Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Supplemental Light with HPS and LED Lamps on the Yield in Different Months of Autumn–Winter Cultivation
2.2. Effects of Supplemental Light from HPS and LED Lamps on Chlorophyll Content in Young and Old Leaves
2.3. Effects of Supplemental Lighting with HPS and LED Lamps on Photosynthetic Characteristics of Young and Old Leaves
2.4. Effects of Supplemental Lighting with HPS and LED Lamps on Chlorophyll a Fluorescence of Young and Old Leaves
3. Materials and Methods
3.1. Experimental Conditions
3.2. Fruit Yield
3.3. SPAD Index, Gas Exchange and Chlorophyll a Fluorescence Measurements
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trouwborst, G.; Oosterkamp, J.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol. Plant. 2010, 138, 289–300. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Harbinson, J. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J. Exp. Bot. 2010, 61, 1267–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogewoning, S.W.; Trouwborst, G.; Engbers, G.J.; Harbinson, J.; van Ieperen, W.; Ruijsch, J.; Schapendonk, A.H.C.M.; Pot, S.C.; van Kooten, O. Plant physiological acclimation to irradiation by light emitting diodes (LEDs). Acta Hortic. 2007, 761, 183–191. [Google Scholar] [CrossRef]
- Massa, G.D.; Emmerich, J.C.; Morrow, R.C.; Bourget, C.M.; Mitchell, C.A. Plant-growth lighting for space life support: A review. Gravit. Space Biol. Bull. 2006, 19, 19–29. [Google Scholar]
- Massa, G.D.; Kim, H.-H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. Hortscience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Gomez, C.; Izzo, L.G. Review. Increasing efficiency of crop production with LEDs. AIMS Agric. 2018, 3, 135–153. [Google Scholar] [CrossRef]
- Hovi, T.; Näkkilä, J.; Tahvonen, R. Interlighting improves production of year-round cucumber. Sci. Hortic. 2004, 102, 283–294. [Google Scholar] [CrossRef]
- Hovi-Pekkanen, T.; Tahvonen, R. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Sci. Hortic. 2008, 116, 152–161. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Z.; Jahan, M.S.; Wen, Y.; Yao, X.; Ding, H.; Guo, S.; Xu, Z. RNA-Seq analysis reveals the growth and photosynthetic responses of rapeseed (Brassica napus L.) under red and blue LEDs with supplemental yellow, green, or white light. Hortic. Res. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Brazaityte, A.; Duchovskis, P.; Urbonavičiūtė, A.; Samuolienė, G.; Jankauskienė, J.; Kasiulevičiūtė-Bonakėrė, A.; Bliznikas, Z.; Novičkovas, A.; Breivė, K.; Žukauskas, A. The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirb. Agric. 2009, 96, 102–118. [Google Scholar]
- Kim, H.H.; Wheeler, R.M.; Sager, J.C.; Gains, G.; Naikane, J. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment—a review of research at Kennedy Space Center. Acta Hortic. 2006, 711, 111–120. [Google Scholar] [CrossRef]
- Wang, M.M.; Xu, Z.G.; Jiao, X.L.; Liu, X.Y. Effects of different illumination times of red and blue LED lights on growth and quality of Lactuca sativa var. ramosa. J. Plant Resour. Environ. 2017, 26, 113–115. [Google Scholar]
- Liu, X.Y.; Jiao, X.L.; Xu, Z.G.; Yang, Y. Effects of red and blue LED on growth, nutritional quality and nitrate nitrogen content of lettuce. J. Nanjing Univ. Nat. Sci. 2013, 36, 139–143. [Google Scholar]
- Brazaitytė, A.; Duchovskis, P.; Urbonavičiūtė, A.; Samuolienė, G.; Jankauskienė, J.; Sakalauskaitė, J.; Šabajeviene, G.; Sirtautas, R.; Novičkowas, A. The effect of light-emitting diodes lighting on the growth of tomato transplants. Zemdirb. Agric. 2010, 97, 89–98. [Google Scholar]
