Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Roasting, Boiling, and Frying on Quantities of Individual Phenolics in Chestnut Seeds Determined by HPLC-MS/MS
2.1.1. Phenolic Acids
2.1.2. Flavan-3-ols
2.1.3. Flavonols
2.1.4. Dihydrochalcones
2.1.5. Flavanones
2.2. Effect of Roasting, Boiling, and Frying on Quantities of Individual Phenolics in Chestnut Shells Determined by HPLC-MS/MS
2.2.1. Phenolic Acids
2.2.2. Flavan-3-ols
2.2.3. Flavonols
2.2.4. Dihydrochalcones
2.2.5. Flavanones
2.3. Effect of Roasting, Boiling, and Frying on Total Polyphenol Content (TPC) Determined by Folin–Ciocalteu Assay
2.4. Effects of Roasting, Boiling, and Frying on the Antioxidant Activity (AOA) of Chestnut Seeds and Shells
2.5. Correlation between TPC Determined by Folin–Ciocalteu Assay and Antioxidant Activity
2.6. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Reagents and Standards
3.2. Plant Material and Sample Preparation
3.3. Extraction Procedures
3.4. HPLC-MS/MS Determination of Individual Phenolic Compounds
3.5. Determination of Total Polyphenol Content (TPC) by Folin–Ciocalteu Assay
3.6. Antioxidant Activity (AOA)
3.7. Statistical Analyses
3.7.1. Principal Component Analysis (PCA)
3.7.2. Pearson Correlation Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shi, X.; Zhao, Q.; Cui, Y.; Ouyang, J.; Xu, F. Effect of cooking methods on nutritional quality and volatile compounds of Chinese chestnut (Castanea mollissima Blume). Food Chem. 2016, 201, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Sorice, A.; Siano, F.; Capone, F.; Guerriero, E.; Picariello, G.; Budillon, A.; Ciliberto, G.; Paolucci, M.; Costantini, S.; Volpe, M.G. Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules 2016, 21, 1411. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, B.; Borges, O.; Costa, H.S.; Bennett, R.; Santos, M.; Silva, A.P. Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chem. 2010, 122, 154–160. [Google Scholar] [CrossRef]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Industrial processing effects on chestnut fruits (Castanea sativa Mill.). 2. Crude protein, free amino acids and phenolic phytochemicals. Int. J. Food Sci. Tech. 2009, 44, 2613–2619. [Google Scholar]
- De Vasconcelos, M.D.C.B.M.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Primary and secondary metabolite composition of kernels from three cultivars of Portuguese chestnut (Castanea sativa Mill.) at different stages of industrial transformation. J. Agric. Food Chem. 2007, 55, 3508–3516. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Barros, A.I.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. [Google Scholar] [CrossRef]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R. Health benefits of nuts: Potential role of antioxidants. Br. J. Nutr. 2006, 96, S52–S60. [Google Scholar] [CrossRef] [Green Version]
