Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Chemical Composition of Browse Species
3.2. Amino Acids in Browse Species
4. Materials and Methods
4.1. Description of the Harvesting Sites, Sampling and Laboratory Site
4.2. Chemical Analysis
4.2.1. Proximate Analysis
4.2.2. Amino Acids
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mlambo, V.; Smith, T.; Owen, E.; Mould, F.; Sikosana, J.; Mueller-Harvey, I. Tanniniferous Dichrostachys cinerea fruits do not require detoxification for goat nutrition: In sacco and in vivo evaluations. Livest. Prod. Sci. 2004, 90, 135–144. [Google Scholar] [CrossRef]
- Ravhuhali, K.; Mlambo, V.; Beyene, T.; Palamuleni, L. Effects of soil type on density of trees and nutritive value of tree leaves in selected communal areas of South Africa. S. Afr. J. Anim. Sci. 2020, 50, 88–98. [Google Scholar] [CrossRef]
- Mokoboki, H.K.; Ndlovu, L.R.; Ng’ambi, J.M.; Malatje, M.M.; Nikolova, R.V. Nutritive value of Acacia tree foliages growing in the Limpopo Province of South Africa. S. Afr. J. Anim. Sci. 2005, 35, 221–222. [Google Scholar] [CrossRef]
- Rubanza, C.; Shem, M.; Bakengesa, S.; Ichinohe, T.; Fujihara, T. Effects of Acacia nilotica, A. polyacantha and Leucaena leucocephala leaf meal supplementation on performance of Small East African goats fed native pasture hay basal forages. Small Rumin. Res. 2007, 70, 165–173. [Google Scholar] [CrossRef]
- Mnisi, C.M.; Mlambo, V. Application of near infrared reflectance spectroscopy to the nutritional assessment of tree leaves as potential protein supplements for ruminants. Trop. Agric. 2017, 94, 9–19. [Google Scholar]
- Mlambo, V.; Marume, U.; Gajana, C. Utility of the browser’s behavioural and physiological strategies in coping with dietary tannins: Are exogenous tannin-inactivating treatments necessary? S. Afr. J. Anim. Sci. 2016, 45, 441–445. [Google Scholar] [CrossRef]
- Shelton, A.L. Variation in chemical defences of plants may improve the effectiveness of defence. Evol. Ecol. Res. 2004, 6, 709–726. [Google Scholar]
- Aregawi, T.; Melaku, S.; Nigatu, L. Management and utilization of browse species as livestock feed in semi-arid district of North Ethiopia. Livest. Res. Rural Dev. 2008, 20, 86. [Google Scholar]
- Gebru, G.W.; Ichoku, H.E.; Phil-Eze, P.O. Determinants of livelihood diversification strategies in Eastern Tigray Region of Ethiopia. Agric. Food Secur. 2018, 7, 62. [Google Scholar] [CrossRef]
- Kakengi, V.A.M.; Ndabikunze, S.M.; Starwatt, S.V.; Fujihara, T. Trace mineral contents of grass and browses in Tanzania and its implication to ruminant feeding and reproduction. J. Food Agric. Environ. 2007, 5, 210–215. [Google Scholar]
- Rubanza, C.D.K. Studies on Utilization of Browse Tree Fodder Supplements to Ruminants Fed on Low Quality Roughages in North-Western Tanzania. Ph.D. Thesis, Tottori University, Tottori, Japan, 2005; pp. 44–47. [Google Scholar]
- Rubanza, C.D.K.; Shem, M.N.; Ichinohe, T.; Fujihara, T. Polyphenolics and mineral composition of selected browse tree species leaves native to North Western Tanzania traditional fodder banks. J. Food Agric. Environ. 2006, 4, 328–332. [Google Scholar]
- Ferraz-de-Oliveira, M.I.; Azada, C.; Pinto-Correia, T. Management of Montados and Dehesas for High Nature Value: An in-terdisciplinary pathway. Agrofor. Syst. 2016, 90, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kraus, T.E.C.; Yu, Z.; Preston, C.M.; Dahlgren, R.; Zasoski, R.J. Linking Chemical Reactivity and Protein Precipitation to Structural Characteristics of Foliar Tannins. J. Chem. Ecol. 2003, 29, 703–730. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution. Int. J. Mol. Sci. 2009, 10, 3371–3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owuor, P.O.; Gone, F.O.; Onchri, D.B.; Jumba, I.O. Levels of aluminium in green leaf of clonal teas, black tea and tea liquors, and effects of rates of nitrogen fertilizers on the levels of aluminium in black tea. Food Chem. 1990, 35, 59–68. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [PubMed]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 4. [Google Scholar]