- Xiao, Y.X.; Gao, X.J.; Zhou, F.M. Effect of supplemental lighting on growth and development of Tobacco. Tianjin Agric. Sci. 2013, 11, 85–87. [Google Scholar]
- Shen, B.Y.; Li, Y.N.; Zhao, S.Q.; Ding, W.M.; Hui, N.; Li, J. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation. Trans. Chin. Soc. Agric. Eng. 2014, 22, 201–208. [Google Scholar]
- Savvides, A.; Fanourakis, D.; van Ieperen, W. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Bot. 2012, 63, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R. The dependence of quantum yield on wavelength and growth irradiance. Aust. J. Plant Physiol. 1987, 14, 69–79. [Google Scholar] [CrossRef]
- Inada, K. Action spectra for photosynthesis in higher-plants. Plant Cell Physiol. 1976, 17, 355–365. [Google Scholar]
- McCree, K.J. Action spectrum: Absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose—Responses of leaf photosynthesis morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi-Kaneko, K.; Matsuda, R.; Goto, E.; Fujiwara, K.; Kurata, K. Growth of rice plants under red light with or without supplemental blue light. J. Plant Nutr. Soil Sci. 2006, 52, 444–452. [Google Scholar] [CrossRef]
- Matsuda, R.; Ohashi-Kaneko, K.; Fujiwara, K.; Kurata, K. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci. Plant Nutr. 2007, 53, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Fromme, P.; Witt, H.T.; Klukas, O.; Saenger, W.; Krauß, N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 2001, 411, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Munekage, Y.; Hashimoto, M.; Miyake, C.; Tomizawa, K.I.; Endo, T.; Tasaka, M.; Shikanai, T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 2004, 429, 579–582. [Google Scholar] [CrossRef]
- Walters, R.G.; Horton, P. Acclimation of Arabidopsis thaliana to the light environment: Changes in composition of the photosynthetic apparatus. Planta 1994, 195, 248–256. [Google Scholar] [CrossRef]
- Pfannschmidt, T. Acclimation to varying light qualities: Toward the functional relationship of state transitions and adjustment of photosystem stoichiometry. J. Phycol. 2005, 41, 723–725. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.S.; Melis, A.; Anderson, J.M. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc. Natl. Acad. Sci. USA 1990, 87, 7502–7506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, M.-Q.; Jahan, M.S.; Hou, K.; Shu, S.; Wang, Y.; Sun, J.; Guo, S.-R. Bitter melon (Momordica charantia L.) rootstock improves the heat tolerance of cucumber by regulating photosynthetic and antioxidant defense pathways. Plants 2020, 9, 692. [Google Scholar] [CrossRef]
- Jahan, M.S.; Guo, S.; Sun, J.; Shu, S.; Wang, Y.; El-Yazied, A.A.; Alabdallah, N.M.; Hikal, M.; Mohamed, M.H.M.; Ibrahim, M.F.M.; et al. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol. Biochem. 2021, 167, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Force, L.; Critchley, C.; van Rensen, J.J. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth. Res. 2003, 1, 17–33. [Google Scholar] [CrossRef]
- Donnini, S.; Guidi, L.; Degl’Innocenti, E.; Zocchi, G. Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. J. Plant Nutr. Soil Sci. 2013, 176, 734–742. [Google Scholar] [CrossRef]
- Viazau, Y.V.; Kozel, N.V.; Domanski, V.P.; Shalygo, N.V. Spectral changes of cucumber leaf during adaptation of the photosynthetic apparatus to LED lighting. J. Appl. Spectrosc. 2015, 81, 1019–1024. [Google Scholar] [CrossRef]
