Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress
Abstract
:1. Introduction
2. Results
2.1. Effects of Water Deficit Stress on Morpho-Physiological Traits
2.1.1. Measurement of Plant Growth Parameters
2.1.2. Biomass Production
2.1.3. Fresh Biomass
2.1.4. Dry Biomass
2.1.5. The Root Dry Weight and Aerial Dry Weight Ratio (RDW/ADW)
2.1.6. Heritability (H2) and Correlations between Traits
2.1.7. PCA and Clustering Analysis Based on the DSI Values
2.2. Biochemical Analyses
2.2.1. Lipid Peroxidation Assay
2.2.2. Total Protein Content
2.2.3. Soluble Sugar Content
2.3. DREB1B Expression Study under Osmotic Stress
3. Discussion
3.1. Water Deficit Effects on the Growth and Biomass Production
3.2. Biochemical Characterization
3.3. Expression Analysis of DREB1B under Osmotic Stresses
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Growth Parameter Measurements and Physiological Assays
4.3. Biochemical Analyses
4.4. Database Search and Identification of DREB1B in M. truncatula
4.5. RNA Extraction, cDNA Synthesis, and RT-qPCR Analysis
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, B.; Jogawat, A.; Rahman, S.; Narayan, O.P. Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Rep. 2021, 23, 101040. [Google Scholar] [CrossRef]
- Lahrizi, Y.; Oukaltouma, K.; Mouradi, M.; Farissi, M.; Qaddoury, A.; Bouizgaren, A.; Ghoulam, C. Seed biopriming with osmo-tolerant rhizobacteria enhances the tolerance of alfalfa (Medicago sativa L.)-rhizobia symbiosis to water deficit. Appl. Ecol. Environ. Res. 2021, 19, 563–580. [Google Scholar] [CrossRef]
- Mishra, A.; Bruno, E.; Zilberman, D. Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci. Total Environ. 2020, 754, 142210. [Google Scholar] [CrossRef]
- Ramanjulu, S.; Bartels, D. Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ. 2002, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Rouached, A.; Slama, I.; Zorrig, W.; Jdey, A.; Cukier, C.; Rabhi, M.; Talbi, O.; Limami, A.M.; Abdelly, C. Differential performance of two forage species, Medicago truncatula and Sulla carnosa, under water-deficit stress and recovery. Crop Pasture Sci. 2013, 64, 254–264. [Google Scholar] [CrossRef]
- Lau, S.-E.; Hamdan, M.; Pua, T.-L.; Saidi, N.; Tan, B. Plant nitric oxide signaling under drought stress. Plants 2021, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Singhal, P.; Jan, A.T.; Azam, M.; Haq, Q.M.R. Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front. Life Sci. 2015, 9, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.; Battaglia, M. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Kadri, A.; Julier, B.; Laouar, M.; Ben, C.; Badri, M.; Chedded, J.; Mouhouche, B.; Gentzbittel, L.; Abdelguerfi, A. Genetic determinism of reproductive fitness traits under drought stress in the model legume Medicago truncatula. Acta Physiol. Plant. 2017, 39, 227. [Google Scholar] [CrossRef]
- Kooyers, N.J. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 2015, 234, 155–162. [Google Scholar] [CrossRef]