- Sariyildiz, T.; Anderson, J. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For. Ecol. Manag. 2005, 210, 303–319. [Google Scholar] [CrossRef]
- Hassan, F.-U.; Arshad, M.A.; Li, M.; Rehman, M.S.-U.; Loor, J.J.; Huang, J. Potential of Mulberry Leaf Biomass and Its Flavonoids to Improve Production and Health in Ruminants: Mechanistic Insights and Prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Mehlhorn, H. Encyclopaedia of Parasitology, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.; Messerchmidt, U. Review: Sugar beets as a substitute for grain for lactating dairy cattle. J. Anim. Sci. Biotechnol. 2017, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Ensminger, M.E.; Oldfield, J.E.; Heinemann, W.W. Feeds and Nutrition; The Ensminger Publishing: Clovis, CA, USA, 1990; pp. 324–366. [Google Scholar]
- Esteves, L.A.C.; Monteiro, A.N.T.R.; Sitanaka, N.Y.; Oliveira, P.C.; Castilha, L.D.; Paula, V.R.C.; Pozza, P.C. The reduction of crude protein with the supplementation of amino acids in the diet reduces the environmental impact of growing pig production evaluated through live cycle assessment. Sustainability 2021, 13, 4815. [Google Scholar] [CrossRef]
- Aganga, A.A.; Omphile, U.J.; Chabo, R.G.; Kgosimore, M.; Mochankana, M. Goat Production under Traditional Management in Gaborone Agricultural Region in Botswana. J. Anim. Vet. Adv. 2005, 4, 515–519. [Google Scholar]
- Al Shafei, K.N.; Naur, A. Nutritive value and dry matter disappearance of Sudanese Acacia browse leaves in goat nutrition. World Vet. J. 2016, 6, 46–52. [Google Scholar]
- Rambau, M.D.; Fushai, F.; Baloyi, J. Productivity, chemical composition and ruminal degradability of irrigated Napier grass leaves harvested at three stages of maturity. S. Afr. J. Anim. Sci. 2016, 46, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Njidda, A.A.; Olafedahan, O.A.; Duwa, H. Effect of dietary inclusion of brose forage (Ziziphus mucronata) in a total mixed ration on performance of Yankasa rams. Sch. J. Agric. Vet. Sci. 2014, 1, 235–241. [Google Scholar]
- Boudet, A.-M. A new view of lignification. Trends Plant Sci. 1998, 3, 67–71. [Google Scholar] [CrossRef]
- Sebolai, T.M.; Mlambo, V.; Beyene, T.S.; Madibela, R. Nutritional Characterization of Browse Plants Harvested at Different Browsing Heights in Eastern Cape Province. Ph.D. Thesis, North West University, North West, South Africa, 2018. [Google Scholar]
- Njidda, A.A.; Olatanji, E.A. Chemical Composition, and anti-Nutritive Substances and digestion kinetics of dour Ziziphus species leaves used as fodder for ruminants in Semi-arid zone of Nigeria. J. Nat. Sci. Res. 2012, 12, 79–86. [Google Scholar]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velazquez, D. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front. Plant Sci. 2015, 6, 837. [Google Scholar] [CrossRef] [Green Version]
- NRC (National Research Council). Nutrient Requirements of Beef Cattle, 7th ed.; NRC: Washington, DC, USA, 2000.
- Mokoboki, H.K.; Sebola, A.N.; Ravhuhali, K.E.; Nhlane, L. Chemical composition, in vitro ruminal dry matter degradability and dry matter intake of some selected browse plants. Cogent Food Agric. 2019, 5, 1587811. [Google Scholar] [CrossRef]
- Mnisi, C.M.; Mlambo, V. Influence of harvesting site on chemical composition and potential protein value of Acacia erioloba, A. nilotica and Ziziphus mucronata leaves for ruminants. J. Anim. Physiol. Anim. Nutr. 2016, 101, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Ogunbosoye, D.; Tona, G.; Otukoya, F. Evaluation of the Nutritive Value of Selected Browse Plant Species in the Southern Guinea Savannah of Nigeria for Feeding to Ruminant Animals. Br. J. Appl. Sci. Technol. 2015, 7, 386–395. [Google Scholar] [CrossRef]