- Yan-Xiu, M.; Xiao-Zhuo, W.; Li-Hong, G.; Qing-Yun, C.H.; Mei, Q. Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. J. Integr. Agric. 2016, 15, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Trouwborst, G.; Hogewoning, S.W.; van Kooten, O.; Harbinson, J.; van Ieperen, W. Plasticity of photosynthesis after the ‘red light syndrome’ in cucumber. Environ. Exp. Bot. 2016, 121, 75–82. [Google Scholar] [CrossRef]
- Kleniewska, M.; Mitrowska, D.; Chojnicki, B.H. Monthly average daily diffuse solar radiation in Poland within the period 2005–2015. In Proceedings of the XLVIII Seminar of Applied Mathematics, Boguszów-Gorce, Poland, 9–11 September 2018; ITM Web of Conferences: Les Ulis, France, 2018; Volume 23. 5p. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Raschke, K. Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol. 1981, 68, 1170–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, T.; Fang, S.; Zhou, M.; Qin, J. Responses of morphology, gas exchange, photochemical activity of photosystem II, and antioxidant balance in Cyclocarya paliurus to light spectra. Front. Plant Sci. 2018, 9, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral identification of lighting type and character. Sensors 2010, 10, 3961–3988. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Buono, D.D.; Ballerini, E.; Benincasa, P.; Falcinelli, B.; Guiducci, M. Effect of light spectrum on gas exchange, growth and biochemical characteristics of einkorn seedlings. Agronomy 2020, 10, 1042. [Google Scholar] [CrossRef]
- Tang, Y.; Mao, R.; Guo, S. Effects of LED spectra on growth, gas exchange, antioxidant activity and nutritional quality of vegetable species. Life Sci. Space Res. 2020, 26, 77–84. [Google Scholar] [CrossRef]
- Lanoue, J.; Leonardos, E.D.; Ma, X.; Grodzinski, B. The effect of spectral quality on daily patterns of gas exchange, biomass gain, and water-use-efficiency in tomatoes and Lisianthus: An assessment of whole plant measurements. Front. Plant Sci. 2017, 8, 1076. [Google Scholar] [CrossRef]
- Yang, X.; Xu, H.; Shao, L.; Li, T.; Wang, Y.; Wang, R. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ. Exp. Bot. 2018, 150, 161–171. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 2011, 8, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Bjorkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Lu, C.M.; Zhang, J.H. Changes in photosystem II function during senescence of wheat leaves. Physiol. Plant. 1998, 104, 239–247. [Google Scholar] [CrossRef]
- Tikkanen, M.; Mekala, N.R.; Aro, E.M. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalczyk, K.; Gajc-Wolska, J.; Mirgos, M.; Geszprych, A.; Kowalczyk, W.; Sieczko, L.; Niedzińska, M.; Gajewski, M. Mineral nutrients needs of cucumber and its yield in protected winter cultivation, with HPS and LED supplementary lighting. Sci. Hortic. 2020, 265, 109217. [Google Scholar] [CrossRef]
Month of Cultivation | Lighting Type | Means | ||
---|---|---|---|---|
HPS | HPS + LED | LED | ||
September | 4.34 c * | 4.66 c | 5.91 c | 4.97 C * |
October | 11.46 b | 13.00 b | 16.03 a | 13.49 B |
November | 11.04 b | 12.46 b | 13.72 b | 12.40 B |
December | 7.20 bc | 8.44 bc | 8.53 bc | 8.05 BC |
January | 4.87 c | 10.30 b | 11.18 b | 8.78 BC |
February | 11.82 b | 15.06 ab | 15.93 a | 14.27 AB |
March | 12.42 b | 14.21 b | 15.90 a | 14.18 AB |
April | 14.08 b | 15.56 ab | 19.82 a | 16.49 A |
Means | 9.65 B | 11.71 AB | 13.38 A |
Parameter | Time of Measurement | Lighting Type | ||
---|---|---|---|---|
HPS | HPS + LED | LED | ||
SPAD | November | 39.33 b * | 35.97 c | 46.05 a |
December | 37.63 c | 43.03 ab | 43.47 ab | |
March | 42.35 ab | 49.38 a | 48.83 a | |
Fs | November | 462.50 ab | 590.50 a | 617.33 a |
December | 499.00 b | 482.17 b | 642.33 a | |
March | 418.50 ab | 491.50 a | 462.17 a | |
Fm’ | November | 2271.83 a | 2315.00 a | 2017.17 ab |
