Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Pathogen Isolates
4.2. Testing Procedure
4.3. Evaluation
5. Conclusions
- The main problems of gene banks include mislabeling of accessions, heterogeneity resulting from mechanical admixtures or out-crossing during their multiplication and low germination. All these problems can adversely affect the results of research and breeding projects that are based on the use of gene bank resources. Therefore, the highest priority of plant gene banks curators must be to provide breeders and researchers with authentic seed of original genotypes.
- From all 172 accessions of the given CC, 860 homogeneous lines (SPPs) were created and their genetic basis of resistance to powdery mildew was studied.
- More than one genotype was identified among SPPs of 78 accessions (=45.3% heterogeneous accessions).
- Only 21 accessions (12.2%) were found to have data previously published on their resistance and the resistance genes identified here often differed.
- Selected lines (SPPs) of the CC accessions were multiplied in the field and stored in the gene bank, and are freely available for the use of breeders and researchers [38].
- Seeds of many accessions were requested from other gene banks and from each of them SPPs were also grown. These are studied in a similar way to assess their homogeneity and authenticity. Accessions whose authenticity is questionable will be replaced with genuine ones.
- Rules for replacing accessions with questionable identity and using genotypes derived from heterogeneous accessions require an international agreement.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dreiseitl, A. Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Ann. Appl. Biol. 2011, 159, 49–57. [Google Scholar] [CrossRef]
- Jørgensen, J.H. Erysiphe graminis, powdery mildew of cereals and grasses. In Advances in Plant Pathology; Academic Press: London, UK, 1988; Volume 6, pp. 137–157. [Google Scholar]
- Jensen, H.P.; Christensen, E.; Jørgensen, J.H. Powdery mildew resistance genes in 127 Northwest European spring barley varieties. Plant Breed. 1992, 108, 210–228. [Google Scholar] [CrossRef]
- Wolfe, M.S. The genetics of barley mildew. Rev. Plant Pathol. 1972, 51, 507–522. [Google Scholar]
- Jørgensen, J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994, 13, 97–119. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In Proceedings of the Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Roskilde, Denmark, 23–25 January 1990; Jørgensen, J.H., Ed.; Risø National Laboratory: Roskilde, Denmark, 1991; pp. 263–286. [Google Scholar]
- Honecker, L. Beiträge zum Mehltauproblem bei der Gerste mit besonderer Berücksichtigung der züchterischen Seite. Pflanzenbau 1931, 8, 78–84. [Google Scholar]
- Dreiseitl, A. Genotype heterogeneity in accessions of a winter barley core collection assessed on postulated specific powdery mildew resistance genes. Agronomy 2021, 11, 513. [Google Scholar] [CrossRef]
- Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes 2020, 11, 971. [Google Scholar] [CrossRef]
- Dreiseitl, A. Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminis f. sp. hordei in 2015–2017. Eur. J. Plant Pathol. 2019, 53, 801–811. [Google Scholar] [CrossRef]
- Sanchez-Martin, J.; Keller, B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr. Opin. Plant Biol. 2021, 62, 102053. [Google Scholar] [CrossRef]
- Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017, 8, 202. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Zavřelová, M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE 2018, 13, e0208719. [Google Scholar] [CrossRef] [PubMed]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars. Year-Book, 1978; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102. [Google Scholar]
- Dreiseitl, A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007, 126, 268–273. [Google Scholar] [CrossRef]
- Hiura, U.; Heta, H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of Erysiphe graminis hordei in Japan. Ber. Ohara Inst. Landwirtsch. Biol. 1955, 10, 135–156. [Google Scholar]
- Jørgensen, J.H.; Jensen, H.P. Powdery mildew resistance gene Ml-a8 (Reg1h8) in Northwest European spring barley varieties. Barley Genet. Newsl. 1983, 13, 51–52. [Google Scholar]
- Dreiseitl, A. Dissimilarity of barley powdery mildew resistances Heils Hanna and Lomerit. Czech J. Genet. Plant Breed. 2011, 47, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Sci. Rep. 2020, 10, 18930. [Google Scholar] [CrossRef] [PubMed]
- Beschreibende Sortenliste Getreide, Mais Ölfrüchte Leguminosen Hackfrüchte; Bundessortenamt: Hannover, Germany, 2003; pp. 43–44.