- Kwaza, A.; Tefera, S.; Mlambo, V.; Keletso, M. Short-term grazing exclusion impacts using brush packs on soil and grass layers in degraded communal rangelands of semi-arid South Africa and implications for restoration and pasture utilization. Trop. Grassl.-Forrajes Trop. 2020, 8, 220–233. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient requirements of domestic animals, no 5. In Nutrients Requirement of Sheep, 6th ed.; National Academic Science: Washington, DC, USA, 1985. [Google Scholar]
- Ravhuhali, K.E.; Mlambo, V.; Beyene, T.S.; Palamuleni, G. Spatial Variation in Density, Species Composition and Nutritive Value of Vegetation in Selected Communal Areas of the North West Province. Ph.D. Thesis, North West University, North West, South Africa, 2018. [Google Scholar]
- Aruwayo, A.; Adeleke, R.A. A Review of Chemical Constituents and Use of Browse Plants in the Tropics. FUDMA Rec. Chem. Sci. 2020, 1, 72–81. [Google Scholar]
- Van Soest, P.J. Effect of environment and quality of fibre on the nutritive value of crop residues—Plant Breeding and the Nutritive Value of Crop Residues. In Proceedings of the Workshop Held at ILCA, Addis Ababa, Ethiopia, 7–10 December 1987. [Google Scholar]
- Felzer, B.S.; Cronin, T.; Reilly, J.M.; Melillo, J.M.; Wang, X. Impacts of ozone on trees and crops. C. R. Geosci. 2007, 339, 784–798. [Google Scholar] [CrossRef] [Green Version]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Nsubuga, D.; Nampanzira, D.K.; Masembe, C.; Muwanika, V.B. Nutritional properties of some browse species used as goat feed in Pastoral dry lands, Uganda. Agrofor. Syst. 2019, 94, 933–940. [Google Scholar] [CrossRef]
- Msiza, N.H.; Ravhuhali, K.E.; Mokoboki, H.K.; Mavengahama, S.; Motsei, L.E. Ranking Species for Veld Restoration in Semi-Arid Regions Using Agronomic, Morphological and Chemical Parameters of Selected Grass Species at Different Developmental Stages under Controlled Environment. Agronomy 2021, 11, 52. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.; Roychowdhury, R.; Fujita, M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Zobayed, S.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Physiol. Biochem. 2005, 43, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Said-Al, A.H.A.H.; Omer, E.A.; Naguib, N.Y. Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano. Int. Agrophysics 2009, 23, 269–275. [Google Scholar]
- Körner, C.; Farquhar, G.; Roksandic, Z. A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 1988, 74, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Gale, J. Plants and Altitude—Revisited. Ann. Bot. 2004, 94, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Mountousis, I.; Papanikolaou, K.; Stanogias, G.; Chatzitheodoridis, F.; Karalazos, V. Altitudinal chemical composition variations in biomass of rangelands in Northern Greece. Livest. Res. Rural Dev. 2006, 18, 106. [Google Scholar]
- Martz, F.; Peltola, R.; Fontanay, S.; Duval, R.; Julkunen-Tiitto, R.; Stark, S. Effect of Latitude and Altitude on the Terpenoid and Soluble Phenolic Composition of Juniper (Juniperus communis) Needles and Evaluation of Their Antibacterial Activity in the Boreal Zone. J. Agric. Food Chem. 2009, 57, 9575–9584. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Li, P.; Chen, Y.; Han, W.; Fang, J. Nutrient allocation strategies of woody plants: An approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Sci. Rep. 2016, 6, 20099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titgemeyer, E.C.; Löest, C.A. Amino acid nutrition: Demand and supply in forage-fed ruminants. J. Anim. Sci. 2001, 79, E180–E189. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Van Wyk, B.; Van Wyk, B.E.; Van Wyk, P. Photo Guide to Trees of South Africa; Briza: Pretoria, South Africa, 2012. [Google Scholar]
- AOAC. Method number 973.18. In Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fibre and non-starch polysaccharides in relation animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Method number 976.06. In Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- AOAC. Official Method 920.39. Fat (crude) or ether extraction in animal feed. In Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Fonnesbeck, P.V.; Clark, D.H.; Garret, W.N.; Speth, C.F. Predicting energy utilization from alfalfa hay from the Western Region. Proc. Am. Anim. Sci. (West. Sect.) 1984, 35, 305–308. [Google Scholar]