December | 2079.83 ab | 2077.33 ab | 2346.83 a | |
March | 1919.33 b | 1827.83 b | 1878.00 b | |
PSII | November | 0.681 b | 0.743 a | 0.793 a |
December | 0.722 b | 0.765 ab | 0.760 a | |
March | 0.740 a | 0.767 a | 0.753 a | |
Fv/Fm | November | 0.822 a | 0.810 ab | 0.797 b |
December | 0.829 a | 0.824 a | 0.822 a | |
March | 0.818 ab | 0.822 a | 0.815 ab | |
PI | November | 3.71 c | 4.02 b | 3.93 c |
December | 4.03 b | 4.08 b | 4.23 b | |
March | 5.68 ab | 5.87 ab | 7.18 a |
Parameter | Time of Measurement | Lighting Type | ||
---|---|---|---|---|
HPS | HPS + LED | LED | ||
SPAD | November | 46.42 ab * | 45.50 b | 46.88 ab |
December | 44.93 bc | 40.82 c | 43.47 bc | |
March | 44.18 bc | 48.83 a | 53.92 a | |
Fs | November | 409.83 b | 510.33 ab | 553.33 ab |
December | 461.83 b | 517.00 ab | 502.17 b | |
March | 285.00 b | 426.67 ab | 386.00 ab | |
Fm’ | November | 1987.00 b | 2240.17 a | 2340.00 a |
December | 2158.50 ab | 2230.67 a | 2292.33 a | |
March | 1567.33 c | 2017.33 ab | 2061.50 ab | |
PSII | November | 0.772 ab | 0.794 a | 0.763 ab |
December | 0.770 ab | 0.784 a | 0.779 a | |
March | 0.790 a | 0.811 a | 0.766 ab | |
Fv/Fm | November | 0.836 a | 0.830 a | 0.825 a |
December | 0.835 a | 0.833 a | 0.832 a | |
March | 0.829 a | 0.829 a | 0.827 a | |
PI | November | 6.06 b | 6.51 ab | 7.38 a |
December | 6.05 b | 5.43 b | 5.85 b | |
March | 5.87 b | 6.88 ab | 7.54 a |
Time from Turning on the Lamps (min) | Net Carbon Assimilation (μmol CO2 m−2 s−1) | ||
---|---|---|---|
Light Conditions | |||
HPS | HPS + LED | LED | |
1 | 0.11 a * (±0.00) | −2.12 b (±0.15) | −2.46 b (±0.69) |
2 | 2.24 a (±0.01) | −0.71 b (±0.05) | −0.51 b (±0.19) |
3 | 4.74 a (±0.14) | 1.72 c (±0.06) | 2.71 b (±0.23) |
4 | 5.66 a (±0.07) | 3.27 c (±0.11) | 4.99 b (±0.10) |
5 | 7.29 a (±0.09) | 5.87 b (±0.06) | 6.86 a (±0.26) |
6 | 7.55 a (±0.07) | 6.64 b (±0.11) | 7.43 a (±0.13) |
7 | 8.95 a (±0.22) | 8.11 a (±0.24) | 8.22 a (±0.20) |
8 | 8.84 a (±0.29) | 8.86 a (±0.34) | 9.02 a (±0.28) |
9 | 8.99 a (±0.15) | 9.05 a (±0.24) | 9.23 a (±0.13) |
10 | 9.01 a (±0.12) | 9.10 a (±0.28) | 9.40 a (±0.12) |
11 | 8.71 a (±0.33) | 9.36 a (±0.08) | 9.44 a (±0.11) |
12 | 9.08 b (±0.09) | 9.75 a (±0.07) | 9.59 a (±0.12) |
13 | 8.76 b (±0.16) | 9.63 a (±0.13) | 9.96 a (±0.16) |
14 | 9.27 a (±0.17) | 9.86 a (±0.31) | 10.2 a (±0.17) |
15 | 9.25 b (±0.07) | 9.57 ab (±0.10) | 10.0 a (±0.16) |
16 | 9.12 b (±0.07) | 9.81 ab (±0.16) | 10.2 a (±0.29) |
17 | 9.45 b (±0.18) | 9.96 ab (±0.08) | 10.3 a (±0.20) |
18 | 9.57 a (±0.20) | 10.0 a (±0.16) | 10.4 a (±0.21) |
19 | 9.47 b (±0.15) | 10.0 ab (±0.27) | 10.5 a (±0.16) |
20 | 9.57 a (±0.11) | 10.0 ab (±0.19) | 10.5 a (±0.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajc-Wolska, J.; Kowalczyk, K.; Przybysz, A.; Mirgos, M.; Orliński, P. Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants 2021, 10, 2042. https://doi.org/10.3390/plants10102042
Gajc-Wolska J, Kowalczyk K, Przybysz A, Mirgos M, Orliński P. Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants. 2021; 10(10):2042. https://doi.org/10.3390/plants10102042
Chicago/Turabian StyleGajc-Wolska, Janina, Katarzyna Kowalczyk, Arkadiusz Przybysz, Małgorzata Mirgos, and Paweł Orliński. 2021. "Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation" Plants 10, no. 10: 2042. https://doi.org/10.3390/plants10102042
APA StyleGajc-Wolska, J., Kowalczyk, K., Przybysz, A., Mirgos, M., & Orliński, P. (2021). Photosynthetic Efficiency and Yield of Cucumber (Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn–Winter Cultivation. Plants, 10(10), 2042. https://doi.org/10.3390/plants10102042