Fast 1H-NMR Species Differentiation Method for Camellia Seed Oils Applied to Spanish Ornamentals Plants. Comparison with Traditional Gas Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oil Content
2.2. Quality Index Parameters
2.3. GC-FID Analysis
2.4. GC-MS Analysis
2.5. H-NMR Analysis
2.6. Principal Component Analysis (PCA)
2.6.1. Chromatographic Techniques
2.6.2. Proton Nuclear Magnetic Resonance Technique
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material
3.3. Camellia Seed Oil
3.4. Determination of Acid Value
3.5. Determination of Iodine Value
3.6. FAMEs Preparation and Analysis by GC-FID
3.7. FAMEs Preparation and Analysis by GC-MS
3.8. FA Analysis by 1H-NMR
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cothran, J.R. Treasured Ornamentals of Southern Gardens—Michaux’s Lasting Legacy. Castanea 2004, 69, 149–157. [Google Scholar] [CrossRef]
- Vela, P.; Salinero, C.; Sainz, M.J. Phenological growth stages of Camellia japonica. Ann. Appl. Biol. 2013, 162, 182–190. [Google Scholar] [CrossRef]
- Salinero, C.; Feás, X.; Mansilla, J.P.; Seijas, J.A.; Vázquez-Tato, M.P.; Vela, P.; Sainz, M.J. 1H-nuclear magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from Camellia japonica. Molecules 2012, 17, 6716–6727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinero, C.; Vela, P.; Castiñeiras, J.R.; Sainz, M.J. Development of a touristic route of winter gardens in Galicia (NW Spain) based on the Camellias: The Camellia Route. Int. Camellia J. 2014, 46, 38–39. [Google Scholar]
- Sahari, M.A.; Ataii, D.; Hamedi, M. Characteristics of tea seed oil in comparison with sunflower and olive oils and its effect as a natural antioxidant. J. Am. Oil Chem. Soc. 2004, 81, 4. [Google Scholar] [CrossRef]
- Wang, L.; Lee, F.S.C.; Wang, X.; He, Y. Feasibility study of quantifying and discriminating soybean oil adulteration in Camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem. 2006, 95, 529–536. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Lin, H.M.; Chen, X.; Xie, J.; Wang, P. Mechanochemical-Assisted Extraction and Antioxidant Activities of Kaempferol Glycosides from Camellia oleifera Abel. Meal. J. Agric. Food Chem. 2011, 59, 3986–3993. [Google Scholar] [CrossRef]
- Yu, Y.; Ren, S.; Tan, K. Study on climatic regionalization and layer and belt distribution of oiltea Camellia quality in China. J. Nat. Resour. 1999, 14, 123–127. [Google Scholar]
- Cheng, Y.T.; Wu, S.L.; Ho, C.Y.; Huang, S.M.; Cheng, C.L.; Yen, G.C. Beneficial Effects of Camellia Oil (Camellia oleifera Abel.) on Ketoprofen-Induced Gastrointestinal Mucosal Damage through Upregulation of HO-1 and VEGF. J. Agric. Food Chem. 2014, 62, 642–650. [Google Scholar] [CrossRef]
- Ruter, J.M. Nursery production of tea oil Camellia under different light levels. In Trends New Crop New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 222–224. [Google Scholar]
- Jung, E.; Lee, J.J.; Baek, J.; Jung, K.; Lee, J.J.; Huh, S.; Kim, S.; Koh, J.; Park, D. Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 2007, 112, 127–131. [Google Scholar] [CrossRef]