- Brizi, C.; Santulli, C.; Micucci, M.; Budriesi, R.; Chiarini, A.; Aldinucci, C.; Frosini, M. Neuroprotective effects of Castanea sativa Mill. bark extract in human neuroblastoma cells subjected to oxidative stress. J. Cell. Biochem. 2016, 117, 510–520. [Google Scholar] [CrossRef]
- Vasconcelos, M.; Bennett, R.N.; Quideau, S.; Jacquet, R.; Rosa, E.A.; Ferreira-Cardoso, J.V. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crop. Prod. 2010, 31, 301–311. [Google Scholar] [CrossRef]
- Vázquez, G.; Fernández-Agulló, A.; Gómez-Castro, C.; Freire, M.; Antorrena, G.; González-Álvarez, J. Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Ind. Crop. Prod. 2012, 35, 126–134. [Google Scholar] [CrossRef]
- Barreira, J.C.; Ferreira, I.C.; Oliveira, M.B.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Vazquez, G.; Freire, M.; Santos, J.; Antorrena, G.; Gonzalez-Alvarez, J. Optimisation of polyphenols extraction from chestnut shell by response surface methodology. Waste Biomass Valorization 2010, 1, 219–225. [Google Scholar] [CrossRef]
- Vázquez, G.; González-Alvarez, J.; Santos, J.; Freire, M.; Antorrena, G. Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crop. Prod. 2009, 29, 364–370. [Google Scholar] [CrossRef]
- Vázquez, G.; Fontenla, E.; Santos, J.; Freire, M.; González-Álvarez, J.; Antorrena, G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crop. Prod. 2008, 28, 279–285. [Google Scholar] [CrossRef]
- Dinis, L.-T.; Oliveira, M.M.; Almeida, J.; Costa, R.; Gomes-Laranjo, J.; Peixoto, F. Antioxidant activities of chestnut nut of Castanea sativa Mill.(cultivar ‘Judia’) as function of origin ecosystem. Food Chem. 2012, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Garrido, I.; Lebron-Aguilar, R.; Gómez-Cordovés, M.C.; Rybarczyk, A.; Amarowicz, R.; Bartolome, B. Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J. Agric. Food Chem. 2009, 57, 10590–10599. [Google Scholar] [CrossRef]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidovic-Kosanovic, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch. Lebensm. Rundsch. 2007, 103, 369–377. [Google Scholar]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Otles, S.; Selek, I. Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Qual. Assur. Saf. Crop. Foods 2012, 4, 199–205. [Google Scholar] [CrossRef]
- Gross, G.G. From lignins to tannins: Forty years of enzyme studies on the biosynthesis of phenolic compounds. Phytochemistry 2008, 69, 3018–3031. [Google Scholar] [CrossRef]
- Vella, F.M.; De Masi, L.; Calandrelli, R.; Morana, A.; Laratta, B. Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. Eur. Food Res. Technol. 2019, 245, 2679–2686. [Google Scholar] [CrossRef]
- De Pascual-Teresa, S.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem. 2000, 48, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef]