- Khalil, J.K.; Sawaya, W.N.; Hyder, S.Z. Nutrient Composition of Atriplex Leaves Grown in Saudi Arabia. J. Range Manag. 1986, 39, 104. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Jiwuba, P.C.; Ezeokeke, C.T.; Uchegbu, M.C.; Okoli, I.C.; Iloeje, M.U. Evaluation of phytochemicals and nutritional composition of ginger rhizome powder. Int. J. Agric. Rural Dev. 2014, 17, 1663–1670. [Google Scholar]
- Ananthan, R.; Subhash, K.; Longvah, T. Capsaicinoids, amino acid and fatty acid profiles in different fruit components of the world hottest Naga king chilli (Capsicum chinense Jacq). Food Chem. 2018, 238, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Manyelo, T.; Sebola, N.; Mabelebele, M. Nutritional and Phenolic Profile of Early and Late Harvested Amaranth Leaves Grown Under Cultivated Conditions. Agriculture 2020, 10, 432. [Google Scholar] [CrossRef]
- Statistical Analysis System. Statistics Software, Release 10; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
Species | Chemical Components | |||||||
---|---|---|---|---|---|---|---|---|
ASH | CP | CF | ADL | DMD | NFC | DE (Mcal/kg) | ME (Mcal/kg) | |
A.digitata | 136.7a | 168.7f | 33.7d | 174.6q | 628.7d | 167.6r | 2.961d | 2.431d |
A. johnsonii | 90.8c | 69.3u | 19.6kl | 324.7e | 399.3v | 22.9u | 1.979v | 1.625v |
B. maughamii | 110.0b | 133.4 k | 28.5fg | 315.9f | 415.0u | 18.4u | 2.046u | 1.680u |
B. discolour | 63.8efg | 216.2a | 18.4mn | 114.6t | 638.0b | 435.2e | 3.001b | 2.463b |
B. zeyheri | 63.9efg | 129.8l | 18.4mn | 145.4s | 63.442c | 499.3a | 2.985c | 2.451c |
B. mollis H | 48.7jklm | 98.8p | 27.8gh | 243.2k | 554.4i | 388.2h | 2.643i | 2.170i |
C. edulis | 54.9ghijk | 82.0t | 22.4j | 273.1h | 513.9n | 176.3q | 1.834w | 2.027n |
Catha edulis | 76.8d | 106.0o | 15.5p | 463.1a | 365.5w | 235.1o | 2.469n | 1.506w |
C. mopane | 46.5klm | 124.7m | 37.9c | 265.4i | 483.7q | 331.9l | 2.340q | 1.921q |
C. imberbe | 59.6fghi | 143.6h | 23.7i | 118.4t | 610.7e | 483.6b | 2.884e | 2.367e |
C. molle | 51.3ijkl | 95.2q | 17.8mno | 352.5d | 462.7r | 262.7n | 2.250r | 1.848r |
C. collinum | 73.4d | 129.7l | 28.4fg | 193.9p | 614.1e | 164.4r | 2.898e | 2.379e |
D. melanoxylon | 40.7mn | 173.6e | 18.7lm | 326.6e | 428.1t | 175.5q | 2.102t | 1.726t |
D. mespiliformis | 103.9b | 97.1pq | 51.3b | 304.1g | 507.7o | 81.6t | 2.443o | 2.005o |
E. divinorum | 44.5lmn | 65.1v | 13.5q | 382.9c | 135.5z | 97.3s | 0.850z | 0.698z |
F. virosa | 74.1d | 176.1d | 67.2a | 102.0u | 688.0a | 449.6d | 3.215a | 2.639a |
G. flavescens | 55.0ghijk | 137.0j | 20.0k | 225.3m | 512.4n | 364.9i | 2.463n | 2.022n |
G. monticola | 53.1hijkl | 116.8n | 20.1k | 312.2f | 303.2x | 187.9p | 1.568x | 1.287x |
G. occidentalis | 95.3c | 157.8g | 17.4no | 162.6r | 518.7m | 241.3o | 2.490m | 2.044m |
P. maprouneifolia | 35.7n | 86.1s | 32.5e | 175.8q | 498.8p | 408.5f | 2.405p | 1.974p |
P. rotundifolius | 57.5ghij | 195.6c | 17.0o | 450.7b | 273.6y | 96.4s | 1.441y | 1.183y |
S. brachypetala | 44.8lm | 116.0n | 27.43h | 216.5n | 545.7jk | 310.9m | 2.605jk | 2.139jk |
S. birrea subsp. caffra | 62.4efgh | 143.4h | 26.8h | 252.4j | 606.7f | 241.7o | 2.866f | 2.353f |
S. nigrescens | 46.0klm | 92.7r | 15.3p | 161.4r | 444.8s | 308.2m | 2.174s | 1.784s |
S. polyacantha | 55.4ghijk | 200.6b | 14.8p | 246.6k | 542.9k | 343.3k | 2.594k | 2.129k |
S. madagascariensis | 39.8 mn | 92.6r | 22.3j | 173.0q | 595.0h | 464.1c | 2.816h | 2.312h |
T. emetic | 68.7def | 140.4i | 15.4p | 236.7l | 484.1q | 354.4j | 2.342q | 1.923q |
V. nilotica | 45.3lm | 116.5n | 29.1f | 263.3i | 505.8o | 398.7g | 2.435o | 1.999o |
V. rechmanniana | 46.2klm | 92.1r | 37.9c | 263.6i | 547.8j | 324.8l | 2.615j | 2.147j |
V. tortils subsp. raddiana | 63.6efg | 131.1kl | 21.4j | 211.5o | 522.6l | 363.0i | 2.507l | 2.058l |
V. infausta | 69.7de | 131.9kl | 22.0j | 94.4v | 599.7g | 476.7b | 2.837g | 2.329g |