- Huihui, Z.; Yuze, H.; Kaiwen, G.; Zisong, X.; Liu, S.; Wang, Q.; Wang, X.; Nan, X.; Wu, Y.; Guangyu, S. Na+ accumulation alleviates drought stress induced photosynthesis inhibition of PSII and PSI in leaves of Medicago sativa. J. Plant Interact. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Wan, T.; Feng, Y.; Liang, C.; Pan, L.; He, L.; Cai, Y. Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology 2021, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Abid, G.; Hessini, K.; Aouida, M.; Aroua, I.; Baudoin, J.P.; Muhovski, Y.; Mergeai, G.; Sassi, K.; Machraoui, M.; Souissi, F.; et al. Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnol. Agron. Soc. Environ. 2017, 21, 146–159. [Google Scholar]
- Thomas, J.C.; Sepahi, M.; Arendall, B.; Bohnert, H.J. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 1995, 18, 801–806. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J. Understanding and Improving Salt Tolerance in Plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, V.; González, E. Strategies to apply water-deficit stress: Similarities and disparities at the whole plant metabolism level in Medicago truncatula. Int. J. Mol. Sci. 2021, 22, 2813. [Google Scholar] [CrossRef]
- Kudo, M.; Kidokoro, S.; Yoshida, T.; Mizoi, J.; Todaka, D.; Fernie, A.R.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol. J. 2016, 15, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Deyholos, M.K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 2006, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [Green Version]
- Ullah Jan, A.; Hadi, F.; Ahmad, A.; Rahman, K.; Jan, U.A. Role of CBF/DREB gene expression in abiotic stress tolerance. A Review. Int. J. Hortic. Agric. 2017, 2, 1–12. [Google Scholar]
- Singh, S.; Koyama, H.; Bhati, K.K.; Alok, A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J. Plant Res. 2021, 134, 475–495. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 2006, 58, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Gutha, L.R.; Reddy, A.R. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol. Biol. 2008, 68, 533–555. [Google Scholar] [CrossRef]
- Haake, V.; Cook, D.; Riechmann, J.L.; Pineda, O.; Thomashow, M.F.; Zhang, J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002, 130, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouaziz, D.; Jbir, R.; Charfeddine, S.; Saidi, M.N.; Gargouri-Bouzid, R. The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult. (PCTOC) 2014, 121, 237–248. [Google Scholar] [CrossRef]
- Wang, W.-X.; Vinocur, B.; Shoseyov, O.; Altman, A. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. Acta Hortic. 2001, 285–292. [Google Scholar] [CrossRef]
- Town, C.D. An improved genome release (Version Mt4.0) for the model legume Medicago truncatula. Model Legum. Medicago truncatula 2019, 15, 822–827. [Google Scholar] [CrossRef]
- Ané, J.-M.; Zhu, H.; Frugoli, J. Recent advances in Medicago truncatula genomics. Int. J. Plant Genom. 2008, 2008, 256597. [Google Scholar] [CrossRef] [Green Version]
- Gohari, S. Drought effects on growth, water content, and organic osmoprotectants in promising almond genotypes with different drought tolerance. Res. Sq. 2021, 1–12. [Google Scholar]
- Khan, A.; Pan, X.; Najeeb, U.; Tan, D.K.Y.; Fahad, S.; Zahoor, R.; Luo, H. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol. Res. 2018, 51, 1–17. [Google Scholar] [CrossRef]
