Effect of Moringa oleifera Lam. Leaf Tea on Sexual Behavior and Reproductive Function in Male Rats
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Contents
2.2. Antioxidant Properties
2.3. Lipid Peroxidation (LPO), and Advance Glycation End Products (AGEs) Inhibition Assay
2.4. Sexual Behavior
2.5. Testosterone Hormone and Relative Testis Weight
2.6. Histological of Testis
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Collection and Extraction
4.3. Total Phenolic Contents
4.4. Total Flavonoids Contents
4.5. Total Alkaloid Contents
4.6. Analysis of Phytochemical Content by High-Performance Liquid Chromatography (HPLC)
4.7. Antioxidant Properties
4.7.1. DPPH Radical Scavenging Assay
4.7.2. ABTS Radical Scavenging Assay
4.7.3. Hydrogen Peroxide Scavenging Assay
4.8. Lipid Peroxidation Assay
4.9. Inhibition of Advance Glycation End Products (AGEs) Formation
4.10. Animals
4.11. Experimental Design
4.12. Sexual Behavior Testing Procedure
4.13. Testosterone Assay
4.14. Histological of Testis Evaluation
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 2009, 47, 1109–1116. [Google Scholar] [CrossRef]
- Paliwal, R.; Sharma, V.; Pracheta, J. A Review on Horse Radish Tree (Moringa oleifera): A Multipurpose Tree with High Economic and Commercial Importance. Asian J. Biotechnol. 2011, 3, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Tshabalala, T.; Ncube, B.; Madala, N.E.; Nyakudya, T.T.; Moyo, H.P.; Sibanda, M.; Ndhlala, A.R. Scribbling the Cat: A Case of the “Miracle” Plant, Moringa oleifera. Plants 2019, 8, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debajyoti, D.; Dipsundar, S.; Dinesh, B.; Chandreyee, R.; Sanatan, R.; Jayram, H. Moringa olifera (shigru): A miracle tree for its nutritional, ethnomedicinal and therapeutic importance. Int. J. Dev. Res. 2017, 7, 16823–16827. [Google Scholar]
- Monera, T.G.; Maponga, C.C. Prevalence and patterns of Moringa oleifera use among HIV positive patients in Zimbabwe: A cross-sectional survey. J. Public Health Afr. 2012, 3, e6. [Google Scholar] [CrossRef] [Green Version]
- Sen, D.; Bhaumik, S.; Debnath, P.; Debnath, S. Potentiality of Moringa oleifera against SARS-CoV-2: Identified by a rational computer aided drug design method. J. Biomol. Struct. Dyn. 2021, 2021, 1–18. [Google Scholar]
- Mutheeswaran, S.; Pandikumar, P.; Chellappandian, M.; Ignacimuthu, S. Documentation and quantitative analysis of the local knowledge on medicinal plants among traditional siddha healers in Virudhunagar district of Tamil Nadu, India. J. Ethnopharmacol. 2011, 137, 523–533. [Google Scholar] [CrossRef]
- Zade, V.S.; Dabhadkar, D.K.; Thakare, V.G.; Pare, S.R. Effect of aqueous extract of Moringa oleifera seed on sexual activity of male albino rats. Int. J. Bio. Forum. 2013, 5, 129–140. [Google Scholar]
- Dafaalla, M.M.; Hassan, A.W.; Idris, O.F.; Abdoun, S.; Modawe, G.A.; Kabbashi, A.S. Effect of ethanol extract of Moringa oleifera leaves on fertility hormone and sperm quality of male albino rats. World J. Pharm. Res. 2016, 5, 1–11. [Google Scholar]
- Uchenna, E.F.; Steve, A.C. Effect of Moringa oleifera (horseradish) seed on the reproductive system of male Wistar albino rats. IJRBS 2017, 5, 22–27. [Google Scholar]