- Van Thang, H.; Van Do, T.; Sato, T.; Khai, N.Q. Tea oil Camellia plantation, an enormous potentiality for poverty reduction. Asian J. Agric. Ext. Econ. Sociol. 2014, 3, 1–12. [Google Scholar] [CrossRef]
- Zhong, H.Y.; Wan, C.N.; Xie, B.X. The present status and development tendency of utilization and processing in Camellia oil in China. China For. Sci. Technol. 2001, 15, 6–9. [Google Scholar]
- Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crop. Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Yan, C.; Liu, Y.; Cao, L.; Xia, M.; Zhang, Q.; Li, C.; Ruan, R. Oligosaccharide preparation from microwave-ethanol pretreated Camellia oleifera seed shell by enzymolysis of Agrocybe aegerita. Ind. Crops Prod. 2021, 161, 113155. [Google Scholar] [CrossRef]
- QingYun, L.; Le, Y.; YiMin, Q.; YanLin, L.; Min, C.; YouYan, L. The preparation of biodiesel from Camellia oil catalyzed by immobilized enzyme. Kezaisheng Nengyuan/Renew. Energy Resour. 2012, 30, 55–59. [Google Scholar]
- Zheng, J.; Liu, H.; Zhou, L. Evaluation of Camellia oleifera as a source for biodiesel production. In Proceedings of the 2011 International Conference on Electrical and Control Engineering, ICECE 2011—Proceedings, Yichang, China, 16–18 September 2011; pp. 1551–1554. [Google Scholar]
- Allen, C.B. Thermal degradation and biodiesel production using Camellia oleifera seed oil. Bachelor’s Thesis, University of Georgia, Athens, Georgia, 2015. [Google Scholar]
- Huang, Y.; Li, F.; Bao, G.; Wang, W.; Wang, H. Estimation of Kinematic Viscosity of Biodiesel Fuels from Fatty Acid Methyl Ester Composition and Temperature. J. Chem. Eng. Data 2020, 65, 2476–2485. [Google Scholar] [CrossRef]
- Yahaya, L.E.; Adebowale, K.O.; Olu-Owolabi, B.I.; Menon, A.R.R.; Arr, M. Compositional Analysis of Tea (Camellia sinensis) Seed Oil and Its Application. Int. J. Res. Chem. Environ. 2011, 1, 153–158. [Google Scholar]
- Poojary, M.M.; Passamonti, P. Interesterification of mafura butter and Camellia oil for cosmeceutical formulations: Chemical composition and physicochemical properties of products. Ind. Crops Prod. 2020, 147, 112178. [Google Scholar] [CrossRef]
- He, L.; Guo-Ying, Z.; Zhang, H.-Y.; Jun-Ang, L. Research progress on the health function of tea oil. J. Med. Plants Res. 2011, 5, 485–489. [Google Scholar] [CrossRef]
- Lee, C.P.; Yen, G.C. Antioxidant Activity and Bioactive Compounds of Tea Seed (Camellia oleifera Abel.) Oil. J. Agric. Food Chem. 2006, 54, 779–784. [Google Scholar] [CrossRef]