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117. [Google Scholar] [PubMed]
- Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. J. Agric. Food Chem. 2007, 55, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea spp. agrobiodiversity conservation: Genotype influence on chemical and sensorial traits of cultivars grown on the same clonal rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef] [PubMed]
- Tu, F.; Xie, C.; Li, H.; Lei, S.; Li, J.; Huang, X.; Yang, F. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem. 2021, 363, 130277. [Google Scholar] [CrossRef] [PubMed]
- Aires, A.; Carvalho, R.; Saavedra, M.J. Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Manag. 2016, 48, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.S.; Lee, N.K.; Na, D.S.; Yu, H.H.; Paik, H.D. Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. J. Sci. Food Agric. 2016, 96, 2097–2102. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.-W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 2014, 11, 92. [Google Scholar]
- Bakkalbaşi, E.; Menteş, Ö.; Artik, N. Food ellagitannins—Occurrence, effects of processing and storage. Crit. Rev. Food Sci. Nutr. 2008, 49, 283–298. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Wani, I.A.; Hamid, H.; Hamdani, A.M.; Gani, A.; Ashwar, B.A. Physico-chemical, rheological and antioxidant properties of sweet chestnut (Castanea sativa Mill.) as affected by pan and microwave roasting. J. Adv. Res. 2017, 8, 399–405. [Google Scholar] [CrossRef]
- Lemos, M.R.B.; de Almeida Siqueira, E.M.; Arruda, S.F.; Zambiazi, R.C. The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Res. Int. 2012, 48, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Boateng, J.; Verghese, M.; Walker, L.; Ogutu, S. Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT-Food Sci. Technol. 2008, 41, 1541–1547. [Google Scholar] [CrossRef]
- Woffenden, H.M.; Ames, J.M.; Chandra, S.; Anese, M.; Nicoli, M.C. Effect of kilning on the antioxidant and pro-oxidant activities of pale malts. J. Agric. Food Chem. 2002, 50, 4925–4933. [Google Scholar] [CrossRef]
- Pradeep, S.; Guha, M. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem. 2011, 126, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Galiñanes, C.; Freire, M.S.; González-Álvarez, J. Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. Eur. J. Wood Wood Prod. 2015, 73, 651–659. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Maggi, F.; Öztürk, N.; Öztürk, Y.; Sagratini, G.; Torregiani, E.; Vittori, S.; Caprioli, G. Chemical and biological analysis of the by-product obtained by processing Gentiana lutea L. and other herbs during production of bitter liqueurs. Ind. Crop. Prod. 2016, 80, 131–140. [Google Scholar] [CrossRef]