SE | 2.88 | 0.770 | 0.356 | 1.40 | 1.26 | 2.65 | 0.005 | 0.004 |
Species | Chemical Components | |||||||
---|---|---|---|---|---|---|---|---|
ASH | CP | CF | ADL | DMD | NFC | DE (Mcal/kg) | ME (Mcal/kg) | |
D. lycioides | 87.7b | 99.3e | 36.3c | 194.9e | 661.2a | 352.2c | 3.100a | 2.545a |
P. velutina | 93.3a | 158.5a | 33.8e | 194.1e | 565.1d | 321.4e | 2.689d | 2.207d |
S. lancea | 60.7d | 83.2g | 28.8g | 222.0c | 600.1c | 468.3b | 2.838c | 2.330c |
S. pyroides | 69.4c | 114.8d | 32.2f | 207.7d | 466.9f | 335.8d | 2.268f | 1.862f |
S. mellifera | 68.9c | 86.6f | 50.3a | 123.2f | 644.8b | 503.2a | 3.030b | 2.487b |
V. erioloba | 60.4d | 129.1b | 34.5d | 300.6a | 442.8g | 315.2e | 2.165g | 1.778g |
V. robusta | 73.3c | 125.7c | 43.4b | 230.7b | 545.9e | 346.4c | 2.606e | 2.140e |
SE | 1.48 | 0.466 | 0.130 | 1.46 | 1.25 | 2.19 | 0.0054 | 0.0044 |
Species | Chemical Components | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ASH | CP | CF | ADL | DMD | NFC | DE (Mcal/kg) | ME (Mcal/kg) | |||||||||
GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | |
D. cinerea | 47.2iA | 41.4ghB | 119.4jB | 137.5fA | 12.5iB | 21.0iA | 283.8bcA | 218.3fgB | 510.1jB | 571.4eA | 199.5jB | 451.5bA | 2.453jB | 2.716eA | 2.014jB | 2.230eA |
G. flava | 85.8cA | 62.3dB | 197.7bA | 125.6gB | 12.8iB | 46.8cA | 197.1fgA | 186.7hA | 492.6lA | 492.1kA | 182.3kB | 352.2gA | 2.378lA | 2.376kA | 1.953lA | 1.951kA |
M. azedarach | 117.6aA | 80.0abB | 223.2aA | 162.9cB | 24.5gA | 16.6lB | 150.9hA | 97.3iB | 620.4cB | 662.2bA | 336.5eB | 441.8cA | 2.925cB | 3.105bA | 2.402cB | 2.549bA |
P. africanum | 32.7kB | 58.5deA | 76.3kB | 95.5kA | 12.3iB | 19.6jA | 220.2efB | 260.5cdA | 646.7bA | 597.0cB | 280.1hA | 134.9lB | 3.084bA | 2.825cB | 2.494bA | 2.320cB |
S. molle | 76.0eA | 76.3bA | 122.3iA | 105.8jB | 57.8aB | 79.4aA | 344.5aA | 224.3deB | 505.5kB | 530.6hA | 201.3iB | 251.0kA | 2.434kB | 2.541hA | 1.998kB | 2.086hA |
S. leptodictya | 81.3dA | 43.2gB | 132.6gA | 70.2lB | 17.6hB | 23.5hA | 298.4bA | 243.5deB | 444.2mB | 568.9eA | 297.7gB | 424.5dA | 2.171mB | 2.705eA | 1.783mB | 2.221eA |
S. caffra | 45.4iA | 44.7gA | 136.4fB | 156.6dA | 50.73bA | 41.3bB | 274.6cB | 316.9aA | 561.7eA | 493.7kB | 367.7bA | 292.0iB | 2.674eA | 2.383kB | 2.195eA | 1.957kB |
S. galpinii | 104.4bA | 70.9cB | 135.7fA | 116.9hB | 34.3eA | 28.3gB | 178.1gB | 288.9bA | 59.1.4dA | 584.0dB | 363.7bcA | 247.6kB | 2.801dA | 2.770dB | 2.300dA | 2.274dB |
T. sericea | 37.6jA | 36.6iA | 78.2kB | 180.8bA | 26.4fB | 34.6eA | 223.1deB | 275.1bcA | 546.5gB | 552.8fA | 359.4cdA | 294.1iB | 2.609gB | 2.636fA | 2.142gB | 2.164fA |
V. hebeclada | 59.1fA | 56.5efA | 157.2dB | 189.2aA | 43.5cA | 35.5dB | 226.7deA | 219.2fgA | 527.4iA | 515.6jB | 356.8dA | 281.5jB | 2.527iA | 2.477iB | 2.075iA | 2.033jB |
V. karroo | 56.8fgA | 53.2fA | 175.5cA | 108.0iB | 24.8gA | 14.0mB | 244.1dA | 186.9hB | 536.5hB | 541.8gA | 319.4fB | 405.0cA | 2.566hB | 2.589gA | 2.107hB | 2.125gA |
V. nilotica subsp. kraussiana | 54.5ghA | 37.6hiB | 152.0eA | 137.5fB | 11.5jB | 30.1fA | 182.8gA | 84.9iB | 509.1jkB | 725.4aA | 270.9iB | 607.3aA | 2.449jkB | 3.375aA | 2.011jkB | 2.771aA |
V. tortilis | 84.3cdA | 52.8fB | 130.1hA | 142.5eA | 43.5dA | 35.5deB | 147.2hB | 256.3cdA | 553.1fA | 475.6lB | 334.3eA | 313.1hB | 2.637fA | 2.306lB | 2.165fA | 1.893lB |
Z. mucronata | 51.8hB | 82.3aA | 131.3ghA | 115.2hB | 17.7hA | 18.1kA | 118.9iB | 199.6ghA | 657.4aA | 525.2iB | 532.1aA | 399.9fB | 3.084aA | 2.518iB | 2.532aA | 2.067iB |
SE | 1.39 | 0.688 | 0.213 | 8.29 | 1.33 | 1.93 | 8.29 | 0.0047 |
Species | Soluble Phenolics | Condensed Tannins | ||
---|---|---|---|---|
GM-L | AKS-CH | GM-L | AKS-CH | |
D. cinerea | 0.1011aA | 0.0969bB | 66.64cdB | 222.58bA |
G. flava | 0.0801eA | 0.0795dA | 51.51eB | 144.98dA |
M. azedarach | 0.0207jB | 0.0830cA | 1.14iB | 46.22gA |
P. africanum | 0.0788eA | 0.0758eB | 87.55aA | 87.46fA |
S. molle | 0.0377iB | 0.1000aA | 3.40iB | 26.65hA |
S. leptodictya | 0.0360iB | 0.0564ghA | 2.43iB | 114.34eA |