- Meng, X.H.; Li, N.; Zhu, H.T.; Wang, D.; Yang, C.R.; Zhang, Y.J. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. J. Agric. Food Chem. 2019, 67, 5318–5349. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Tokuda, H.; Ukiya, M.; Suzuki, T.; Enjo, F.; Koike, K.; Nikaido, T.; Nishino, H. 3-Epicabraleahydroxylactone and other triterpenoids from Camellia oil and their inhibitory effects on epstein-barr virus activation. Chem. Pharm. Bull. 2004, 52, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wang, C.; Chen, H.; Zhou, H.; Ye, J. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chem. 2013, 138, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Park, H.G.; Kim, C.R.; Lim, H.J.; Cho, K.M.; Choi, J.S.; Shin, D.H.; Shin, E.C. Quality evaluation on use of Camellia oil as an alternative method in dried seaweed preparation. Prev. Nutr. Food Sci. 2014, 19, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.L.; Wang, Y.M.; Wu, D.M.; Xu, M.; Chen, J.H. Comparisons of antioxidant activity and total phenolics of Camellia oleifera Abel fruit hull from different regions of China. J. Med. Plants Res. 2013, 4, 1407–1413. [Google Scholar] [CrossRef]
- Huang, J.; Ahrends, A.; He, J.; Gui, H.; Xu, J.; Mortimer, P.E. An evaluation of the factors influencing seed oil production in Camellia reticulata L. plants. Ind. Crop. Prod. 2013, 50, 797–802. [Google Scholar] [CrossRef]
- Amiri-Darban, N.; Nourmohammadi, G.; Rad, A.H.S.; Mirhadi, S.M.J.; Heravan, I.M. Potassium sulfate and ammonium sulfate affect quality and quantity of camelina oil grown with different irrigation regimes. Ind. Crop. Prod. 2020, 148, 112308. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Mäkinen, M.; Lampi, A.M. The Challenging Contribution of Hydroperoxides to the Lipid Oxidation Mechanism; Kamal-Eldin, A., Ed.; AOCS Press: Champaign, IL, USA, 2003; pp. 1–35. [Google Scholar] [CrossRef]
- Feás, X.; Estevinho, L.M.; Salinero, C.; Vela, P.; Sainz, M.J.; Vázquez-Tato, M.P.; Seijas, J.A. Triacylglyceride, Antioxidant and Antimicrobial Features of Virgin Camellia oleifera, C. reticulata and C. sasanqua Oils. Molecules 2013, 18, 4573–4587. [Google Scholar] [CrossRef] [PubMed]
- Su, M.H.; Shih, M.C.; Lin, K.H.H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef]
- Dais, P.; Hatzakis, E. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review. Anal. Chim. Acta 2013, 765, 1–27. [Google Scholar] [CrossRef]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Detection of Camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC–MS fingerprints. Food Chem. 2021, 352, 129422. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Wu, G.; Jin, Q.; Wang, X. Camellia oil authentication: A comparative analysis and recent analytical techniques developed for its assessment. A review. Trends Food Sci. Technol. 2020, 97, 88–99. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, T.; Wang, Y.; Zhou, B.; Yan, L.; Teng, L.; Wang, F.; Chen, L.; He, Y.; Guo, K. New method for effective identification of adulterated Camellia oil basing on Camellia oleifera-specific DNA. Arab. J. Chem. 2018, 11, 815–826. [Google Scholar] [CrossRef]
