River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture
Abstract
:1. Introduction
2. Essential Oils
2.1. Uses of Essential Oils
2.2. Compositional Characteristics
3. Tea Tree Oil (TTO)
3.1. Production of TTO
3.2. Composition of TTO
3.3. Tea Tree Oil from Melaleuca alternifolia
3.4. Tea Tree Oil from Melaleuca bracteata
4. Antimicrobial Importance of TTO
Microorganism Tested | * MIC (v/v %) | ** MBC/MFC (%v/v) | Standard | References |
---|---|---|---|---|
Bacillus cereus | 0.3 | - | - | [85] |
Bacillus subtilis | 0.3 | - | 0.02 | [85] |
Escherichia coli | 0.08–2 | 0.25–4 | 0.32 | [86,87] |
Pseudomonas putida | 0.5 | - | 0.32 | [85] |
Staphylococcus aureus | 0.63–1.25 | 1.01 | 0.01 | [88] |
Lactobacillus spp. | 1–2 | 2 | - | [89] |
Alternaria spp. | 0.016–0.12 | 0.06–2 | - | [90] |
Aspergillus niger | 0.3–0.4 | 2–8 | >2.00 | [79,85] |
Fusarium spp | 0.008–0.25 | 0.25–2 | - | [90] |
Candida albicans | 0.5 | 0.12– | 0.125–0.5 | [90,91] |
Aspergillus flavus | 0.31–0.7 | 2–4 | 3.12 | [92] |
4.1. Antibacterial Properties
Microorganism Tested | Minimum Inhibitory Concentration (ug/mL) | Zone of Inhibition (mm) |
---|---|---|
B. spizizenii | 4 | 44.0 ± 3.5 |
S. aureus | 8 | 12.8 ± 0.8 |
E. coli | 4 | 16.7 ± 0.3 |
P. aeruginosa | 8 | 12.5 ± 0 |
S. enterica | 4 | 17.8 ± 0.8 |
4.2. Antifungal Properties
4.3. Antiviral Properties
5. Antioxidant Properties of TTO
6. Applications of TTO in Agriculture
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Yasin, M.; Younis, A.; Ramzan, F.; Javed, T.; Shabbir, R.; Noushahi, H.A.; Skalicky, M.; Ondrisik, P.; Brestic, M.; Hassan, S.; et al. Extraction of essential oil from river tea tree (Melaleuca bracteata F. Muell.): Antioxidant and antimicrobial properties. Sustainability 2021, 13, 4827. [Google Scholar] [CrossRef]
- De Cássia da Silveira e Sá, R.; Andrade, L.; De Sousa, D. A review on anti-inflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- De Almeida, R.N.; Motta, S.C.; Faturi, C.D.B.; Catallani, B.; Leite, J.R. Anxiolytic-like effects of rose oil inhalation on the elevated plus-maze test in rats. Pharmacol. Biochem. Behav. 2004, 77, 361–364. [Google Scholar] [CrossRef]
- Solgi, M. Effects of Silver Nanoparticles and Essential Oils of Thyme (Thymus vulgaris) and Zattar (Zataria multiflora Boiss.) on Postharvest Qualitative Aspects of Gerbera Cut Flowers (Gerbera jamesonii L.). Ph.D. Thesis, Tehran University, Tehran, Iran, 2009. [Google Scholar]
- Padalia, R.C.; Verma, R.S.; Chauhan, A.; Goswami, P.; Verma, S.K.; Darokar, M.P. Chemical composition of Melaleuca linarrifolia Sm. from India: A potential source of 1,8-cineole. Ind. Crops Prod. 2015, 63, 264–268. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oils against listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.; Jacob, S.E. Tea tree oil. Dermatitis 2012, 23, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A. Treatment of acne with tea tree oil (melaleuca) products: A review of efficacy, tolerability and potential modes of action. Int. J. Antimicrob. Agents 2015, 45, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.N.M.; Aquino, S.G.; Junior, C.R.; Spolidorio, D.M.P. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm. Res. 2014, 63, 769–778. [Google Scholar] [CrossRef]
- Hnawia, E.; Brophy, J.J.; Craven, L.A.; Lebouvier, N.; Cabalion, P.; Nour, M. An examination of the leaf essential oils of the endemic Melaleuca (Myrtaceae) species of New Caledonia. J. Essent. Oil Res. 2012, 24, 273–278. [Google Scholar] [CrossRef]
- Kong, C.-H.; Xuan, T.D.; Khanh, T.D.; Tran, H.-D.; Trung, N.T. Allelochemicals and signaling chemicals in plants. Molecules 2019, 24, 2737. [Google Scholar] [CrossRef] [Green Version]
- Kardinan, A.; Hidayat, P. Potency of Melaleuca bracteata and Ocimum sp. leaf extracts as fruit fly (Bactrocera dorsalis complex) attractants in Guava and star fruit orchards in Bogor, West Java, Indonesia. J. Dev. Sustain. Agric. 2013, 8, 79–84. [Google Scholar] [CrossRef]