S. caffra | 0.0659gA | 0.0514iB | 71.31cB | 165.42cA |
S. galpinii | 0.0869dA | 0.0385jB | 12.94hA | 1.64kB |
T. sericea | 0.0908cA | 0.0566ghB | 80.88bA | 84.61fA |
V. hebeclada | 0.0160kB | 0.0334kA | 0.70iA | 0.83kA |
V. karroo | 0.0935bA | 0.0582fgB | 28.79gB | 232.70aA |
V. nilotica subsp. kraussiana | 0.0897cA | 0.0561hB | 62.88dA | 50.49gB |
V. tortilis | 0.0598hA | 0.0598fA | 35.30fA | 7.37jB |
Z. mucronata | 0.0688fB | 0.1009aA | 15.90hA | 18.02iA |
SE | 0.00066 | 1.65 |
Species | His | Arg | Ser | Gly | Asp | Glu | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | |
D. cinerea | 0.60bA | 0.53fB | 1.14dB | 1.18cA | 0.89dA | 0.86efB | 0.93fB | 1.00deA | 1.257fA | 1.26dA | 1.70dA | 1.53fB |
G. flava | 0.50cA | 0.24hB | 1.31cA | 0.78iB | 0.87dA | 0.60iB | 0.99eA | 0.70iB | 2.210bA | 1.30dB | 1.91bA | 1.50fB |
M. azedarach | 0.38efB | 0.75cA | 1.62aA | 1.34bB | 1.38aA | 1.11bB | 1.57aA | 1.38aB | 2.547aA | 1.54aA | 3.07aA | 2.14aB |
P. africanum | 0.42eB | 0.63deA | 0.73hB | 1.06fgA | 0.58hB | 0.90deA | 0.66iB | 0.97efA | 0.870iB | 1.28dA | 1.16iB | 1.66cdA |
S. molle | 0.72aB | 0.93aA | 1.16dA | 1.09efB | 0.97cA | 0.94cA | 1.20bA | 1.00deB | 1.540cdA | 1.37cB | 1.74dA | 1.62deB |
S. leptodictya | 0.37fA | 0.20iB | 0.87gA | 0.52kB | 0.69gA | 0.42kB | 0.83gA | 0.50jB | 1.180gA | 0.66hB | 1.41gA | 0.87hB |
S. caffra | 0.50cB | 0.60eA | 0.98efB | 1.03gA | 0.75efB | 0.93cdA | 0.91fB | 1.01dA | 1.007hB | 1.21eA | 1.53fB | 1.62deA |
S. galpinii | 0.35fgB | 0.67dA | 0.97efB | 1.13deA | 0.73fB | 0.80hA | 0.78hB | 0.95fA | 1.380eA | 0.97fB | 1.64eA | 1.37gB |
T. sericea | 0.33gB | 0.39gA | 0.58iB | 0.70jA | 0.36iB | 0.51jA | 0.48jB | 0.67iA | 0.830iA | 0.71gB | 0.86jB | 0.92hA |
V. hebeclada | 0.46dB | 0.79bA | 1.00eB | 1.40aA | 0.89dB | 1.21aA | 0.97eB | 1.30bA | 1.340eA | 1.37cA | 1.69deB | 2.15aA |
V. karroo | 0.72aA | 0.64dB | 1.57bA | 1.21cB | 1.06bA | 0.88efB | 1.21bA | 1.11cB | 1.293fB | 1.37cA | 1.93bA | 1.58eB |
V. nilotica subsp. kraussiana | 0.59bA | 0.54fB | 1.27cA | 1.16dB | 0.95cA | 0.85fgA | 1.16cA | 0.91gB | 1.560cA | 1.17eB | 1.94bA | 1.71cB |
V. tortilis | 0.52cB | 0.56fA | 0.94fB | 1.08fA | 0.77eB | 1.10bA | 0.85gB | 1.09cA | 0.970hB | 1.46bA | 1.35hB | 1.77bA |
Z. mucronata | 0.73aA | 0.55fB | 1.16dA | 0.98hB | 0.97cA | 0.83ghB | 1.06dA | 0.87hB | 1.510dA | 1.36cB | 1.82cA | 1.62deB |
SE | 0.014 | 0.015 | 0.014 | 0.013 | 0.016 | 0.018 |
Species | Thr | Ala | Pro | Lys | Tyr | Met | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | |
D. cinerea | 0.87dA | 0.84eA | 0.84efA | 0.82efB | 1.39cA | 1.08dB | 0.82dA | 0.70deB | 0.89fB | 1.02dA | 0.10eA | 0.08ghiA |
G. flava | 0.91dA | 0.67gB | 0.89cdA | 0.80fgB | 1.09eA | 0.64hB | 0.82dB | 1.12aA | 0.83gA | 0.44hB | 0.06fA | 0.07hiA |
M. azedarach | 1.49aA | 1.05bB | 1.70aA | 1.19aB | 1.57bB | 2.30aA | 1.83aA | 0.65fgB | 1.11cB | 1.23aA | 0.26aA | 0.25aA |
P. africanum | 0.55hB | 0.87deA | 0.58iB | 0.83defA | 0.61jB | 0.79fgA | 0.50iB | 0.63ghA | 0.49jB | 0.85fA | 0.06fB | 0.16cdA |
S. molle | 0.96cA | 0.95cA | 0.86deA | 0.77gB | 0.81hA | 0.75gB | 0.49iB | 0.56jA | 1.13bcA | 0.93eB | 0.25aA | 0.21bB |
S. leptodictya | 0.69gA | 0.41iB | 0.73hA | 0.47iB | 0.87gA | 0.57iB | 0.75fA | 0.59ijB | 0.58iA | 0.37iB | 0.14bcdA | 0.05ijB |
S. caffra | 0.72gB | 0.83eA | 0.81fgB | 0.86cdeA | 0.88gB | 1.01eA | 0.80deA | 0.56jB | 0.95eB | 1.07cA | 0.14bcdB | 0.18bcA |
S. galpinii | 0.77fA | 0.74fA | 0.78gA | 0.69hB | 0.76iA | 0.80fA | 0.96bA | 0.38kB | 0.76hB | 1.01dA | 0.14bcdB | 0.19bcA |
T. sericea | 0.37iB | 0.51hA | 0.40jB | 0.50iA | 1.03fA | 0.78fgB | 0.40jA | 0.35kB | 0.41kB | 0.62gA | 0.03fB | 0.09fghA |
V. hebeclada | 0.83eB | 1.11aA | 0.93cB | 1.09bA | 1.04fB | 1.24bA | 0.77efB | 0.92cA | 0.98deB | 1.26aA | 0.12deA | 0.09fghA |
V. karroo | 1.02bA | 0.84eA | 1.01bA | 0.87cB | 1.64aA | 1.05dB | 0.89cA | 0.68efB | 1.25aA | 1.15bB | 0.17bA | 0.12efB |
V. nilotica subsp. kraussiana | 0.97cA | 0.86deB | 1.00bA | 0.88cB | 1.17dA | 1.00eB | 0.98bA | 0.97bA | 1.15bA | 0.84fB | 0.13cdeA | 0.02jB |