- Chu, X.; Wang, W.; Li, C.; Zhao, X.; Jiang, H. Identifying Camellia oil adulteration with selected vegetable oils by characteristic near-infrared spectral regions. J. Innov. Opt. Health Sci. 2018, 11, 1850006. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; Aparicio-Ruıíz, R. Authentication of vegetable oils by chromatographic techniques. J. Chromatogr. A 2000, 881, 93–104. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Verardo, V.; Contreras, M.D.M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar] [CrossRef]
- Li, X.; Kong, W.; Shi, W.; Shen, Q. A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils. Chemom. Intell. Lab. Syst. 2016, 155, 145–150. [Google Scholar] [CrossRef]
- Craske, J.D.; Bannon, C.D. Gas liquid chromatography analysis of the fatty acid composition of fats and oils: A total system for high accuracy. J. Am. Oil Chem. Soc. 1987, 64, 1413–1417. [Google Scholar] [CrossRef]
- Christie, W.W. Methylation of fatty acids. Lipid Technol. 1990, 2, 48–49. [Google Scholar]
- Igarashi, T.; Aursand, M.; Hirata, Y.; Gribbestad, I.S.; Wada, S.; Nonaka, M. Nondestructive quantitative determination of docosahexaenoic acid and n-3 fatty acids in fish oils by high-resolution 1H nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 737–748. [Google Scholar] [CrossRef]
- McKenzie, J.S.; Donarski, J.A.; Wilson, J.C.; Charlton, A.J. Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 59, 336–359. [Google Scholar] [CrossRef] [PubMed]
- Kritioti, A.; Menexes, G.; Drouza, C. Chemometric characterization of virgin olive oils of the two major Cypriot cultivars based on their fatty acid composition. Food Res. Int. 2018, 103, 426–437. [Google Scholar] [CrossRef]
- Popescu, R.; Costinel, D.; Dinca, O.R.; Marinescu, A.; Stefanescu, I.; Ionete, R.E. Discrimination of vegetable oils using NMR spectroscopy and chemometrics. Food Control. 2015, 48, 84–90. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Wu, D.; Xu, M.; Chen, J. Microwave-assisted extraction of polyphenols from Camellia oleifera fruit hull. Molecules 2011, 16, 4428–4437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Zhu, M.; Chen, Y.; Yan, X.; Chen, Q.; Wu, X.; Lin, J.; Xie, M. 1H NMR combined with chemometrics for the rapid detection of adulteration in Camellia oils. Food Chem. 2018, 242, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.T.; Shi, T.; Chen, Y.; Luo, S.H.; Leng, T.; Wang, Y.L.; Guo, C.; Xie, M.Y. Prediction of fatty acid composition in Camellia oil by 1H NMR combined with PLS regression. Food Chem. 2019, 279, 339–346. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.; Ryan, D.; Zhong, H. Camellia oil and tea oil. In Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 313–343. ISBN 978-1-893997-97-4. [Google Scholar]
- Liang, H.; Hao, B.-Q.; Chen, G.-C.; Ye, H.; Ma, J. Camellia as an Oilseed Crop. HortScience 2017, 52, 488–497. [Google Scholar] [CrossRef]
- Yang, C.; Liu, X.; Chen, Z.; Lin, Y.; Wang, S. Comparison of Oil Content and Fatty Acid Profile of Ten New Camellia oleifera Cultivars. J. Lipids 2016, 2016, 3982486. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, J.; Wang, M.; Zou, X.; Peng, B.; Yin, Y.; Deng, Z. A novel aqueous extraction for Camellia oil by emulsified oil: A frozen/thawed method. Eur. J. Lipid Sci. Technol. 2019, 121, 1800431. [Google Scholar] [CrossRef]