- Prabsattroo, T.; Wattanathorn, J.; Iamsaard, S.; Somsapt, P.; Sritragool, O.; Thukhummee, W.; Muchimapura, S. Moringa oleifera extract enhances sexual performance in stressed rats. J. Zhejiang Univ. Sci. B 2015, 16, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Hartman, M.J. Review of the Safety and Efficacy of Moringa oleifera. Phytother. Res. 2015, 29, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Jimenez, M.; AlMatrafi, M.M.; Fernandez, M.L. Bioactive Components in Moringa oleifera Leaves Protect against Chronic Disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yassa, H.D.; Tohamy, A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014, 116, 844–854. [Google Scholar] [CrossRef]
- Jaiswal, D.; Rai, P.K.; Mehta, S.; Chatterji, S.; Shukla, S.; Rai, D.K.; Sharma, G.; Sharma, B.; Watal, G. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 2013, 6, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Jayawardana, B.; Liyanage, R.; Lalantha, N.; Iddamalgoda, S.; Weththasinghe, P. Antioxidant and antimicrobial activity of drumstick (Moringa oleifera) leaves in herbal chicken sausages. LWT-Food Sci. Technol. 2015, 64, 1204–1208. [Google Scholar] [CrossRef]
- Das, A.K.; Rajkumar, V.; Verma, A.K.; Swarup, D. Moringa oleiferia leaves extract: A natural antioxidant for retarding lipid peroxidation in cooked goat meat patties. Int. J. Food Sci. Technol. 2011, 47, 585–591. [Google Scholar] [CrossRef]
- Matshediso, P.G.; Cukrowska, E.; Chimuka, L. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chem. 2015, 172, 423–427. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Quirantes-Piné, R.; Gutierrez, A.F.; Carretero, A.S. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crop. Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R. Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef]
- Ncube, B.; Finnie, J.; Van Staden, J. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S. Afr. J. Bot. 2012, 82, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, S.; Jeyabalan, G.; Ali, A. An overview on traditional medicinal plants as aphrodisiac agent. Int. J. Pharmacogn. Phytochem. 2012, 1, 43–56. [Google Scholar]
- Sedha, S.; Kumar, S.; Shukla, S. Role of Oxidative Stress in Male Reproductive Dysfunctions with Reference to Phthalate Compounds. Urol. J. 2015, 12, 2304–2316. [Google Scholar] [PubMed]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, A.K.; Bilaspuri, G.S. Effect of ferrous sulphate and ascorbic acid on motility, viability and lipid peroxidation of crossbred cattle bull spermatozoa. Animal 2008, 2, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; De Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2012, 51, 2862–2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J. Food Sci. Technol. 2018, 55, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Laoung-On, J.; Jaikang, C.; Saenphet, K.; Sudwan, P. Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts. Plants 2021, 10, 1375. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542. [Google Scholar] [CrossRef]
- Pari, L.; Karamac, M.; Kosinska, A.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of the crude extracts of drumstick tree [Moringa oleifera Lam.] and sweet broomweed [Scoparia dulcis L.] leaves. Pol. J. Food Nutr. Sci. 2007, 57, 203–208. [Google Scholar]