- Hdira, S.; Haddoudi, L.; Hanana, M.; Romero, I.; Mahjoub, A.; Jouira, H.B.; Ludidi, N.; Sanchez-Ballesta, M.T.; Abdelly, C.; Badri, M. Morpho-physiological, biochemical, and genetic responses to salinity in Medicago truncatula. Plants 2021, 10, 808. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.-D.; Zeng, Y.; Yang, X.; Anwaar, H.A.; Mansha, M.Z.; Hanif, C.M.S.; Ikram, K.; Ullah, A.; Alghanem, S.M.S. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J. Biol. Sci. 2020, 27, 2116–2123. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Awosanmi, F.E.; Ogunniyi, O.O.; Fadoju, A.O. Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids. Maydica 2017, 62, 9. [Google Scholar]
- Al-absi, K.M. Gas exchange, chlorophyll and growth response of three orange genotypes (Citrus sinensis [L.] Osbeck) to abscisic acid under progressive water deficit. Jordan J. Agric. Sci. 2010, 5, 421–433. [Google Scholar]
- Shao, H.-B.; Chu, L.-Y.; Jaleel, C.A.; Zhao, C.-X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.S.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-Y.; De Carvalho, M.H.C.; Torres-Jerez, I.; Kang, Y.; Allen, S.N.; Huhman, D.; Tang, Y.; Murray, J.; Sumner, L.W.; Udvardi, M.K. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ. 2014, 37, 2553–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root response to drought dtress in rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Xu, L. Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport. J. Exp. Bot. 2000, 51, 1595–1616. [Google Scholar] [CrossRef]
- Soltys-Kalina, D.; Plich, J.; Strzelczyk-Żyta, D.; Śliwka, J.; Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed. Sci. 2016, 66, 328–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P.; Bayat, H. Effect of Water Deficit Stress on Seedling Biomass and Physio-Chemical Characteristics in Different Species of Wheat Possessing the D Genome. Agronomy 2019, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Ozkur, O.; Ozdemir, F.; Bor, M.; Turkan, I. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot. 2009, 66, 487–492. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019, 9, 4890. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Hui, C.; Sandhu, H.S.; Lin, Z.; Shi, P. Scaling Relationships between Leaf Shape and Area of 12 Rosaceae Species. Symmetry 2019, 11, 1255. [Google Scholar] [CrossRef] [Green Version]
- Arraouadi, S.; Badri, M.; Zitoun, A.; Huguet, T.; Aouani, M.E. Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russ. J. Plant Physiol. 2011, 58, 316–323. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf fresh weight versus dry weight: Which is better for describing the scaling relationship between leaf biomass and leaf area for broad-leaved plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Shi, S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front. Plant Sci. 2018, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Echeverria, A.; Larrainzar, E.; Li, W.; Watanabe, Y.; Sato, M.; Tran, C.D.; Moler, J.A.; Hirai, M.Y.; Sawada, Y.; Tran, L.-S.P.; et al. Medicago sativa and Medicago truncatula show contrasting root metabolic responses to drought. Front. Plant Sci. 2021, 12, 612. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Desoky, E.-S.; Mansour, E.; Ali, M.; Yasin, M.; Abdul-Hamid, M.; Rady, M.; Ali, E. Exogenously used 24-epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants 2021, 10, 354. [Google Scholar] [CrossRef]
- Rajasthan, J. Cell membrane stability in relation to drought tolerance in wheat genotypes. J. Agron. Crop Sci. 1992, 190, 186–191. [Google Scholar]