- World Health Organization. Codex Alimentarius Commission Standard for Olive Oils, and Olive Pomace Oils, Codex Stan 33-1981 rev. 2015; Codex Alimentarius International Food Standards; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Zeng, W.; Endo, Y. Lipid characteristics of Camellia seed oil. J. Oleo Sci. 2019, 68, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Ye, H.; Rui, Y.; Chen, G.; Zhang, N. Fatty acid composition of Camellia oleifera oil. J. Für Verbrauch. Leb. 2011, 6, 9–12. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.; Zhang, J.; Li, G.; Su, D.; Shan, Y. Authentication of Pure Camellia Oil by Using Near Infrared Spectroscopy and Pattern Recognition Techniques. J. Food Sci. 2012, 77, 7. [Google Scholar] [CrossRef]
- Lee, C.-P.; Shih, P.-H.; Hsu, C.-L.; Yen, G.-C. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem. Toxicol. 2007, 45, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Oğraş, Ş.Ş.; Kaban, G.; Kaya, M. The effects of geographic region, cultivar and harvest year on fatty acid composition of olive oil. J. Oleo Sci. 2016, 65, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Liu, T.; Yu, Y.; Song, G.; Hu, Y. Rapid Detection and Quantification by GC–MS of Camellia Seed Oil Adulterated with Soybean Oil. J. Am. Oil Chem. Soc. 2013, 90, 641–646. [Google Scholar] [CrossRef]
- Dodds, E.D.; McCoy, M.R.; Rea, L.D.; Kennish, J.M. Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs. electron impact mass spectrometry. Lipids 2005, 40, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Aro, A.; Becker, W.; Pederssen, J.I. Trans fatty acids in the Nordic countries. Food Nutr. Res. 2006, 50, 151–154. [Google Scholar] [CrossRef]
- Mannina, L.; D’Imperio, M.; Capitani, D.; Rezzi, S.; Guillou, C.; Mavromoustakos, T.; Vilchez, M.D.M.; Fernández, A.H.; Thomas, F.; Aparicio, R. 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J. Agric. Food Chem. 2009, 57, 11550–11556. [Google Scholar] [CrossRef]
- Šmejkalová, D.; Piccolo, A. High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chem. 2010, 118, 153–158. [Google Scholar] [CrossRef]
- Mannina, L.; Marini, F.; Gobbino, M.; Sobolev, A.P.; Capitani, D. NMR and chemometrics in tracing European olive oils: The case study of Ligurian samples. Talanta 2010, 80, 2141–2148. [Google Scholar] [CrossRef]
- Agiomyrgianaki, A.; Petrakis, P.V.; Dais, P. Influence of harvest year, cultivar and geographical origin on Greek extra virgin olive oils composition: A study by NMR spectroscopy and biometric analysis. Food Chem. 2012, 135, 2561–2568. [Google Scholar] [CrossRef] [PubMed]
- Cordella, C.B.Y.; Tekye, T.; Rutledge, D.N.; Leardi, R. A multiway chemometric and kinetic study for evaluating the thermal stability of edible oils by 1H NMR analysis: Comparison of methods. Talanta 2012, 88, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Holland, M.V.; Guillou, C. 1H-NMR fingerprinting to evaluate the stability of olive oil. Food Control. 2011, 22, 2041–2046. [Google Scholar] [CrossRef]