No. | Analytes | Precursor ion, m/z | Product Ion, m/z | Fragmentor, V | Collision Energy, V | Polarity | Retention Time (Rt, min) |
---|---|---|---|---|---|---|---|
1 | Gallic acid | 169 | 125.2 * | 97 | 12 | Neg. | 6.96 |
2 | Neochlorogenic acid | 353 | 191.2 *, 179 | 82 | 12, 12 | Neg. | 9.52 |
3 | (+)-Catechin | 289 | 245.2 *,109.2 | 131 | 8, 20 | Neg. | 11.44 |
4 | Procyanidin B2 | 576.99 | 576.99 *, 321.2 | 160 | 0, 32 | Neg. | 12.41 |
5 | Chlorogenic acid | 353 | 191.2 *, 127.5 | 82 | 12, 20 | Neg. | 12.42 |
6 | p-Hydroxybenzoic acid | 137 | 93.2 * | 92 | 16 | Neg. | 12.86 |
7 | (−)-Epicatechin | 289 | 245.1 *, 109.1 | 126 | 8, 20 | Neg. | 13.03 |
8 | 3-Hydroxybenzoic acid | 137 | 93.2 * | 88 | 8 | Neg. | 13.59 |
9 | Caffeic acid | 179 | 135.2 *, 134.1 | 92 | 12, 24 | Neg. | 13.65 |
10 | Vanillic acid | 167 | 152.4 *, 108.1 | 88 | 12, 20 | Neg. | 14.32 |
11 | Syringic acid | 196.9 | 182.2 *, 121.2 | 93 | 8, 12 | Neg. | 15.28 |
12 | Procyanidin A2 | 575 | 575 *, 285 | 170 | 0, 20 | Neg. | 16.18 |
13 | p-Coumaric acid | 163 | 119.2 *, 93.2 | 83 | 12, 36 | Neg. | 16.70 |
14 | Ferulic acid | 193 | 134.2 *, 131.6 | 83 | 12, 8 | Neg. | 17.10 |
15 | 3,5-Dicaffeoylquinic acid | 514.9 | 353.1 *, 191 | 117 | 8, 28 | Neg. | 17.61 |
16 | Rutin | 609 | 300.2 *, 271.2 | 170 | 32, 50 | Neg. | 17.73 |
17 | Hyperoside | 465.01 | 303 *, 61.1 | 97 | 8, 50 | Pos. | 18.33 |
18 | Isoquercitrin | 463 | 271.2 *, 300.2 | 155 | 44, 24 | Neg. | 18.36 |
19 | Phloridzin | 435.39 | 273 *, 167 | 155 | 8, 28 | Neg. | 18.83 |
20 | Quercitrin | 446.99 | 300.2 *, 301.2 | 160 | 24, 16 | Neg. | 19.61 |
21 | Myricetin | 316.99 | 179.1 *, 182 | 150 | 16, 24 | Neg. | 19.61 |
22 | Naringin | 578.99 | 271.3 *, 151.3 | 170 | 32, 44 | Neg. | 19.62 |
23 | Kaempferol-3-glucoside | 447 | 284.2 *, 255.2 | 170 | 24, 40 | Neg. | 19.77 |
24 | Hesperidin | 611.01 | 303 *, 334.8 | 112 | 20, 12 | Pos. | 20.19 |
25 | Ellagic acid | 301 | 301 *, 229 | 170 | 0, 24 | Neg. | 21.41 |
26 | Quercetin | 300.99 | 151.2 *, 179.2 | 145 | 16, 12 | Neg. | 21.87 |
27 | Phloretin | 272.99 | 167 *, 123 | 116 | 8, 20 | Neg. | 22.30 |
28 | Kaempferol | 287.01 | 153 *, 69.1 | 60 | 36, 50 | Pos. | 23.84 |
29 | Isorhamnetin | 314.99 | 300.2 *, 196.1 | 145 | 16, 4 | Neg. | 24.57 |
No. | Compound | Seed | Inner Shell | Outer Shell | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | ||
1 | Gallic acid | 23.30 ± 0.07 | 49.50 ± 0.13 | 17.53 ± 0.02 | 66.54 ± 0.13 | 43.61 ± 0.01 | 118.85 ± 0.25 | 253.33 ± 0.20 | 106.22 ± 0.11 | 168.00 ± 0.14 | 112.24 ± 0.1 | 69.20 ± 0.03 | 124.14 ± 0.37 | 54.50 ± 0.02 | 153.30 ± 0.23 | 95.33 ± 0.5 |
2 | Neochlorogenic acid | 0.15 ± 0.01 | 0.18 ± 0.01 | 0.05 ± 0.03 | 0.28 ± 0.02 | 0.13 ± 0.01 | 0.06 ± 0.03 | 0.07 ± 0.03 | 0.02 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.03 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 |