- Turkan, I.; Bor, M.; Özdemir, F.; Koca, H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 2005, 168, 223–231. [Google Scholar] [CrossRef]
- Sairam, R.K.; Srivastava, G.C. Water Stress Tolerance of Wheat (Triticum aestivum L.): Variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. J. Agron. Crop. Sci. 2001, 186, 63–70. [Google Scholar] [CrossRef]
- Chai, M.; Cheng, H.; Yan, M.; Priyadarshani, S.; Zhang, M.; He, Q.; Huang, Y.; Chen, F.; Liu, L.; Huang, X.; et al. Identification and expression analysis of the DREB transcription factor family in pineapple (Ananas comosus (L.) Merr.). PeerJ 2020, 8, e9006. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-J.; Min, M.K.; Kim, J.-A.; Kim, D.Y.; Yoon, I.S.; Kwon, T.R.; Byun, M.O.; Kim, B.-G. Ectopic Expression of OsDREB1G, a Member of the OsDREB1 Subfamily, Confers Cold Stress Tolerance in Rice. Front. Plant Sci. 2019, 10, 297. [Google Scholar] [CrossRef]
- Gilmour, S.J.; Fowler, S.G.; Thomashow, M.F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol. 2004, 54, 767–781. [Google Scholar] [CrossRef]
- Datta, K.; Baisakh, N.; Ganguly, M.; Krishnan, S.; Yamaguchi-Shinozaki, K.; Datta, S. Overexpression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol. J. 2012, 10, 579–586. [Google Scholar] [CrossRef]
- Kidokoro, S.; Watanabe, K.; Ohori, T.; Moriwaki, T.; Maruyama, K.; Mizoi, J.; Htwe, N.M.P.S.; Fujita, Y.; Sekita, S.; Shinozaki, K.; et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2014, 81, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, Z.; Xiao, H.-M.; Yang, Y. Characterization of TaDREB1 in wheat genotypes with different seed germination under osmotic stress. Hereditas 2018, 155, 1–9. [Google Scholar] [CrossRef]
- Jeffares, D.C.; Penkett, C.J.; Bahler, J. Rapidly regulated genes are intron poor. Trends Genet. 2008, 24, 375–378. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, D.; Wang, R.; Kong, N.; Zhang, C.; Yang, C.; Wu, W.; Ma, H.; Chen, Q. Genome-wide analysis of the potato Hsp20 gene family: Identification, genomic organization and expression profiles in response to heat stress. BMC Genom. 2018, 19, 63. [Google Scholar] [CrossRef] [PubMed]
- Janiak, A.; Kwaśniewski, M.; Szarejko, I. Gene expression regulation in roots under drought. J. Exp. Bot. 2015, 67, 1003–1014. [Google Scholar] [CrossRef] [Green Version]
- Donde, R.; Gupta, M.; Gouda, G.; Kumar, J.; Vadde, R.; Sahoo, K.K.; Dash, S.K.; Behera, L. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids 2019, 51, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Konzen, E.R.; Recchia, G.H.; Cassieri, F.; Caldas, D.G.G.; Teran, J.C.B.M.Y.; Gepts, P.; Tsai, S.M. DREB Genes from common bean (Phaseolus vulgaris L.) show broad to specific abiotic stress responses and distinct levels of nucleotide diversity. Int. J. Genom. 2019, 2019, 9520642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, L.F.; Reichel, T.; Déchamp, E.; De Aquino, S.O.; Duarte, K.E.; Sergio, G.; Alves, C.; Silva, A.T.; Cotta, M.G.; Costa, T.S.; et al. Expression of DREB -like genes in Coffea canephora and C. arabica subjected to various types of abiotic stress. Trop. Plant Biol. 2019, 12, 98–116. [Google Scholar] [CrossRef] [Green Version]
- Gosta, B.Y. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 1957, 16, 374–381. [Google Scholar]