- Burdock, G.A.; Carabin, I.G. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient. Food Chem. Toxicol. 2009, 47, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Adlard, E.R. Handbook of essential oils. Science, technology and applications. Chromatographia 2010, 72, 1021. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Nagegowda, D.A. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 2010, 584, 2965–2973. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Healey, P.L.; Mehta, I. Biology and Chemistry of Plant Trichomes, 1st ed.; Rodriguez, E., Ed.; Springer: New York, NY, USA, 1984. [Google Scholar]
- Jones, S.F.A. Herbs—Useful plants. Their role in history and today. Eur. J. Gastroenterol. Hepatol. 1996, 8, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Lawless, J. The Illustrated Encyclopedia of Essential Oils: The Complete Guide to the Use of Oils in Aromatherapy and Herbalism; Element Books: Shaftesbury, UK, 1995. [Google Scholar]
- Mishra, A.K.; Dubey, N.K. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 1994, 60, 1101–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.C.V.; Lopes, L.; Alves, C.F.D.S.; Fausto, V.P.; Pizzutti, K.; Barboza, V.; de Souza, M.E.; Raffin, R.; Gomes, P.; Takamatsu, D.; et al. Antimicrobial activity of tea tree oil nanoparticles against American and European foulbrood diseases agents. J. Asia Pac. Entomol. 2014, 17, 343–347. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Z.; Ji, H. Solid inclusion complex of terpinen-4-ol/β-cyclodextrin: Kinetic release, mechanism and its antibacterial activity. Flavour Fragr. J. 2015, 30, 179–187. [Google Scholar] [CrossRef]
- Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res. 2017, 29, 201–213. [Google Scholar] [CrossRef]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Burbott, A.J.; Loomis, W.D. Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol. 1967, 42, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Delaquis, P. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Juliano, C.; Mattana, A.; Usai, M. Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia. J. Essent. Oil Res. 2000, 12, 516–522. [Google Scholar] [CrossRef]
- Surburg, H.; Panten, J. Common Fragrance and Flavor Materials; John & Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 9783527313150. [Google Scholar]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef]
- Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J. 2002, 17, 15–19. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Jerkovic, I.; Mastelic, J.; Milos, M. The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. Int. J. Food Sci. Technol. 2001, 36, 649–654. [Google Scholar] [CrossRef]
- Packiyasothy, E.V.; Kyle, S. Antimicrobial properties of some herb essential oils. Food Aust. 2002, 54, 384–387. [Google Scholar]
- Craven, L.A.; Lepschi, B.J. Enumeration of the species and infraspecific taxa of Melaleuca (Myrtaceae) occurring in Australia and Tasmania. Aust. Syst. Bot. 1999, 12, 819. [Google Scholar] [CrossRef]
- Farag, R.S.; Shalaby, A.S.; El-Baroty, G.A.; Ibrahim, N.A.; Ali, M.A.; Hassan, E.M. Chemical and biological evaluation of the essential oils of different Melaleuca species. Phyther. Res. 2004, 18, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Feng, Y.; Du, S.; Jia, L. Contact toxicity and repellent efficacy of essential oil from aerial parts of Melaleuca bracteata and its major compositions against three kinds of insects. J. Essent. Oil Bear. Plants. 2021, 24, 349–359. [Google Scholar] [CrossRef]
- Tran, D.B.; Dargusch, P.; Moss, P.; Hoang, T.V. An assessment of potential responses of Melaleuca genus to global climate change. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 851–867. [Google Scholar] [CrossRef]