3 | Chlorogenic acid | 0.94 ± 0.07 | 0.63 ± 0.02 | 0.16 ± 0.02 | 0.54 ± 0.03 | 0.66 ± 0.05 | 0.07 ± 0.05 | 0.08 ± 0.03 | 0.02 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.02 | 0.07 ± 0.01 | 0.02 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.02 |
4 | p-Hydroxybenzoic acid | 1.43 ± 0.10 | 1.32 ± 0.06 | 0.16 ± 0.07 | 1.79 ± 0.05 | 1.77 ± 0.08 | 0.51 ± 0.01 | 0.90 ± 0.03 | 0.82 ± 0.02 | 0.32 ± 0.01 | 0.61 ± 0.01 | 0.31 ± 0.03 | 0.53 ± 0.01 | 0.46 ± 0.01 | 1.33 ± 0.12 | 1.88 ± 0.15 |
5 | 3-Hydroxybenzoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
6 | Caffeic acid | 3.15 ± 0.01 | 1.50 ± 0.01 | 0.19 ± 0.01 | 3.28 ± 0.01 | 1.39 ± 0.01 | 0.73 ± 0.01 | 0.53 ± 0.01 | 0.36 ± 0.01 | 0.14 ± 0.01 | 0.11 ± 0.01 | 0.00 | 0.15 ± 0.01 | 0.05 ± 0.01 | 0.16 ± 0.01 | 0.13 ± 0.01 |
7 | Vanillic acid | 9.35 ± 0.04 | 10.69 ± 0.01 | 8.02 ± 0.08 | 13.36 ± 0.08 | 9.35 ± 0.04 | 10.00 ± 0.02 | 9.33 ± 0.04 | 8.00 ± 0.08 | 10.66 ± 0.01 | 8.66 ± 0.06 | 10.66 ± 0.08 | 13.33 ± 0.08 | 9.33 ± 0.04 | 23.99 ± 0.08 | 9.60 ± 0.03 |
8 | Syringic acid | 0.26 ± 0.01 | 0.44 ± 0.01 | 0.35 ± 0.01 | 0.35 ± 0.01 | 0.35 ± 0.01 | 0.96 0.01 | 0.88 ± 0.01 | 0.35 ± 0.01 | 0.70 ± 0.01 | 0.53 ± 0.01 | 0.79 ± 0.01 | 0.88 ± 0.01 | 0.35 ± 0.01 | 0.70 ± 0.01 | 0.61 ± 0.01 |
9 | p-Coumaric acid | 6.73 ± 0.03 | 2.28 ± 0.03 | 0.71 ± 0.01 | 4.78 ± 0.01 | 2.96 ± 0.01 | 1.27 ± 0.08 | 2.66 ± 0.04 | 1.83 ± 0.03 | 1.19 ± 0.03 | 0.85 ± 0.01 | 0.25 ± 0.01 | 0.84 ± 0.01 | 1.00 ± 0.07 | 2.38 ± 0.05 | 2.00 ± 0.02 |
10 | Ferulic acid | 3.37 ± 0.01 | 1.55 ± 0.01 | 0.25 ± 0.01 | 2.15 ± 0.01 | 9.36 ± 0.01 | 4.82 ± 0.01 | 4.46 ± 0.03 | 0.96 ± 0.01 | 3.86 ± 0.01 | 3.28 ± 0.01 | 2.37 ± 0.01 | 2.04 ± 0.01 | 0.77 ± 0.01 | 1.35 ± 0.01 | 1.13 ± 0.01 |
11 | 3,5-Dicaffeoylquinic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. ± |
12 | Ellagic acid | 11.11 ± 0.01 | 13.09 ± 0.01 | 16.98 ± 0.03 | 42.80 ± 0.01 | 31.02 ± 0.29 | 86.35 ± 0.56 | 138.10 ± 0.70 | 76.17 ± 0.26 | 92.72 ± 0.07 | 84.89 ± 0.06 | 35.49 ± 0.14 | 91.76 ± 0.52 | 31.42 ± 0.01 | 132.41 ± 0.44 | 121.48 ± 0.13 |
Total Phenolic acids | 59.80 | 81.17 | 44.39 | 135.88 | 100.61 | 223.62 | 410.33 | 194.76 | 277.69 | 211.24 | 119.17 | 233.78 | 97.92 | 315.73 | 225.11 | |
13 | (+)-Catechin | 74.17 ± 0.13 | 139.37 ± 0.22 | 44.28 ± 0.13 | 108.84 ± 0.20 | 62.39 ± 0.14 | 110.93 ± 0.02 | 207.37 ± 0.31 | 120.43 ± 0.43 | 350.28 ± 0.23 | 316.51 ± 0.81 | 91.34 ± 0.14 | 168.35 ± 0.25 | 109.85 ± 0.55 | 151.52 ± 0.60 | 122.17 ± 0.41 |
14 | (−)-Epicatechin | 4.56 ± 0.01 | 7.82 ± 0.06 | 0.23 ± 0.01 | 1.66 ± 0.10 | 4.18 ± 0.07 | 6.30 ± 0.02 | 7.27 ± 0.02 | 0.58 ± 0.01 | 4.94 ± 0.01 | 2.99 ± 0.01 | 7.94 ± 0.04 | 8.29 ± 0.02 | 0.75 ± 0.02 | 8.49 ± 0.09 | 11.35 ± 0.13 |
15 | Procyanidin A2 | 0.42 ± 0.02 | 0.40 ± 0.01 | 0.17 ± 0.01 | 0.34 ± 0.06 | 0.34 ± 0.03 | 21.63 ± 0.18 | 19.62 ± 0.11 | 28.87 ± 0.14 | 31.19 ± 0.16 | 27.06 ± 0.12 | 13.68 ± 0.09 | 12.17 ± 0.08 | 20.52 ± 0.17 | 22.64 ± 0.23 | 18.61 ± 0.19 |