- Verma, S.; Dubey, R. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 2003, 164, 645–655. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 197. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A Rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Young, N.D.; Debellé, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.; Benedito, V.A.; Mayer, K.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.M.; López, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Yang, T. RNA isolation from highly viscous samples rich in polyphenols and polysaccharides. Plant Mol. Biol. Rep. 2002, 20, 417. [Google Scholar] [CrossRef]
- Badri, M.; Ilahi, H.; Huguet, T.; Aouani, M.E. Quantitative and molecular genetic variation in sympatric populations of Medicago laciniata and M. truncatula (Fabaceae): Relationships with eco-geographical factors. Genet. Res. 2007, 89, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xj, T.; Hy, W.; Dm, Y.; Sl, Z.; Dy, W. Etymologia: Bonferroni correction. Emerg. Infect. Dis. 2015, 21, 70632. [Google Scholar]
Treatment | Line | Line × Treatment | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Number of axes | 14.29 | 0.00 | 4.86 | 0.01 | 0.01 | 0.01 |
Length of stems (cm) | 165.67 | 0.00 | 65.94 | 0.00 | 0.00 | 0.00 |
Number of leaves | 1553.67 | 0.00 | 277.73 | 0.00 | 0.00 | 0.00 |
Aerial fresh weight (g) | 8.77 | 0.01 | 399.78 | 0.04 | 0.04 | 0.04 |
Aerial dry weight (g) | 1.04 | 0.32 | 122.78 | 0.56 | 0.56 | 0.56 |
Length of roots (cm) | 125.66 | 0.00 | 5.34 | 0.01 | 0.01 | 0.01 |
Root fresh weight (g) | 34.77 | 0.00 | 74.80 | 0.00 | 0.00 | 0.00 |
Root dry weight (g) | 0.16 | 0.70 | 48.98 | 0.00 | 0.00 | 0.00 |
Root dry weight and aerial dry weight ratio | 4.05 | 0.06 | 5.16 | 0.03 | 0.03 | 0.03 |
Root water content | 12.43 | 0.00 | 0.68 | 0.37 | 0.37 | 0.37 |
Chlorophyll a | 2.75 | 0.12 | 1.06 | 0.90 | 0.90 | 0.90 |
Chlorophyll b | 0.75 | 0.40 | 0.05 | 0.44 | 0.44 | 0.44 |
Relative growth rate (g) | 18.69 | 0.00 | 3.59 | 0.75 | 0.75 | 0.75 |
Number of Axes | Length of Stems | Number of Leaves | Aerial Fresh Weight | Aerial Dry Weight | Length of Roots | Root Fresh Weight | Root Dry Weight | Root Dry Weight and Aerial Dry Weight Ratio |
---|---|---|---|---|---|---|---|---|
Trait/line (100%FC) | ||||||||
1 ± 0 c | 54 ± 1.15 a | 38 ± 3.51 c | 1.23 ± 0.27 fg | 0.16 ± 0.02 f | 43.67 ± 2.96 bc | 0.47 ± 0.06 f | 0.13 ± 0.01 fg | 0.81 ± 0.11 b |
4.67 ± 0.88 a | 35.33 ± 0.88 c | 79.67 ± 0.88 b | 4.26 ± 0.19 c | 0.99± 0.07 cd | 49 ± 4.04 ab | 4.52 ± 0.36 b | 0.73 ± 0.1 abc | 0.73 ± 0.16 bc |
4 ± 1.53 ab | 51 ± 0.58 ab | 151.67 ± 1.45 a | 10.33 ± 0.36 a | 2.95 ± 0.34 ab | 48 ± 1.73 a | 6.37 ± 0.46 a | 0.78 ± 0.08 ab | 0.26 ± 0.01 ef |
1 ± 0 c | 16 ± 1.15 fg | 35.33 ± 2.60 cd | 1.02 ± 0.13 f | 0.11 ± 0.02 g | 27 ± 4.04 d | 0.19 ± 0.03 gh | 0.01 ± 0 h | 0.09 ± 0.02 h |
Trait/line (30%FC) | ||||||||
1 ± 0 c | 28 ± 5.29 cde | 26.33 ±2.4 e | 0.72 ± 0.39 efgh | 0.03 ± 0.01 h | 19 ± 5.20 defgh | 0.30 ± 0.04 fg | 0.15 ± 0 f | 0.66 ± 0.03 a |
1 ± 0 c | 21.90 ± 1.10 d | 17 ± 0 f | 2.63 ± 0.12 d | 1.14 ± 0.03 c | 27 ± 1.76 ef | 1.85 ± 0.29 cd | 0.37 ± 0.08 d | 0.32 ± 0.07 defg |
1 ± 0 c | 19.50 ± 1.61 def | 11 ± 0.58 h | 9.66 ± 0.54 ab | 3.05 ± 0.31 a | 15.67 ± 1.20 e | 2.79 ± 0.67 bc | 0.80 ± 0.06 a | 0.26 ± 0 e |
1 ± 0 c | 9.33 ± 0.88 h | 19 ± 2.52 efg | 1.33 ± 0.03 e | 0.47 ± 0.47 e | 27 ± 2.03 efg | 1.06 ± 0.14 e | 0.27 ± 0.04 de | 0.57 ± 0.16 bcd |
