | ns | |||
S | ns | 0.907 *** | −0.785 * | 0.876 ** | 0.857 ** | 0.783 ** | ||
C | ns | 0.948 *** | −0.686 * | 0.951 *** | 0.853 ** | 0.779 ** | 0.921 *** | |
N | ns | 0.733 * | ns | 0.809 ** | ns | 0.671 * | 0.669 * | 0.742 * |
Protein | Oil | Ca | K | Mg | P | S | C | |
---|---|---|---|---|---|---|---|---|
Oil | −0.849 ** | |||||||
Ca | ns | −0.872 ** | ||||||
K | −0.865 ** | 0.930 *** | −0.861 ** | |||||
Mg | ns | ns | ns | ns | ||||
P | −0.865 ** | 0.906 *** | −0.818 ** | 0.982 *** | ns | |||
S | −0.802 ** | 0.843 ** | −0.826 ** | 0.908 *** | ns | 0.940 *** | ||
C | −0.796 ** | 0.925 *** | −0.844 ** | 0.974 *** | ns | 0.965 *** | 0.917 *** | 0.859 ** |
N | −0.853 ** | 0.835 ** | −0.710 * | 0.878 ** | ns | 0.887 ** | 0.899 *** | 0.859 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellaloui, N.; Turley, R.B.; Stetina, S.R. Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants 2021, 10, 525. https://doi.org/10.3390/plants10030525
Bellaloui N, Turley RB, Stetina SR. Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants. 2021; 10(3):525. https://doi.org/10.3390/plants10030525
Chicago/Turabian StyleBellaloui, Nacer, Rickie B. Turley, and Salliana R. Stetina. 2021. "Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology" Plants 10, no. 3: 525. https://doi.org/10.3390/plants10030525
APA StyleBellaloui, N., Turley, R. B., & Stetina, S. R. (2021). Cottonseed Protein, Oil, and Minerals in Cotton (Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. Plants, 10(3), 525. https://doi.org/10.3390/plants10030525