16 | Procyanidin B2 | 8.67 ± 0.01 | 7.46 ± 0.01 | 5.90 ± 0.04 | 6.42 ± 0.02 | 6.07 ± 0.03 | 17.99 ± 0.02 | 14.53 ± 0.01 | 21.10 ± 0.06 | 24.56 ± 0.02 | 23.01 ± 0.04 | 6.57 ± 0.01 | 5.47 ± 0.01 | 7.27 ± 0.03 | 9.65 ± 0.01 | 8.48 ± 0.03 |
Total Flavan-3-ols | 87.82 | 155.05 | 50.58 | 117.26 | 72.99 | 156.85 | 248.79 | 170.99 | 410.97 | 369.57 | 119.54 | 194.28 | 138.39 | 192.30 | 160.61 | |
17 | Rutin | 1.59 ± 0.03 | 1.65 ± 0.03 | 1.24 ± 0.02 | 2.05 ± 0.01 | 1.91 ± 0.01 | 3.48 ± 0.05 | 3.56 ± 0.01 | 2.69 ± 0.07 | 2.93 ± 0.03 | 2.87 ± 0.01 | 2.45 ± 0.06 | 2.23 ± 0.02 | 1.61 ± 0.02 | 1.82 ± 0.01 | 1.76 ± 0.01 |
18 | Isoquercitrin | 2.17 ± 0.01 | 2.99 ± 0.01 | 0.83 ± 0.01 | 2.63 ± 0.05 | 1.75 ± 0.03 | 5.24 ± 0.03 | 11.62 ± 0.02 | 3.11 ± 0.07 | 5.01 ± 0.04 | 4.33 ± 0.03 | 9.95 ± 0.03 | 12.68 ± 0.05 | 10.02 ± 0.02 | 11.46 ± 0.02 | 7.21 ± 0.01 |
19 | Hyperoside | 2.91 ± 0.01 | 3.10 ± 0.02 | 2.09 ± 0.01 | 3.00 ± 0.03 | 3.48 ± 0.04 | 5.45 ± 0.01 | 10.97 ± 0.08 | 5.72 ± 0.04 | 8.81 ± 0.09 | 4.22 ± 0.06 | 20.05 ± 0.03 | 20.55 ± 0.03 | 23.32 ± 0.21 | 36.62 ± 0.28 | 12.62 ± 0.15 |
20 | Quercitrin | 0.08 ± 0.01 | 0.25 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.001 | 0.07 ± 0.01 | 2.72 ± 0.02 | 3.52 ± 0.02 | 2.62 ± 0.01 | 2.62 ± 0.02 | 1.07 ± 0.01 | 8.48 ± 0.04 | 4.12 ± 0.02 | 7.13 ± 0.07 | 9.67 ± 0.05 | 3.34 ± 0.01 |
21 | Myricetin | 0.60 ± 0.01 | 0.85 ± 0.01 | 0.05 ± 0.01 | 0.16 ± 0.001 | 0.36 ± 0.01 | 4.40 ± 0.05 | 14.29 ± 0.07 | 3.00 ± 0.04 | 8.53 ± 0.03 | 5.23 ± 0.02 | 0.57 ± 0.01 | 1.97 ± 0.02 | 0.48 ± 0.01 | 4.75 ± 0.06 | 2.30 ± 0.04 |
22 | Kaempferol-3-glucoside | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.03 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.18 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.16 ± 0.01 | 0.09 ± 0.01 | 0.04 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 |
23 | Quercetin | 0.22 ± 0.01 | 0.25 ± 0.005 | 0.06 ± 0.01 | 0.13 ± 0.004 | 0.10 ± 0.001 | 0.53 ± 0.01 | 1.24 ± 0.02 | 0.37 ± 0.01 | 1.45 ± 0.01 | 0.79 ± 0.02 | 0.79 ± 0.01 | 3.00 ± 0.02 | 1.85 ± 0.03 | 10.46 ± 0.03 | 5.61 ± 0.02 |
24 | Isorhamnetin | 0.07 ± 0.01 | 0.03 ± 0.01 | 0.09 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.01 | 3.06 ± 0.03 | 4.67 ± 0.03 | 1.51 ± 0.02 | 4.83 ± 0.04 | 1.58 ± 0.01 | 4.24 ± 0.01 | 9.10 ± 0.04 | 4.15 ± 0.03 | 23.22 ± 0.16 | 19.31 ± 0.19 |
25 | Kaempferol | 0.98 ± 0.01 | 1.11 ± 0.03 | 1.04 ± 0.01 | 1.18 ± 0.02 | 0.13 ± 0.01 | 3.36 ± 0.01 | 7.69 ± 0.03 | 3.89 ± 0.06 | 6.34 ± 0.02 | 6.41 ± 0.05 | 0.23 ± 0.01 | 1.21 ± 0.03 | 0.30 ± 0.01 | 0.50 ± 0.01 | 0.37 ± 0.01 |
Total Flavonols | 8.81 | 10.42 | 5.52 | 9.63 | 8.21 | 28.40 | 57.62 | 22.97 | 40.57 | 26.55 | 46.91 | 54.94 | 48.90 | 98.60 | 52.60 | |