Treatment/Trait | Control | 30% FC | ||||
---|---|---|---|---|---|---|
Vg | Ve | H2 | Vg | Ve | H2 | |
Number of axes | 3.00 | 2.33 | 0.56 | 0.00 | 0.00 | 0.00 |
Length of stems | 302.86 | 2.83 | 0.99 | 52.27 | 24.43 | 0.68 |
Number of leaves | 2940.02 | 16.50 | 0.99 | 36.89 | 9.33 | 0.80 |
Aerial fresh weight | 18.78 | 0.19 | 0.99 | 16.94 | 0.34 | 0.98 |
Aerial dry weight | 1.73 | 0.09 | 0.95 | 1.74 | 0.08 | 0.95 |
Length of roots | 93.14 | 33.33 | 0.74 | 0.00 | 26.75 | 0.00 |
Root fresh weight | 9.21 | 0.26 | 0.97 | 1.01 | 0.40 | 0.72 |
Root dry weight | 0.15 | 0.02 | 0.90 | 0.08 | 0.01 | 0.90 |
Root dry weight and aerial dry weight ratio | 0.13 | 0.03 | 0.82 | 9.89 | 8.45 | 0.54 |
NA | LS | NL | AFW | ADW | LR | RFW | RDW | Ratio | |
---|---|---|---|---|---|---|---|---|---|
NA | 1.00 | −0.17 | 0.12 | −0.12 | −0.08 | −0.08 | −0.08 | −0.17 | 0.14 |
LS | 0.17 | 1.00 | 0.41 | 0.01 | −0.05 | 0.28 | −0.15 | −0.10 | 0.61 * |
NL | 0.61 * | 0.44 | 1.00 | −0.76 ** | −0.83 ** | 0.42 | −0.74 ** | −0.81 ** | 0.63 * |
AFW | 0.59 * | 0.44 | 0.99 ** | 1.00 | 0.98 ** | −0.12 | 0.76 ** | 0.95 ** | −0.39 |
ADW | 0.58 * | 0.44 | 0.98 ** | 0.99 ** | 1.00 | −0.15 | 0.80 ** | 0.96 ** | −0.48 |
LR | 0.67 * | 0.67 * | 0.54 | 0.53 | 0.50 | 1.00 | −0.18 | −0.14 | −0.12 |
RFW | 0.79 ** | 0.38 | 0.94 ** | 0.93 ** | 0.91 ** | 0.66 * | 1.00 | 0.83 ** | −0.52 |
RDW | 0.73 ** | 0.38 | 0.82 ** | 0.80 ** | 0.79 ** | 0.67 * | 0.95 ** | 1.00 | −0.46 |
Ratio | 0.03 | 0.52 | −0.21 | −0.23 | −0.26 | 0.51 | −0.04 | 0.20 | 1.00 |
MDA | Proteins | Soluble Sugar | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Line | 1.28 | 0.31 | 7.15 | 0.00 | 3.39 | 3.39 |
Treatment | 19.75 | 0.00 | 0.78 | 0.39 | 24.00 | 0.00 |
Line × treatment | 2.50 | 0.10 | 15.99 | 0.00 | 16.34 | 0.00 |
F | p | |
---|---|---|
Tissue | 324.70 | 0.00 |
Line | 359.43 | 0.00 |
Treatment | 143.53 | 0.00 |
Tissue × line | 325.19 | 0.00 |
Tissue × Treatment | 103.07 | 0.00 |
Line × Treatment | 131.89 | 0.00 |
Tissue × line × Treatment | 107.59 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddoudi, L.; Hdira, S.; Hanana, M.; Romero, I.; Haddoudi, I.; Mahjoub, A.; Ben Jouira, H.; Djébali, N.; Ludidi, N.; Sanchez-Ballesta, M.T.; et al. Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants 2021, 10, 2114. https://doi.org/10.3390/plants10102114
Haddoudi L, Hdira S, Hanana M, Romero I, Haddoudi I, Mahjoub A, Ben Jouira H, Djébali N, Ludidi N, Sanchez-Ballesta MT, et al. Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants. 2021; 10(10):2114. https://doi.org/10.3390/plants10102114
Chicago/Turabian StyleHaddoudi, Loua, Sabrine Hdira, Mohsen Hanana, Irene Romero, Imen Haddoudi, Asma Mahjoub, Hatem Ben Jouira, Naceur Djébali, Ndiko Ludidi, Maria Teresa Sanchez-Ballesta, and et al. 2021. "Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress" Plants 10, no. 10: 2114. https://doi.org/10.3390/plants10102114
APA StyleHaddoudi, L., Hdira, S., Hanana, M., Romero, I., Haddoudi, I., Mahjoub, A., Ben Jouira, H., Djébali, N., Ludidi, N., Sanchez-Ballesta, M. T., Abdelly, C., & Badri, M. (2021). Evaluation of the Morpho-Physiological, Biochemical and Molecular Responses of Contrasting Medicago truncatula Lines under Water Deficit Stress. Plants, 10(10), 2114. https://doi.org/10.3390/plants10102114