- Naidu, B.P.; Paleg, L.G.; Jones, G.P. Accumulation of proline analogues and adaptation of Melaleuca species to diverse environments in Australia. Aust. J. Bot. 2000, 48, 611. [Google Scholar] [CrossRef]
- Brooker, S.G.; Cambie, R.C.; Cooper, R.C. New Zealand Medicinal Plants, 3rd ed.; Reed Books: Auckland, New Zealand, 1987. [Google Scholar]
- Penfold, A.R.; Grant, R. The germicidal values of some Australian essential oils and their pure constituents, together with those for some essential oil isolates, and synthetics. J. Proc. R. Soc. N. S. W. 1925, 59, 346–349. [Google Scholar]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budhiraja, S.S.; Cullum, M.E.; Sioutis, S.S.; Evangelista, L.; Habanova, S.T. Biological activity of Melaleuca alternifolia (tea tree) oil component, terpinen-4-ol, in human myelocytic cell line HL-60. J. Manip. Physiol. Ther. 1999, 22, 447–453. [Google Scholar] [CrossRef]
- Penfold, A.R.; Grant, R. The germicidal values of the principal commercial Eucalyptus oils and their pure constituents, with observations on the value of concentrated disinfectants. J. Proc. R. Soc. N. S. W. 1923, 57, 80–89. [Google Scholar]
- Penfold, A.R.; Grant, R. The germicidal values of the pure constituents of Australian essential oils, together with those for some essential oil isolates and synthetics. Part II. J. Proc. R. Soc. N. S. W. 1924, 58, 50–62. [Google Scholar]
- Brophy, J.J.; Davies, N.W.; Southwell, I.A.; Stiff, I.A.; Williams, L.R. Gas chromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J. Agric. Food Chem. 1989, 37, 1330–1335. [Google Scholar] [CrossRef]
- Johns, M.R.; Johns, J.E.; Rudolph, V. Steam distillation of tea tree (Melaleuca alternifolia) oil. J. Sci. Food Agric. 1992, 58, 49–53. [Google Scholar] [CrossRef]
- Szczerbanik, M.; Jobling, J.; Morris, S.; Holford, P. Essential oil vapours control some common postharvest fungal pathogens. Aust. J. Exp. Agric. 2007, 47, 103. [Google Scholar] [CrossRef]
- AgriFutures Tea Tree Oil. Available online: https://www.agrifutures.com.au/farm-diversity/tea-tree-oil/ (accessed on 18 May 2021).
- Southwell, I.; Lowe, R. Tea Tree: The Genus Melaleuca; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Singh, B.R.; Vadhana, P.; Bhardwaj, M.; Kumar, V. Comparative antimicrobial activity of tea tree oil (Melaleuca oil) and common topical antimicrobials against bacteria associated with wound and topical infections. Pharm. Anal. Acta 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Trilles, B.L.; Bombarda, I.; Bouraïma-Madjebi, S.; Raharivelomanana, P.; Bianchini, J.-P.; Gaydou, E.M. Occurrence of various chemotypes in niaouli [Melaleuca quinquenervia (Cav.) S. T. Blake] essential oil from New Caledonia. Flavour Fragr. J. 2006, 21, 677–682. [Google Scholar] [CrossRef]
- Gupta, N.; Manika, N.; Singh, S.; Singh, S.C.; Pragadheesh, V.S.; Yadav, A.; Chanotiya, C.S. Investigation on phenylpropanoids rich Melaleuca decora (Salisb.) Britt. essential oil. Nat. Prod. Res. 2012, 26, 1945–1947. [Google Scholar] [CrossRef]
- Baker, G. Tea tree breeding. In Tea Tree: The Genus Melaleuca; Southwell, I., Lowe, R., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 135–154. [Google Scholar]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Calcabrini, A.; Stringaro, A.; Toccacieli, L.; Meschini, S.; Marra, M.; Colone, M.; Arancia, G.; Molinari, A.; Salvatore, G.; Mondello, F. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J. Investig. Dermatol. 2004, 122, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, M. Extraction of Essential Oil from Melaleuca alternifolia and Melaleuca bracteata Species for Exploring their Antioxidant Properties. Ph.D. Thesis, University of Agriculture, Faisalabad, Pakistan, 2019. [Google Scholar]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