- Piwowar, A.; Rorbach-Dolata, A.; Fecka, I. The Antiglycoxidative Ability of Selected Phenolic Compounds—An In Vitro Study. Molecules 2019, 24, 2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors Influencing the Antioxidant Activity Determined by the ABTS•+ Radical Cation Assay. Free Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Sudwan, P.; Saenphet, K.; Aritajat, S.; Sitasuwan, N. Effects of Boesenbergia rotunda (L.) Mansf. on sexual behaviour of male rats. Asian J. Androl. 2007, 9, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Hull, E.M.; Dominguez, J.M. Sexual behavior in male rodents. Horm. Behav. 2007, 52, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Sudwan, P.; Saenphet, K.; Saenphet, S.; Suwansirikul, S. Effect of Kaempferia parviflora Wall. ex. Baker on sexual activity of male rats and its toxicity. Southeast Asian J. Trop. Med. Public Health 2006, 37, 210–215. [Google Scholar] [PubMed]
- Melis, M.R.; Argiolas, A. Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 1995, 19, 19–38. [Google Scholar] [CrossRef]
- Martin, L.J.; Touaibia, M. Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxidants 2020, 9, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudwan, P.; Saenphet, K.; Aritajat, S.; Wongsawad, C. Sperm density and ultrastructure of Sertoli cells in male rats treated with Kaempferia parviflora Wall. ex. Baker extract. Southeast Asian J. Trop. Med. Public Health 2007, 38, 249–254. [Google Scholar]
- Yotarlai, S.; Chaisuksunt, V.; Saenphet, K.; Sudwan, P. Effects of Boesenbergia rotunda juice on sperm qualities in male rats. J. Med. Plant Res. 2011, 5, 3861–3867. [Google Scholar]
- Baum, M.J. Neuroendocrinology of male reproductive behavior. In Handbook of Neurochemistry and Molecular Neurobiology, 3rd ed.; Abel, L., Ed.; Springer: New York, NY, USA, 2007; pp. 1–35. [Google Scholar]
- Obembe, O.; Raji, Y. Effects of aqueous extract of Moringa oleifera seed on cadmium-induced reproductive toxicity in male Wistar rats. Afr. Health Sci. 2018, 18, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Ernst, K.; Jimmy, D.N. The Physiology of Reproduction, 4th ed.; Raven Press: New York, NY, USA, 2015; Volume 2. [Google Scholar]
- Cajuday, L.A.; Pocsidio, G.L. Effects of Moringa oleifera Lam. (Moringaceae) on the reproduction of male mice (Mus musculus). J. Med. Plant. Res. 2010, 4, 1115–1121. [Google Scholar]
- Zeng, B.; Luo, J.; Wang, P.; Yang, L.; Chen, T.; Sun, J.; Xie, M.; Li, M.; Zhang, H.; He, J. The beneficial effects of Moringa oleifera leaf on reproductive performance in mice. Food Sci. Nutr. 2019, 7, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.C.; Becker-Silva, S.C.; Chiarini-Garcia, H.; França, L.R. Sertoli cell efficiency and daily sperm production in goats (Capra hircus). Anim. Reprod. 2018, 1, 122–128. [Google Scholar]
- U-pathi, J.; Sudwan, P. Effect of Boesenbergia rotunda (L.) Mansf. on seminiferous epithelial cells ratio and sperm count in mature male rats. Naresuan Phayao J. 2018, 11, 4–11. [Google Scholar]
- Khaki, A.; Ouladsahebmadarek, E.; Javadi, L.; Farzadi, L.; Fathiazad, F.; Nouri, M. Anti-oxidative effects of citro flavonoids on spermatogenesis in rat. Afr. J. Pharm. Pharmacol. 2011, 5, 721–725. [Google Scholar] [CrossRef] [Green Version]
- Laoung-on, J.; Sudwan, P.; Saenphet, K. Effect of Moringa oleifera Lam. leaf tea on sperm concentration and sperm viability in male rats. In Proceedings of the 36th International Conference, Bangkok, Thailand, 26–29 March 2019; pp. 207–211. [Google Scholar]