- Dreiseitl, A. Analysis of breeding Czechoslovak barley varieties for resistance to fungal diseases particularly powdery mildew. Poľnohospodárstvo 1993, 39, 467–475. [Google Scholar]
- Dreiseitl, A.; Jørgensen, J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000, 119, 203–209. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Yang, J. Powdery mildew resistance in a collection of Chinese barley varieties. Genet. Resour. Crop Evol. 2007, 54, 259–266. [Google Scholar] [CrossRef]
- Kølster, P.; Munk, L.; Stølen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986, 26, 903–907. [Google Scholar] [CrossRef]
- Dreiseitl, A. Identity of barley powdery mildew resistances Bw and Ru2. Czech J. Genet. Plant Breed. 2012, 48, 185–188. [Google Scholar] [CrossRef]
- Nover, I.; Lehmann, C.O. Resistenzeigenschaften in Gersten- und Weizen-sortiment Gatersleben 14. Prüfung von Sommergersten auf ihr Verhalten gegen Mehltau (Erysiphe graminis f. sp. DC. hordei Marchal). Kulturpflanze 1972, 19, 283–298. [Google Scholar] [CrossRef]
- Dreiseitl, A. Rare Virulences in a Central European Population of Blumeria graminis f. sp. hordei. Unpublished work. 2021. [Google Scholar]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghnoum, R.; Marcel, T.C.; Johrde, A.; Pecchioni, N.; Schweizer, P.; Niks, R.E. Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Mol. Plant Microbe Interact. 2010, 23, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spies, A.; Korzun, V.; Bayles, R.; Rajaraman, J.; Himmelbach, A.; Hedley, P.E.; Schweizer, P. Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. Front. Plant Sci. 2012, 2, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novakazi, F.; Krusell, L.; Jensen, J.D.; Orabi, J.; Jahoor, A.; Bengtsson, T. You had me at “MAGIC”!: Four barley MAGIC populations reveal novel resistance QTL for powdery mildew. Genes 2020, 11, 1512. [Google Scholar] [CrossRef]
- Von Bothmer, R.; Sato, K.; Komatsuda, T.; Yasuda, S.; Fischbeck, G. Diversity in Barley (Hordeum vulgare); von Bothmer, R., van Hintum, T., Knüpffer, H., Sato, K., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2003; Chapter 2; pp. 9–27. [Google Scholar]
- Xu, J.; Kasha, K.J. Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Theor. Appl. Genet. 1992, 84, 771–777. [Google Scholar] [CrossRef]
- Pickering, R.A.; Hill, A.M.; Michel, M.; Timmerman-Vaughan, G.M. The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor. Appl. Genet. 1995, 91, 1288–1292. [Google Scholar] [CrossRef]
- Hoseinzadeh, P.; Ruge-Wehling, B.; Schweizer, P.; Stein, N.; Pidon, H. High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front. Plant Sci. 2020, 11, 225. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019, 138, 840–845. [Google Scholar] [CrossRef]
- Flor, H.H. Host-parasite interaction in flax rust—Its genetics and other implications. Phytopathology 1955, 45, 680–685. [Google Scholar]
- Available online: https://www.gzr.cz/?lang=en (accessed on 15 July 2021).