- Andrade, B.F.M.T.; Barbosa, L.N.; Alves, F.C.B.; Albano, M.; Rall, V.L.M.; Sforcin, J.M.; Fernandes, A.A.H.; Júnior, A.F. The antibacterial effects of Melaleuca alternifolia, Pelargonium graveolens and Cymbopogon martinii essential oils and major compounds on liquid and vapor phase. J. Essent. Oil Res. 2016, 28, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Brophy, J.J.; Goldsack, R.J.; Doran, J.C.; Craven, L.A.; Lepschi, B.J. A Comparison of the Leaf Oils of Melaleuca squamophloia with those of its close relatives, M. styphelioides and M. bracteata. J. Essent. Oil Res. 1999, 11, 327–332. [Google Scholar] [CrossRef]
- Belousova, L.S.; Denisova, L.V. Rare Plants of the World; A.A. Balkema: Rotterdam, The Netherlands; Broekfield, WI, USA, 1992. [Google Scholar]
- Adesanwo, J.K.; Shode, F.O.; Aiyelaagbe, O.O.; Rabiu, O.O.; Oyede, R.T.; Oluwole, F.S. Antisecretory and antiulcerogenic activities of the stem bark extract of Melaleuca bracteata and isolation of principles. J. Med. Plants Res. 2009, 3, 822–824. [Google Scholar]
- Nascimento, J.C.; Barbosa, L.C.A.; Paula, V.F.; David, J.M.; Fontana, R.; Silva, L.A.M.; França, R.S. Chemical composition and antimicrobial activity of essential oils of Ocimum canum Sims. and Ocimum selloi Benth. An. Acad. Bras. Cienc. 2011, 83, 787–800. [Google Scholar] [CrossRef] [Green Version]
- Siddique, S.; Parveen, Z.; e-Bareen, F.; Mazhar, S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab. J. Chem. 2020, 13, 67–74. [Google Scholar] [CrossRef]
- Aboutabl, E.A.; Tohamy, S.E.; De Footer, H.L.; De Buyck, L.F. A comparative study of the essential oils from three Melaleuca species growing in Egypt. Flavour Fragr. J. 1991, 6, 139–141. [Google Scholar] [CrossRef]
- Ngoh, S.P.; Choo, L.E.W.; Pang, F.Y.; Huang, Y.; Kini, M.R.; Ho, S.H. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.). Pestic. Sci. 1998, 54, 261–268. [Google Scholar] [CrossRef]
- Goswami, P.; Verma, S.K.; Chauhan, A.; Venkatesha, K.; Verma, R.S.; Singh, V.R.; Darokar, M.P.; Chanotiya, C.S.; Padalia, R.C. Chemical composition and antibacterial activity of Melaleuca bracteata essential oil from India: A natural source of methyl eugenol. Nat. Prod. Commun. 2017, 12, 1934578X1701200633. [Google Scholar] [CrossRef] [Green Version]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [Green Version]
- Mondello, F. In vitro and in vivo activity of tea tree oil against azole-susceptible and-resistant human pathogenic yeasts. J. Antimicrob. Chemother. 2003, 51, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob. Agents Chemother. 2012, 56, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Low, D.; Rawal, B.; Griffin, W. Antibacterial action of the essential oils of some Australian Myrtaceae with special references to the activity of chromatographic fractions of oil of Eucalyptus citriodora. Planta Med. 1974, 26, 184–189. [Google Scholar] [CrossRef]
- Beylier, M. Bacteriostatic activity of some Australian essential oils. Perfum. Flavorist 1979, 4, 23–25. [Google Scholar]
- Graham, B.M. The development of Australian legislation for disinfectants. Aust. J. Hosp. Pharm. 1978, 8, 149–155. [Google Scholar]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Bua, A.; Molicotti, P.; Donadu, M.G.; Usai, D.; Le, L.S.; Tran, T.T.T.; Ngo, V.Q.T.; Marchetti, M.; Usai, M.; Cappuccinelli, P. “In vitro” activity of Melaleuca cajuputi against mycobacterial species. Nat. Prod. Res. 2020, 34, 1494–1497. [Google Scholar] [CrossRef]
- De Souza, M.E.; Clerici, D.J.; Verdi, C.M.; Fleck, G.; Quatrin, P.M.; Spat, L.E.; Bonez, P.C.; Dos Santos, C.F.; Antoniazzi, R.P.; Zanatta, F.B. Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ. Microb. Pathog. 2017, 113, 432–437. [Google Scholar] [CrossRef]
- Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res. 2000, 12, 249–255. [Google Scholar] [CrossRef]