26 | Phloridzin | 6.82 ± 0.01 | 7.33 ± 0.02 | 1.69 ± 0.01 | 6.54 ± 0.01 | 7.78 ± 0.01 | 15.52 ± 0.04 | 41.83 ± 0.03 | 28.37 ± 0.11 | 39.04 ± 0.04 | 24.68 ± 0.04 | 4.14 ± 0.01 | 8.98 ± 0.01 | 6.69 ± 0.01 | 7.87 ± 0.01 | 7.13 ± 0.01 |
27 | Phloretin | 2.09 ± 0.03 | 4.20 ± 0.02 | 0.90 ± 0.02 | 2.46 ± 0.05 | 2.64 ± 0.03 | 9.88 ± 0.07 | 5.81 ± 0.01 | 6.94 ± 0.04 | 5.22 ± 0.05 | 2.85 ± 0.02 | 3.90 ± 0.03 | 1.94 ± 0.03 | 4.43 ± 0.02 | 4.90 ± 0.01 | 3.19 ± 0.02 |
Total Dihydrochalcones | 8.92 | 11.53 | 2.59 | 9.01 | 10.42 | 25.40 | 47.64 | 35.31 | 44.26 | 27.52 | 8.04 | 10.92 | 11.12 | 12.77 ± | 10.33 | |
28 | Hesperidin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
29 | Naringin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Total Flavanones | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Total Polyphenols | 165.35 | 258.18 | 103.27 | 271.78 | 192.22 | 434.28 | 764.37 | 424.02 | 773.48 | 634.88 | 293.66 | 493.93 | 296.32 | 619.39 | 455.81 |
Parameter | Seed | Inner Shell | Outer Shell | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | Raw | Boiled | Roasted, Microwave | Roasted, Oven | Fried | |
Total phenolic content (mg GAE/g DW) a | 8.98 ± 0.33 | 9.14 ± 0.51 | 8.86 ± 0.36 | 9.43 ± 0.05 | 9.02 ± 0.03 | 54.04 ± 0.27 | 55.44 ± 0.53 | 54.49 ± 0.32 | 56.82 ± 0.76 | 54.90 ± 0.42 | 45.01 ±0.17 | 45.80 ± 0.44 | 45.03 ± 0.69 | 46.09 ± 0.57 | 45.23 ± 0.28 |
Antioxidant activity (mg TE/g DW) b | 2.81 ± 0.58 | 3.51 ± 0.08 | 3.36 ± 0.14 | 3.37 ± 0.38 | 3.42 ± 0.31 | 5.25 ± 0.17 | 4.75 ± 0.84 | 5.39 ± 0.20 | 5.30 ± 016 | 5.04 ± 0.06 | 5.04 ± 0.45 | 4.93 ± 0.47 | 5.28 ± 0.31 | 5.09 ± 0.73 | 4.72 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.M.; Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Abd-Allah, R.H.; Borsetta, G.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.). Plants 2021, 10, 2192. https://doi.org/10.3390/plants10102192
Mustafa AM, Abouelenein D, Acquaticci L, Alessandroni L, Abd-Allah RH, Borsetta G, Sagratini G, Maggi F, Vittori S, Caprioli G. Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.). Plants. 2021; 10(10):2192. https://doi.org/10.3390/plants10102192
Chicago/Turabian StyleMustafa, Ahmed M., Doaa Abouelenein, Laura Acquaticci, Laura Alessandroni, Rehab H. Abd-Allah, Germana Borsetta, Gianni Sagratini, Filippo Maggi, Sauro Vittori, and Giovanni Caprioli. 2021. "Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.)" Plants 10, no. 10: 2192. https://doi.org/10.3390/plants10102192
APA StyleMustafa, A. M., Abouelenein, D., Acquaticci, L., Alessandroni, L., Abd-Allah, R. H., Borsetta, G., Sagratini, G., Maggi, F., Vittori, S., & Caprioli, G. (2021). Effect of Roasting, Boiling, and Frying Processing on 29 Polyphenolics and Antioxidant Activity in Seeds and Shells of Sweet Chestnut (Castanea sativa Mill.). Plants, 10(10), 2192. https://doi.org/10.3390/plants10102192