Ml Gene(s) | Race I | J-462 | EA30 | PF512 | C-132 | 3-33 | 65 | GH | 54 | Z-6 | E-6 |
---|---|---|---|---|---|---|---|---|---|---|---|
none | 4 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a3 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 0 |
a6 | 0 | 4 | 2 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 |
a6, aLo | 0 | 0 | 2 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 |
a6, Dt6, g, h | 0 | 4 | 0 | 4 | 1–2 | 0 | 0 | 0 | 0 | 2 | 0 |
a6, h | 0 | 4 | 2 | 4 | 1–2 | 0 | 0 | 0 | 0 | 4 | 0 |
a6, h, Lu, ra, Ru2 | 0 | 4 | 0–1 | 2–3 | 1–2 | 0 | 0 | 0 | 0 | 1–2 | 0 |
a6, h, ra | 0 | 4 | 0–1 | 4 | 1–2 | 0 | 0 | 0 | 0 | 4 | 0 |
a6, IM9 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a6, ra | 0 | 4 | 0–1 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 |
a7 | 0 | 0 | 1–2 | 4 | 4 | 0 | 0 | 1–2 | 1–2 | 4 | 4 |
a7, h | 0 | 0 | 1–2 | 4 | 1–2 | 0 | 0 | 1–2 | 1–2 | 4 | 4 |
a8 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8, Dr2 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 2–3 | 4 | 4 | 4 |
a8, Dr2, ra | 0 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 2–3 | 4 | 4 | 4 |
a8, Dr2, ra, VIR | 0 | 4 | 0–1 | 1 | 4 | 4 | 0–1 | 2–3 | 4 | 4 | 4 |
a8, h | 0 | 4 | 4 | 4 | 1–2 | 1–2 | 4 | 1–2 | 1–2 | 4 | 4 |
a8, h, Ln, ra | 0 | 4 | 0–1 | 0–1 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 0–1 | 0–1 |
a8, h, Lu, Ru2 | 0 | 4 | 4 | 2–3 | 1–2 | 1–2 | 1–2 | 1–2 | 1–2 | 1–2 | 4 |
a8, h, ra | 0 | 4 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 4 | 4 |
a8, h, ra, Ru2 | 0 | 4 | 0–1 | 2–3 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 2–3 | 4 |
a8, He2 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2–3 | 4 | 4 |
a8, Lu, ra | 0 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 1–2 | 4 | 1–2 | 4 |
a8, ra | 0 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 4 | 4 | 4 | 4 |
a8, Ru2 | 0 | 4 | 4 | 2–3 | 4 | 4 | 2–3 | 2–3 | 2–3 | 2–3 | 4 |
a8, VIR | 0 | 4 | 4 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a12 | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 4 | 4 |
a12, aLo, g, Lu | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 1 | 1 | 1–2 | 4 |
a12, g | 0 | 4 | 0 | 4 | 4 | 0 | 0 | 1 | 1 | 4 | 4 |
a13 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 |
aLo | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
aLo, Dr2 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 2 | 4 | 4 | 4 |
aLo, Dr2, ra | 0 | 0 | 0–1 | 4 | 4 | 4 | 0–1 | 2 | 4 | 4 | 4 |
aLo, g | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 4 | 4 |
aLo, h | 0 | 0 | 4 | 4 | 1–2 | 1–2 | 4 | 1–2 | 1–2 | 4 | 4 |
aLo, h, Lu, ra | 0 | 0 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 1–2 | 4 |
aLo, h, Lu, ra, Ru2 | 0 | 0 | 0–1 | 2–3 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 1–2 | 4 |
aLo, h, ra | 0 | 0 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 4 | 4 |
aLo, Lu | 0 | 0 | 4 | 4 | 4 | 4 | 1–2 | 1–2 | 4 | 1–2 | 4 |
aLo, Lu, ra | 0 | 0 | 0–1 | 4 | 4 | 4 | 0–1 | 1–2 | 4 | 1–2 | 4 |
aLo, Lu, ra, Ru2 | 0 | 0 | 0–1 | 2–3 | 4 | 4 | 0–1 | 1–2 | 2–3 | 1–2 | 4 |
aLo, Lu, Ru2 | 0 | 0 | 4 | 2–3 | 4 | 4 | 1–2 | 1–2 | 2–3 | 1–2 | 4 |
aLo, ra | 0 | 0 | 0–1 | 4 | 4 | 4 | 0–1 | 4 | 4 | 4 | 4 |
aLo, ra, Ru2 | 0 | 0 | 0–1 | 2–3 | 4 | 4 | 0–1 | 4 | 2–3 | 2–3 | 4 |
aLo, Ru2 | 0 | 0 | 4 | 2–3 | 4 | 4 | 2–3 | 2–3 | 2–3 | 2–3 | 4 |