V. tortilis | 0.70gB | 0.90dA | 0.73hB | 0.87cdA | 0.82hB | 1.16cA | 0.67gA | 0.61hiB | 0.76hB | 1.15bA | 0.12deA | 0.11efgA |
Z. mucronata | 0.99bcA | 0.83eB | 0.85deA | 0.76gB | 0.84ghA | 0.76fgB | 0.61hB | 0.73dA | 0.99dA | 0.83fB | 0.16bcA | 0.13deA |
SE | 0.015 | 0.015 | 0.014 | 0.013 | 0.014 | 0.013 |
Species | Val | Ile | Leu | Phe | Gln | |||||
---|---|---|---|---|---|---|---|---|---|---|
GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | GM-L | AKS-CH | |
D. cinerea | 0.94fB | 1.04dA | 0.77fgB | 0.85cA | 1.37dB | 1.44dA | 1.29deB | 1.40eA | 0.15bcA | 0.17abA |
G. flava | 0.98eA | 0.78jB | 0.76fgA | 0.62hB | 1.36dA | 1.07iB | 1.20fA | 0.66jB | 0.15bcA | 0.10dB |
M. azedarach | 1.61aA | 1.19bB | 1.27aA | 0.92bB | 2.35aA | 1.81aB | 1.62bB | 1.76aA | 0.13cdB | 0.17abA |
P. africanum | 0.67hB | 0.96efA | 0.54iB | 0.78deA | 0.95gB | 1.39eA | 0.68iB | 1.08gA | 0.11dA | 0.13cdA |
S. molle | 1.07dA | 0.90ghB | 0.87dA | 0.74fB | 1.48cA | 1.33fB | 1.55cA | 1.31fB | 0.17abA | 0.14abcA |
S. leptodictya | 0.84gA | 0.50lB | 0.69hA | 0.41jB | 1.19fA | 0.70kB | 0.85hA | 0.53kB | 0.13cdA | 0.12cdA |
S. caffra | 0.91fA | 0.86iB | 0.74gA | 0.68gB | 1.35dA | 1.31fgA | 1.25eB | 1.34fA | 0.16abcA | 0.17abA |
S. galpinii | 0.92fA | 0.93fgA | 0.78fA | 0.79dA | 1.26eA | 1.27ghA | 1.02gB | 1.41eA | 0.13cdB | 0.17abA |
T. sericea | 0.41iB | 0.55kA | 0.33jB | 0.45iA | 0.59hB | 0.84jA | 0.50jB | 0.82iA | 0.13cdA | 0.14bcA |
V. hebeclada | 0.92fB | 1.30aA | 0.77fgB | 1.09aA | 1.35dB | 1.75bA | 1.34dB | 1.69bA | 0.16abcA | 0.17abA |
V. karroo | 1.30bA | 1.12cB | 1.06bA | 0.93bB | 1.74bA | 1.54cB | 1.78aA | 1.57cB | 0.19aA | 0.18aA |
V. nilotica subsp. kraussiana | 1.18cA | 0.97eB | 1.00cA | 0.77defB | 1.71bA | 1.41deB | 1.65bA | 1.03hB | 0.17abA | 0.14bcA |
V. tortilis | 0.84gB | 1.01dA | 0.70hB | 0.85cA | 1.22efB | 1.39eA | 1.03gB | 1.48dA | 0.15bcA | 0.17abA |
Z. mucronata | 0.98eA | 0.88hiB | 0.82eA | 0.75efB | 1.45cA | 1.24hB | 1.33dA | 1.10gB | 0.14bcdA | 0.13cdA |
SE | 0.014 | 0.013 | 0.016 | 0.014 | 0.013 |
Limpopo Province | North West Province | |
---|---|---|
Harvested rangelands areas | Makuya, Mutele and Mpheni rangelands sites | Tsetse, Six hundred and Lepurong rangeland sites |
Distance from each other | 750 to 800 km from each other | |
Municipality | Thulamela and Makhado Local Municipalities | Mahikeng and Ratlou Local Municipalities |
Coordinates and altitude | Makuya (22°40′21″ S, 30°45′26″ E alt 639 m) Mutele (22°28′35″ S, 30°50′24″ E alt 339 m) Mpheni (23°08′10″ S, 30°03′18″ E alt 808 m) | Tsetse (25°44′07″ S, 25°39′40″ E alt 1296 m) Six hundred (25°42′43″ S, 25°37′32″ E alt 1300 m) Lepurong (25°45′37″ S, 24°59′54″ E alt 1162 m) |
Soil type | Glenrosa, mispah and lithosols soil (GM-L) | Aeolian Kalahari sand, clovelly and hutton soil (AKS-CH) |
Soil structure | Reddish or brown sandy to loamy soil | Clay-loamy to red brown sandy soil type |
Temperature | 13–34 °C | 2–36 °C |
Rainfall | 200 to 500 mm | 400 to 450 mm |
Vegetation type | Soutpansberg Mountain Bushveld and makuleke sandy bushveld vegetations | Mafikeng Bushveld, Eastern Kalahari Bushveld and Thornveld vegetation |
(a) | ||||
Species | Common Name | Growth Form 1 | Herbivores | Preferred Plants |
A. digitata | Boabab | T | Cattle, camel and game | Leaves, fruits and seeds |
A. johnsoni | Lebombo-ironwood | T | Cattle, goats and game | Leaves and fruits |
B. maughamii | Green thorn | T | Cattle, goats and game | Leaves, fruits and seeds |
B. discolour | Brown ivory | T | Cattle, goats and game | Leaves, fruits and seeds |
B. zeyheri | Red ivory | T | Cattle, goats and game | Leaves, fruits and seeds |
B. mollis hutch | Velvet Sweet-berry | S | Cattle, goats and game | Leaves, fruits and twigs |
C. edulis | Simple spined Num-num | S | Goats and game | Leaves and fruits |
C. edulis (Catha) | Bushman’s tea | T | Cattle and goats | Leaves, fruits and seeds |
C. mopane | Mopane | T | Cattle, goats and game | Leaves and pods |
C. Imberbe | Leadwood | T | Cattle and goats | Leaves |