- Gustafson, J.E.; Liew, Y.C.; Chew, S.; Markham, J.; Bell, H.C.; Wyllie, S.G.; Warmington, J.R. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Banes-Marshall, L.; Cawley, P.; Phillips, C.A. In vitro activity of Melaleuca alternifolia (tea tree) oil against bacterial and Candida spp. isolates from clinical specimens. Br. J. Biomed. Sci. 2001, 58, 139–145. [Google Scholar]
- Christoph, F.; Kaulfers, P.-M.; Stahl-Biskup, E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of β-triketones. Planta Med. 2000, 66, 556–560. [Google Scholar] [CrossRef]
- Hammer, K.A.; Dry, L.; Johnson, M.; Michalak, E.M.; Carson, C.F.; Riley, T.V. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol. Immunol. 2003, 18, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J. Antimicrob. Chemother. 2002, 50, 195–199. [Google Scholar] [CrossRef]
- Ergin, A.; Arikan, S. Comparison of microdilution and disc diffusion methods in assessing the in vitro activity of fluconazole and Melaleuca alternifolia (tea tree) oil against vaginal Candida isolates. J. Chemother. 2002, 14, 465–472. [Google Scholar] [CrossRef]
- Shin, S. Anti-Aspergillus activities of plant essential oils and their combination effects with ketoconazole or amphotericin B. Arch. Pharm. Res. 2003, 26, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Markovic, B. Toxicity of Australian essential oil Backhousia citriodora (lemon myrtle). Part 2. Absorption and histopathology following application to human skin. Food Chem. Toxicol. 2003, 41, 1409–1416. [Google Scholar] [CrossRef]
- Shapiro, S.; Meier, A.; Guggenheim, B. The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol. 1994, 9, 202–208. [Google Scholar] [CrossRef]
- Christoph, F.; Stahl-Biskup, E.; Kaulfers, P.-M. Death kinetics of Staphylococcus aureus exposed to commercial tea tree oils s.l. J. Essent. Oil Res. 2001, 13, 98–102. [Google Scholar] [CrossRef]
- Schnitzler, P.; Schön, K.; Reichling, J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 2001, 56, 343–347. [Google Scholar]
- Li, Y.; Ye, Z.; Wang, W.; Yang, C.; Liu, J.; Zhou, L.; Shen, Y.; Wang, Z.; Chen, J.; Wu, S.; et al. Composition analysis of essential oil from Melaleuca bracteata leaves using ultrasound-assisted extraction and its antioxidative and antimicrobial activities. BioResources 2018, 13, 8488–8504. [Google Scholar] [CrossRef]
- Siddique, S.; Parveen, Z.; e-Bareen, F.; Chaudhary, M.N.; Mazhar, S.; Nawaz, S. The essential oil of Melaleuca armillaris (Sol. ex Gaertn.) Sm. leaves from Pakistan: A potential source of eugenol methyl ether. Ind. Crops Prod. 2017, 109, 912–917. [Google Scholar] [CrossRef]
- Homeyer, D.C.; Sanchez, C.J.; Mende, K.; Beckius, M.L.; Murray, C.K.; Wenke, J.C.; Akers, K.S. In vitro activity of Melaleuca alternifolia (tea tree) oil on filamentous fungi and toxicity to human cells. Med. Mycol. 2015, 53, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.D. Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden amp; Betche) Cheel (tea tree) against tobacco mosaic virus. J. Essent. Oil Res. 1995, 7, 641–644. [Google Scholar] [CrossRef]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J. Essent. Oil Res. 2000, 12, 639–649. [Google Scholar] [CrossRef]
- Kim, H.-J.; Chen, F.; Wu, C.; Wang, X.; Chung, H.Y.; Jin, Z. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J. Agric. Food Chem. 2004, 52, 2849–2854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In vitro evaluation of antioxidant and antimicrobial activities of Melaleuca alternifolia essential oil. Biomed Res. Int. 2018, 2018, 2396109. [Google Scholar] [CrossRef] [Green Version]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, W.; Chen, G.; Luo, Y. Optimization of extraction conditions for maximal phenolic, flavonoid and antioxidant activity from Melaleuca bracteata leaves using the response surface methodology. PLoS ONE 2016, 11, e0162139. [Google Scholar] [CrossRef]