aLo, VIR | 0 | 0 | 4 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
at, h | 2 | 4 | 2 | 2 | 1–2 | 2 | 2 | 1–2 | 1–2 | 1–2 | 2 |
Ch | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ch, Dr2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 4 | 4 | 4 |
Ch, Dr2, Lu, Ru2 | 2 | 4 | 4 | 2–3 | 4 | 4 | 1–2 | 2 | 2–3 | 1–2 | 4 |
Ch, Dr2, ra | 2 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 2 | 4 | 4 | 4 |
Ch, Dr2, ra, VIR | 2 | 4 | 0–1 | 1 | 4 | 4 | 0–1 | 2 | 4 | 4 | 4 |
Ch, h, ra | 2 | 4 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 4 | 4 |
Ch, Lu, ra | 2 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 1–2 | 4 | 1–2 | 4 |
Ch, ra | 2 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 4 | 4 | 4 | 4 |
Ch, ra, VIR | 2 | 4 | 0–1 | 1 | 4 | 4 | 0–1 | 4 | 4 | 4 | 4 |
Ch, Ru2 | 2 | 4 | 4 | 2–3 | 4 | 4 | 2–3 | 2–3 | 2–3 | 2–3 | 4 |
Dr2, ra | 4 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 2 | 4 | 4 | 4 |
Dr2, ra, VIR | 4 | 4 | 0–1 | 1 | 4 | 4 | 0–1 | 2 | 4 | 4 | 4 |
g | 0 | 4 | 0 | 4 | 4 | 0 | 0 | 4 | 4 | 4 | 4 |
g, Ln | 0 | 4 | 0 | 0–1 | 4 | 0 | 0 | 4 | 0–1 | 0–1 | 0–1 |
h | 4 | 4 | 4 | 4 | 1–2 | 1–2 | 4 | 1–2 | 1–2 | 4 | 4 |
h, Lu, ra | 4 | 4 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 1–2 | 4 |
h, ra | 4 | 4 | 0–1 | 4 | 1–2 | 1–2 | 0–1 | 1–2 | 1–2 | 4 | 4 |
IM9, St | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
La, ra | 4 | 4 | 0–1 | 4 | 4 | 2–3 | 0–1 | 2–3 | 4 | 4 | 4 |
Lu, Ru2 | 4 | 4 | 4 | 2–3 | 4 | 4 | 1–2 | 1–2 | 2–3 | 1–2 | 4 |
ra | 4 | 4 | 0–1 | 4 | 4 | 4 | 0–1 | 4 | 4 | 4 | 4 |
Ru2 | 4 | 4 | 4 | 2–3 | 4 | 4 | 2–3 | 2–3 | 2–3 | 2–3 | 4 |
VIR | 4 | 4 | 4 | 1 | 3 | 4 | 4 | 3 | 3 | 4 | 4 |
Wo | (2) 2 | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) | (3) |
Ml Genes | Number | Ml Genes | Number |
---|---|---|---|
a3 | 7 | IM9 | 10 |
a6 | 72 | La | 9 |
a7 | 25 | Ln | 6 |
a8 | 154 | Lu | 92 |
a12 | 14 | ra | 220 |
a13 | 21 | Ru2 | 73 |
aLo | 237 | St | 5 |
at | 5 | VIR | 23 |
Ch | 112 | Wo | 5 |
Dr2 | 89 | Sum | 1363 |
Dt6 | 5 | ||
g | 38 | Effective (e) | 20 |
h | 139 | Unknown (u) | 28 |
He2 | 2 | none | 51 |
Accession | Ml Resistance Gene(s) | |
---|---|---|
Present Study | Previous Studies | |
Angela | h, Lu, ra | Bw (=Ru2), ra 1 |
Borwina | a8, h, ra, Ru2 | a62 |
Borwina | aLo, Lu, Ru2 | |
Capri | aLo, Lu, Ru2 | g2 |
Erfa | aLo, Lu | h, u2 |
Jutta | a8 | a12, g2 |
Leon | aLo, Dr2, ra | none2 |
Leon | a8 | |
Leon | none | |
Nelly | a13 | a7, Ab1 |
Pamina | aLo, Lu | a9, g2 |
Pamina | a6, ra | |
Vogelsanger Gold | a8 | a6, h, ra2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreiseitl, A.; Nesvadba, Z. Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection. Plants 2021, 10, 1988. https://doi.org/10.3390/plants10101988
Dreiseitl A, Nesvadba Z. Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection. Plants. 2021; 10(10):1988. https://doi.org/10.3390/plants10101988
Chicago/Turabian StyleDreiseitl, Antonín, and Zdeněk Nesvadba. 2021. "Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection" Plants 10, no. 10: 1988. https://doi.org/10.3390/plants10101988
APA StyleDreiseitl, A., & Nesvadba, Z. (2021). Powdery Mildew Resistance Genes in Single-Plant Progenies Derived from Accessions of a Winter Barley Core Collection. Plants, 10(10), 1988. https://doi.org/10.3390/plants10101988