C. molle | Velvet bush willow | T | Game | Leaves |
C. collinum | Weeping bush willow | T | Cattle, goats and game | Leaves |
D. melanoxylon | Zebra wood | S | Cattle, goats and game | Leaves and fruits |
D. cinerea | Sekelbos/Sicklebus | S | Goats | Leaves |
D. lycioides | Blue bush | S | Goats | Leaves, fruits and seeds |
D. mespiliformis | Jackal berry | T | Cattle, goats and game | Leaves, fruits and seeds |
E. divinorum | Magic guarri | S | Goats | Leaves, fruits and twigs |
F. virosa | White berry-bush | S | Goats and game | Leaves and fruits |
G. flava | Velvet raisin | S | Cattle, goats and game | Leaves, fruits and twigs |
G. flavescens | Sandpaper raisin | S | Cattle, goats and game | Leaves, fruits and seeds |
G. monticola | Silver raisin | S | Cattle, goats and game | Leaves and fruits |
G. occidentalis | Cross berry | S | Cattle, goats and game | Leaves and fruits |
M. azedarach | Seringa | T | Cattle and goats | Leaves |
P. africanum | African-wattle | T | Cattle and goats | Leaves and pods |
P. velutina | Velvet mesquite | S | Cattle, goats and game | Leaves, fruits and pods |
P. maprouneifolia | Kudu berry | T | Goats and game | Leaves and fruits |
(b) | ||||
Species | Common Name | Growth Form 1 | Herbivores | Preferred Plants |
P. rotundifolius | Round-leaved blood wood | T | Cattle, goats and game | Leaves and twigs |
S. molle | Peppertree | T | Cattle and goats | Leaves and fruits |
S. brachypetala | Weeping boer-bean | T | Goats and game | Leaves, seeds and bark |
S. birrea | Marula | T | Cattle, goats and game | Leaves, fruits and seeds |
S. lancea | Karee | T | Cattle, goats and game | Leaves and fruits |
S. leptodictya | Mountain karee | T | Cattle, goats and game | Leaves and fruits |
S. pyroides | Common wild-currant | S | Cattle, goats and game | Leaves and fruits |
S. caffra | Common hook thorn | T | Cattle, goats and game | Leaves and pods |
S. galpinii | Monkey thorn | T | Goats and game | Leaves, pods and seeds |
S. mellifera | Blackthorn | S | Cattle, goats and game | Leaves, pods and flower |
S. nigrescens | Knob thorn | T | Cattle, goats and game | Leaves and pods |
S. polyacantha | White-stemmed thorn | T | Cattle and goats | Leaves |
S. madagascariensis | Black monkey-orange | S | Cattle, goats and game | Leaves and fruits |
T. sericea | Silver cluster leaf | T | Cattle and goats | Leaves and gum |
T. emetic | Christmas bells | T | Goats and game | Leaves, fruits and flower |
V. erioloba | Camel thorn | T | Cattle, goats and game | Leaves and pods |
V. hebeclada | Candle thorn | S | Goats and game | Leaves and pods |
V. karoo | Sweet thorn | S | Cattle and goats | Leaves, pods and gum |
V. nilotica | Scented-pod thorn | T | Goats and game | Leaves and pods |
V. nilotica subsp. Kraussiana | Scented-pod thorn | T | Goats and game | Leaves and pods |
V. rechmanniana | Silky thorn | T | Cattle, goats and game | Leaves and pods |
V. robusta | Robust thorn | T | Goats and game | Leaves, pods and seeds |
V. tortilis | Umbrella thorn | T | Cattle, goats and game | Leaves, pods and bark |
V. tortils subsp. raddiana | Umbrella thorn | T | Cattle, goats and game | Leaves, pods and bark |
V. infausta | Wild-medlar | S | Cattle, goats and game | Leaves and fruits |
Z. mucronata | Buffalo-thorn | T | Cattle and goats | Leaves and pods |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 2127. https://doi.org/10.3390/plants10102127
Mudau HS, Mokoboki HK, Ravhuhali KE, Mkhize Z. Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants. 2021; 10(10):2127. https://doi.org/10.3390/plants10102127
Chicago/Turabian StyleMudau, Humbelani Silas, Hilda Kwena Mokoboki, Khuliso Emmanuel Ravhuhali, and Zimbili Mkhize. 2021. "Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site" Plants 10, no. 10: 2127. https://doi.org/10.3390/plants10102127
APA StyleMudau, H. S., Mokoboki, H. K., Ravhuhali, K. E., & Mkhize, Z. (2021). Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants, 10(10), 2127. https://doi.org/10.3390/plants10102127