- Khachitpongpanit, S.; Singhatong, S.; Sastraruji, T.; Jaikang, C. Phytochemical study of Ruellia tuberosa chloroform extract: Antioxidant and anticholinesterase activities. Der. Pharm. 2016, 8, 238–244. [Google Scholar]
- Van Tan, P. The Determination of Total Alkaloid, Polyphenol, Flavonoid and Saponin Contents of Pogang gan (Curcuma sp.). Int. J. Biol. 2018, 10, 42. [Google Scholar] [CrossRef]
- Huang, R.; Lu, Y.; Inbaraj, B.S.; Chen, B. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. J. Funct. Foods 2015, 12, 498–508. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Chaurasia, J.K.; Tiwari, K.N.; Singh, K. Antioxidant Property of Aerial Parts and Root of Phyllanthus fraternus Webster, an Important Medicinal Plant. Sci. World J. 2014, 2014, 692392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedi, A.; Parviz, M.; Karimian, S.M.; Rodsari, H.R.S. Aphrodisiac Activity of Aqueous Extract of Phoenix dactylifera Pollen in Male Rats. Adv. Sex. Med. 2013, 3, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Gauthaman, K.; Adaikan, P.; Prasad, R. Aphrodisiac properties of Tribulus Terrestris extract (Protodioscin) in normal and castrated rats. Life Sci. 2002, 71, 1385–1396. [Google Scholar] [CrossRef]
- Hull, E.; Lumley, L.; Matuszewich, L.; Dominguez, J.; Moses, J.; Lorrain, D. The roles of nitric oxide in sexual function of male rats. Neuropharmacology 1994, 33, 1499–1504. [Google Scholar] [CrossRef]
- Carro-Juárez, M.; Rodríguez-Santiago, M.G.; Franco, M.A.; Hueletl-Soto, M.E. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn (Zea mays) in Male Rats. J. Evid.-Based Complement. Altern. Med. 2017, 22, 637–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Chang, Q.; Xu, Z.-L.; Zhang, Z.-G. Stereological measurement of rat’s seminiferous tubule. Chin. Med. J. 2009, 122, 2643–2646. [Google Scholar] [PubMed]
- De Souza, D.B.; Ribeiro, C.T.; Costa, W.S.; Sampaio, F.J.B.; Pereira-Sampaio, M.A. Immediate and late effects of chronic stress in the testes of prepubertal and adult rats. Asian J. Androl. 2018, 20, 385–390. [Google Scholar] [CrossRef]
- Hess, R. Quantitative and Qualitative Characteristics of the Stages and Transitions in the Cycle of the Rat Seminiferous Epithelium: Light Microscopic Observations of Perfusion-Fixed and Plastic-Embedded Testes1. Biol. Reprod. 1990, 43, 525–542. [Google Scholar] [CrossRef] [Green Version]
Parameters | M. oleifera Leaf Tea (µg/mL) | Gallic Acid (µg/mL) |
---|---|---|
DPPH | 19.35 ± 0.43 * | 0.81 ± 0.00 |
ABTS | 4.12 ± 0.15 * | 28.42 ± 2.07 |
H2O2 | 3.59 ± 0.12 * | 16.23 ± 0.16 |
LPO | 37.82 ± 0.61 * | 17.98 ± 0.12 |
AGEs | 0.65 ± 0.00 * | 25.51 ± 0.08 |
Parameters | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
Courtship (×10 3 s) | 0.40 ± 0.07 a | 0.65 ± 0.06 b | 0.67 ± 0.09 b | 0.65 ± 0.07 b |
MF | 28.23 ± 11.54 | 1.88 ± 1.22 | 17.25 ± 7.56 | 25.13 ± 11.18 |
IF | 21.50 ± 10.50 | 0.13 ± 0.13 | 13.88 ± 7.72 | 19.75 ± 10.73 |
ML (×10 3 s) | 0.40 ± 0.02 | 1.03 ± 0.03 | 0.29 ± 0.02 | 0.31 ± 0.02 |
IL (×10 3 s) | 1.04 ± 0.03 | 1.58 ± 0.02 | 0.94 ± 0.03 | 0.59 ± 0.03 |
CE (IF/MF) | 0.37 ± 0.15 | 0.01 ± 0.01 | 0.40 ± 0.16 | 0.40 ± 0.13 |
10 min Interval Observation | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