- Zhu, M.T.; Shi, T.; Luo, X.; Tang, L.J.; Liao, H.X.; Chen, Y. Determination of the Oxidative Stability of Camellia Oils Using a Chemometrics Tool Based on 1H NMR Spectra and α-Tocopherol Content. Anal. Chem. 2020, 92, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Barison, A.; Da Silva, C.W.P.; Campos, F.R.; Simonelli, F.; Lenz, C.A.; Ferreira, A.G. A simplemethodology for the determination of fatty acid composition in edible oils through 1H-NMR spectroscopy. Magn. Reson. Chem. 2010, 48, 642–650. [Google Scholar] [CrossRef]
- Sopelana, P.; Ibargoitia, M.L.; Guillén, M.D. Influence of fat and phytosterols concentration in margarines on their degradation at high temperature. A study by 1H Nuclear Magnetic Resonance. Food Chem. 2016, 197, 1256–1263. [Google Scholar] [CrossRef]
- Guillén, M.D.; Ruiz, A. High resolution 1H nuclear magnetic resonance in the study of edible oils and fats. Trends Food Sci. Technol. 2001, 12, 328–338. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef]
- Salinero, C.; Lema, M.J.; Mansilla, J.P. Manual Para el Cultivo de Camelia; Asociación Profesional Xóvenes Agricultores: Madrid, Spain, 2000; Volume 130, ISBN 84-699-3821-5. [Google Scholar]
- ISO. 660:2009 Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- ISO. 3961:2013 Animal and Vegetable Fats and Oils—Determination of Iodine Value; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Alonso, L.; Fraga, M.J.; Juárez, M. Determination of trans fatty acids and fatty acid profiles in margarines marketed in Spain. J. Am. Oil Chem. Soc. 2000, 77, 131–136. [Google Scholar] [CrossRef]
- International Olive Council. Preparation of the Fatty Acid Methyl Esters; COI/T.20/Doc. No 24; International Olive Council: Madrid, Spain, 2015. [Google Scholar]
- International Olive Council. Determination of Fatty Acid Methyl Esters by Gas. Chromatography; COI/T.20/Doc. No 33; International Olive Council: Madrid, Spain, 2015. [Google Scholar]
Sample | Species | Origin-Code | Harvest | Extraction Yield | Acid Value | Iodine Value |
---|---|---|---|---|---|---|
(w/w, %) | (mg KOH/g Oil) | (g I2/100 g Oil) | ||||
1 | C. japonica | Cuntis | Sep. | 26.0 | 5.61 ± 0.02 jk | 79.1 ± 0.5 de |
2 | C. japonica | EFA-826 | Sep. | 31.9 | 0.39 ± 0.00 b | 82.2 ± 0.0 g |
3 | C. japonica | EFA-942 | Sep. | 21.6 | 1.81 ± 0.02 e | 82.2 ± 0.2 g |
4 | C. japonica | Quiñones de León/O Castro-876 | Aug. | 24.0 | 5.55 ± 0.04 j | 83.2 ± 0.1 gh |
5 | C. japonica | Quiñones de León/O Castro-877 | Aug. | 24.0 | 5.66 ± 0.00 k | 85.6 ± 0.0 i |
6 | C. japonica | Pazo de Lourizán | Sep. | 28.4 | 5.60 ± 0.01 jk | 78.7 ± 0.4 cd |
7 | C. japonica | Pazo de Gandarón | Aug. | 23.2 | 4.52 ± 0.04 i | 76.5 ± 0.1 b |
8 | C. japonica | Castelo de Soutomaior | Sep. | 19.7 | 5.61 ± 0.00 jk | 80.9 ± 0.2 f |
9 | C. japonica | Pazo de Rubianes–Hob Hope | Nov. | 16.1 | 5.62 ± 0.00 jk | 79.4 ± 0.1 de |