- Bishop, C.D.; Thornton, I.B. Evaluation of the antifungal activity of the essential oils of Monarda citriodora var. citriodora and Melaleuca alternifolia on post-harvest pathogens. J. Essent. Oil Res. 1997, 9, 77–82. [Google Scholar] [CrossRef]
- Reuveni, M.; Sanches, E.; Barbier, M. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy 2020, 10, 609. [Google Scholar] [CrossRef]
- Riccioni, L.; Orzali, L. Activity of tea tree (Melaleuca alternifolia, Cheel) and thyme (Thymus vulgaris, Linnaeus.) Essential oils against some pathogenic seed borne fungi. J. Essent. Oil Res. 2011, 23, 43–47. [Google Scholar] [CrossRef]
- Bozoglu, F. Impact of pesticides as organic micro-pollutants on the environment and risks for mankind. In Environmental Security and Ecoterrorism; Springer: Dordrecht, The Netherlands, 2011; pp. 73–82. [Google Scholar]
- Qasem, J.R. Herbicides applications: Problems and considerations. In Herbicides and Environment; IntechOpen: London, UK, 2011. [Google Scholar]
- Heap, I.M. The occurrence of herbicide-resistant weeds worldwide. Pestic. Sci. 1997, 51, 235–243. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Grujić, S.M.; Mileski, K.S.; Marin, P.D. Chemical composition, antifungal and antioxidant activity of Pelargonium graveolens essential oil. J. Appl. Pharm. Sci. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of mediterranean essential oils. Molecules 2010, 15, 4309–4323. [Google Scholar] [CrossRef] [Green Version]
- Almarie, A.; Mamat, A.; Rukunudin, I. Chemical composition and herbicidal effects of Melaleuca bracteata F.Muell. essential oil against some weedy species. Int. J. Sci. Eng. Res. 2015, 7, 507–514. [Google Scholar]
- Fetouh, M.I. Effects of tea tree oil vapour on the postharvest quality of sweet basil shoots and its relation to peroxidase enzyme. J. Agric. Res. Kafrelsheikh Univ. 2018, 41, 981–992. [Google Scholar]
- Cháfer, M.; Sánchez-González, L.; González-Martínez, C.; Chiralt, A. Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J. Food Sci. 2012, 77, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.; Wang, H.; Xu, F.; Cheng, S. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 2013, 77, 94–101. [Google Scholar] [CrossRef]
Identified Compounds | Quantity (%) [63] | Quantity (%) Miscellenious Studies |
---|---|---|
Sabinene | 0.41 | 0.2 [52] |
Alpha-Pinene | 1.66 | 2.67 [64] |
I-beta-Pinene | 0.49 | 0.3 [52] |
β-Pinene | 0.24 | 0.71 [65] |
α-Terpinene | 9.09 | 7.69 [64] |
Eucalyptol | 5.03 | - |
γ-Terpinene | 22.66 | 19.54 [64] |
Terpinolene | 1.76 | 3.09 [64] |
Terpinen-4-ol | 53.98 | 40.44 [64] |
α-Gurjunene | 0.30 | 0.2 [52] |
(+)-Gurjunene | 0.86 | - |
Aromadendrene | 0.31 | 1.5 [52] |
δ-Cardinene | 0.28 | 1.3 [52] |
β -Gurjunene | 1.73 | 0.1 [52] |
δ-Cardinene | 1.22% | 1.3 [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. https://doi.org/10.3390/plants10102105
Yasin M, Younis A, Javed T, Akram A, Ahsan M, Shabbir R, Ali MM, Tahir A, El-Ballat EM, Sheteiwy MS, et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants. 2021; 10(10):2105. https://doi.org/10.3390/plants10102105
Chicago/Turabian StyleYasin, Mursleen, Adnan Younis, Talha Javed, Ahsan Akram, Muhammad Ahsan, Rubab Shabbir, Muhammad Moaaz Ali, Ayesha Tahir, Enas M. El-Ballat, Mohamed S. Sheteiwy, and et al. 2021. "River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture" Plants 10, no. 10: 2105. https://doi.org/10.3390/plants10102105
APA StyleYasin, M., Younis, A., Javed, T., Akram, A., Ahsan, M., Shabbir, R., Ali, M. M., Tahir, A., El-Ballat, E. M., Sheteiwy, M. S., Sammour, R. H., Hano, C., Alhumaydhi, F. A., & El-Esawi, M. A. (2021). River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants, 10(10), 2105. https://doi.org/10.3390/plants10102105