1st | 208.25 ± 40.95 a | 325.00 ± 33.66 b | 340.75 ± 35.75 b | 351.25 ± 38.03 b |
2nd | 109.75 ± 24.17 c | 195.00 ± 19.66 d | 196.50 ± 25.57 d | 182.88 ± 21.49 d |
3rd | 85.88 ± 18.90 c | 133.13 ± 19.80 cd | 131.25 ± 39.69 cd | 120.50 ± 21.10 cd |
10 min Interval Observation | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
1st | 11.50 ± 5.23 | 1.25 ± 0.84 | 10.38 ± 3.34 | 12.88 ± 5.39 |
2nd | 8.50 ± 4.36 | 0.5 ± 0.38 | 4.63 ± 2.77 | 5.88 ± 3.25 |
3rd | 8.13 ± 4.01 | 0.13 ± 0.13 | 2.25 ± 1.97 | 6.38 ± 2.95 |
10 min Interval Observation | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
1st | 7.63 ± 4.39 | 0.13 ± 0.13 | 7.63 ± 3.70 | 9.13 ± 5.19 |
2nd | 7.25 ± 4.20 | 0.50 ± 0.00 | 4.12 ± 2.71 | 5.50 ± 3.17 |
3rd | 6.63 ± 3.82 | 0.00 ± 0.00 | 2.12 ± 1.82 | 5.13 ± 2.55 |
Parameters | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
Seminiferous tubule diameter (µm) | 333.10 ± 2.78 a | 376.00 ± 3.80 b | 350.75 ± 3.85 c | 358.40 ± 3.27 c |
Epithelium high (µm) | 59.25 ± 0.58 a | 64.31 ± 0.77 b | 64.16 ± 0.78 b | 62.82 ± 0.67 b |
Epithelium area (×103 µm2) | 40.75 ± 1.02 a | 54.50 ± 0.79 b | 50.02 ± 0.82 c | 49.94 ± 0.65 c |
Luminal area (×103 µm2) | 29.85 ± 0.78 a | 33.06 ± 0.79 b | 26.93 ± 0.68 c | 29.34 ± 0.71 a |
Parameters | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
Type A spermatogonia (×103 cells) | 0.37 ± 0.02 a | 0.45 ± 0.01 b | 0.46 ± 0.02 b | 0.45 ± 0.02 b |
Pachytene primary spermatocytes (×103 cells) | 0.57 ± 0.02 | 0.61 ± 0.03 | 0.62 ± 0.02 | 0.61 ± 0.01 |
Round spermatids (×103 cells) | 1.52 ± 0.17 | 1.72 ± 0.04 | 1.68 ± 0.06 | 1.69 ± 0.06 |
Total number of spermatogenic cells (×103 cells) | 2.46 ± 0.09 a | 2.93 ± 0.14 b | 2.75 ± 0.10 ab | 2.74 ± 0.09 ab |
Sertoli cell nuclei (×103 cells) | 0.17 ± 0.01 a | 0.21 ± 0.01 ab | 0.23 ± 0.01 b | 0.22 ± 0.01 b |
Parameter | Control (n = 8) | 0.55 mg/kg (n = 8) | 1.10 mg/kg (n = 8) | 2.20 mg/kg (n = 8) |
---|---|---|---|---|
Spermatogonia efficiency | 1.53 ± 0.06 a | 1.36 ± 0.05 b | 1.32 ± 0.03 b | 1.38 ± 0.06 b |
Meiotic index | 2.68 ± 0.08 | 2.86 ± 0.07 | 2.72 ± 0.05 | 2.78 ± 0.07 |
Sertoli efficiency | 8.63 ± 0.56 | 8.33 ± 0.50 | 7.26 ± 0.38 | 7.93 ± 0.55 |
Sertoli capacity | 14.00 ± 0.89 | 13.43 ± 0.81 | 11.86 ± 0.67 | 12.89 ± 0.90 |
SEI | 6.97 ± 0.52 | 7.62 ± 0.42 | 8.62 ± 0.47 | 8.02 ± 0.47 |
SSEI (105) | 5.43 ± 0.09 | 6.30 ± 0.13 | 7.29 ± 0.12 | 8.25 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laoung-on, J.; Saenphet, K.; Jaikang, C.; Sudwan, P. Effect of Moringa oleifera Lam. Leaf Tea on Sexual Behavior and Reproductive Function in Male Rats. Plants 2021, 10, 2019. https://doi.org/10.3390/plants10102019
Laoung-on J, Saenphet K, Jaikang C, Sudwan P. Effect of Moringa oleifera Lam. Leaf Tea on Sexual Behavior and Reproductive Function in Male Rats. Plants. 2021; 10(10):2019. https://doi.org/10.3390/plants10102019
Chicago/Turabian StyleLaoung-on, Jiraporn, Kanokporn Saenphet, Churdsak Jaikang, and Paiwan Sudwan. 2021. "Effect of Moringa oleifera Lam. Leaf Tea on Sexual Behavior and Reproductive Function in Male Rats" Plants 10, no. 10: 2019. https://doi.org/10.3390/plants10102019
APA StyleLaoung-on, J., Saenphet, K., Jaikang, C., & Sudwan, P. (2021). Effect of Moringa oleifera Lam. Leaf Tea on Sexual Behavior and Reproductive Function in Male Rats. Plants, 10(10), 2019. https://doi.org/10.3390/plants10102019