10 | C. japonica | Pazo de Rubianes–Augusto Leal | Nov. | 17.5 | 5.63 ± 0.00 jk | 78.8 ± 0.5 cd |
11 | C. japonica | Pazo de Rubianes–Momoiro–Bokuhan | Nov. | 27.3 | 5.62 ± 0.00 jk | 80.1 ± 0.2 ef |
12 | C. japonica | Pazo de Rubianes–Bento de Amorim | Nov. | 16.1 | 5.62 ± 0.02 jk | 70.3 ± 0.4 a |
13 | C. japonica | Pazo de Rubianes–Royal Velvet | Nov. | 24.1 | 5.61 ± 0.00 jk | 83.1 ± 0.3 gh |
14 | C. sasanqua | EFA-826 | Sep. | 30.1 | 0.52 ± 0.00 c | 89.8 ± 0.1 j |
15 | C. sasanqua | EFA-942 | Sep. | 25.0 | 1.07 ± 0.00 d | 82.3 ± 0.0 g |
16 | C. sasanqua | Pazo de A Saleta | Oct. | 22.1 | 2.17 ± 0.01 f | 92.0 ± 0.5 k |
17 | C. sasanqua | Pazo de Rubianes | Nov. | 26.1 | 3.41 ± 0.06 g | 83.9 ± 0.4 h |
18 | C. reticulata | San Vicente do Mar | Oct. | 16.6 | 3.68 ± 0.01 h | 77.2 ± 0.3 b |
19 | C. hiemalis | Pazo de Rubianes | Nov. | 22.6 | 5.64 ± 0.00 jk | 83.0 ± 0.4 gh |
Sample | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | ∑SFA | MUFA | PUFA | ∑UFA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.06 ± 0.01 bc | 8.24 ± 0.26 a | 0.10 ± 0.02 a–c | 2.05 ± 0.05 b–d | 82.20 ± 0.66 f–h | 5.56 ± 0.12 c–e | 0.29 ± 0.02 a–c | 0.05 ± 0.01 ab | 0.29 ± 0.02 ab | 10.40 | 82.59 | 5.85 | 88.45 |
2 | 0.06 ± 0.01 bc | 9.17 ± 0.05 d–f | 0.10 ± 0.01 a–c | 2.43 ± 0.09 g–i | 81.59 ± 0.48 e–h | 5.12 ± 0.09 b–d | 0.23 ± 0.02 a | 0.05 ± 0.01 ab | 0.57 ± 0.07 f | 11.70 | 82.26 | 5.35 | 87.61 |
3 | 0.04 ± 0.01 a | 9.46 ± 0.23 e–g | 0.12 ± 0.01 a–c | 2.36 ± 0.08 f–h | 80.96 ± 0.47 c–g | 5.65 ± 0.06 e | 0.31 ± 0.03 a–d | 0.04 ± 0.01 a | 0.36 ± 0.03 b–d | 11.90 | 81.44 | 5.96 | 87.40 |
4 | 0.07 ± 0.01 c | 9.80 ± 0.11 gh | 0.09 ± 0.01 ab | 2.14 ± 0.09 c–f | 81.07 ± 0.56 d–g | 6.41 ± 0.07 f | 0.30 ± 0.04 a–d | 0.08 ± 0.01 bc | 0.37 ± 0.03 b–d | 12.09 | 81.53 | 6.71 | 88.24 |
5 | 0.07 ± 0.01 c | 9.53 ± 0.08 fg | 0.12 ± 0.01 a–c | 2.11 ± 0.06 c–e | 81.12 ± 0.47 d–g | 6.37 ± 0.07 f | 0.25 ± 0.03 ab | 0.07 ± 0.01 a–c | 0.24 ± 0.03 a | 11.78 | 81.48 | 6.62 | 88.10 |
6 | 0.06 ± 0.01 bc | 9.26 ± 0.05 d–f | 0.13 ± 0.01 bc | 2.29 ± 0.07 e–g | 81.06 ± 0.56 d–g | 5.61 ± 0.05 de | 0.32 ± 0.02 a–d | 0.07 ± 0.01 a–c | 0.33 ± 0.02 a–c | 11.67 | 81.51 | 5.93 | 87.44 |
7 | 0.05 ± 0.01 ab | 10.41 ± 0.22 ij | 0.18 ± 0.02 d | 2.28 ± 0.07 defg | 78.88 ± 0.33 b–d | 7.12 ± 0.09 gh | 0.26 ± 0.04 abc | 0.05 ± 0.01 ab | 0.28 ± 0.02 ab | 12.78 | 79.33 | 7.38 | 86.72 |
8 | 0.05 ± 0.01 ab | 9.05 ± 0.05 c–e | 0.10 ± 0.01 a–c | 2.46 ± 0.05 g–i | 79.18 ± 0.59 b–d | 7.43 ± 0.06 h | 0.32 ± 0.03 a–d | 0.09 ± 0.01 c | 0.53 ± 0.03 ef | 11.64 | 79.81 | 7.75 | 87.56 |
9 | 0.05 ± 0.01 ab | 8.21 ± 0.11 a | 0.12 ± 0.01 a–c | 1.85 ± 0.05 ab | 83.04 ± 0.54 gh | 5.08 ± 0.08 bc | 0.35 ± 0.03 b–e | 0.05 ± 0.01 ab | 0.44 ± 0.03 c–e | 10.15 | 83.59 | 5.43 | 89.02 |
10 | 0.05 ± 0.01 ab | 9.43 ± 0.11 e–g | 0.12 ± 0.01 a–c | 2.61 ± 0.04 ij | 81.65 ± 0.64 e–h | 5.83 ± 0.08 e | 0.33 ± 0.02 a–d | 0.06 ± 0.01 a–c | 0.44 ± 0.04 c–e | 12.14 | 82.20 | 6.16 | 88.36 |
11 | 0.07 ± 0.01 c | 9.13 ± 0.07 def | 0.14 ± 0.01 cd | 1.72 ± 0.06 a | 82.58 ± 0.80 f–h | 5.05 ± 0.14 b | 0.25 ± 0.04 ab | 0.06 ± 0.01 a–c | 0.53 ± 0.03 ef | 10.98 | 83.25 | 5.30 | 88.55 |
12 | 0.06 ± 0.01 bc | 8.67 ± 0.08 bc | 0.10 ± 0.01 a–c | 3.88 ± 0.09 m | 83.62 ± 1.26 h | 3.91 ± 0.06 a | 0.32 ± 0.03 a–d | 0.08 ± 0.01 c | 0.44 ± 0.04 c–e | 12.69 | 84.16 | 4.23 | 88.39 |
13 | 0.06 ± 0.01 bc | 8.99 ± 0.10 b–d | 0.12 ± 0.01 a–c | 2.73 ± 0.03 j | 82.86 ± 1.16 gh | 5.06 ± 0.07 bc | 0.28 ± 0.06 a–c | 0.06 ± 0.01 a–c | 0.44 ± 0.04 c–e | 11.83 | 83.41 | 5.34 | 88.76 |
14 | 0.05 ± 0.01 abc | 8.59 ± 0.16 ab | 0.07 ± 0.01 a | 2.12 ± 0.07 c–e | 80.54 ± 0.46 c–f | 6.82 ± 0.12 fg | 0.30 ± 0.01 a–d | 0.06 ± 0.01 a–c | 0.57 ± 0.05 f | 10.82 | 81.18 | 7.12 | 88.30 |
15 | 0.05 ± 0.01 abc | 8.86 ± 0.10 b–d | 0.10 ± 0.01 a–c | 2.57 ± 0.05 h–j | 79.00 ± 0.48 b–d | 7.44 ± 0.09 h | 0.45 ± 0.04 ef | 0.05 ± 0.01 ab | 0.82 ± 0.05 g | 11.53 | 79.93 | 7.89 | 87.81 |
16 | 0.06 ± 0.01 bc | 9.05 ± 0.08 c–e | 0.13 ± 0.02 bc | 2.48 ± 0.07 g–i | 78.68 ± 0.53 bc | 8.00 ± 0.09 i | 0.31 ± 0.03 a–d | 0.08 ± 0.01 bc | 0.52 ± 0.03 ef | 11.66 | 79.33 | 8.31 | 87.64 |
17 | 0.07 ± 0.01 c | 10.77 ± 0.09 j | 0.11 ± 0.02 a–c | 1.95 ± 0.12 bc | 79.36 ± 1.20 b–e | 6.95 ± 0.13 gh | 0.36 ± 0.05 c–e | 0.06 ± 0.01 abc | 0.43 ± 0.03 c–e | 12.84 | 79.90 | 7.31 | 87.22 |
18 | 0.05 ± 0.01 ab | 10.32 ± 0.11 i | 0.11 ± 0.01 a–c | 3.17 ± 0.07 k | 77.97 ± 0.76 b | 7.18 ± 0.07 gh | 0.41 ± 0.04 d–f | 0.04 ± 0.01 a | 0.35 ± 0.04 a–c | 13.58 | 78.43 | 7.59 | 86.01 |
19 | 0.06 ± 0.01 bc | 10.20 ± 0.11 hi | 0.13 ± 0.01 bc | 1.85 ± 0.06 ab | 79.23 ± 0.51 b–d | 7.12 ± 0.10 gh | 0.36 ± 0.01 c–e | 0.07 ± 0.01 abc | 0.44 ± 0.04 c–e | 12.17 | 79.79 | 7.49 | 87.28 |
Scheme 16. | C16:0 | C18:0 | C18:1 ω-9 cis | C18:1 ω-9 trans | C18:2 ω-6,-9 | C20:1 ω-9 | ∑SFA | MUFA | PUFA | ∑UFA |
---|---|---|---|---|---|---|---|---|---|---|
1 | 6.69 ± 0.00 c | 1.66 ± 0.02 ef | 87.1 ± 0.1 gh | 0.72 ± 0.03 d–f | 3.59 ± 0.02 d | 0.25 ± 0.01 ab | 8.35 | 88.07 | 3.59 | 91.65 |
2 | 7.44 ± 0.07 fg | 1.94 ± 0.04 ij | 86.5 ± 0.1 fg | 0.76 ± 0.04 d–g | 3.08 ± 0.03 bc | 0.24 ± 0.02 bc | 9.38 | 87.53 | 3.08 | 90.62 |
3 | 6.84 ± 0.03 cd | 1.64 ± 0.02 d–f | 87.7 ± 0.1 hi | 0.66 ± 0.03 c–e | 3.12 ± 0.05 bc | ND | 8.48 | 88.43 | 3.12 | 91.52 |
4 | 7.80 ± 0.06 hi | 1.68 ± 0.01 e–g | 85.3 ± 0.2 c–e | 0.92 ± 0.06 h | 4.06 ± 0.09 ef | 0.22 ± 0.00 a | 9.48 | 86.43 | 4.06 | 90.52 |
5 | 7.51 ± 0.03 gh | 1.58 ± 0.01 de | 86.1 ± 0.1 ef | 0.90 ± 0.07 gh | 3.75 ± 0.04 de | 0.20 ± 0.01 a | 9.09 | 87.17 | 3.75 | 90.91 |
6 | 8.04 ± 0.17 i | 1.49 ± 0.02 cd | 85.5 ± 0.3 de | 0.74 ± 0.01 d–f | 4.27 ± 0.09 f–h | ND | 9.53 | 86.20 | 4.27 | 90.47 |
7 | 8.46 ± 0.01 j | 0.89 ± 0.02 a | 84.6 ± 0.1 c | 0.89 ± 0.02 gh | 4.35 ± 0.06 f–h | ND | 9.35 | 85.53 | 4.35 | 89.86 |
8 | 6.92 ± 0.19 c–e | 1.86 ± 0.03 g–i | 87.6 ± 0.4 hi | 0.66 ± 0.03 c–e | 3.01 ± 0.14 b | ND | 8.78 | 88.23 | 3.01 | 91.22 |
9 | 6.07 ± 0.02 a | 1.27 ± 0.01 b | 89.2 ± 0.1 j | 0.62 ± 0.04 c–e | 2.79 ± 0.06 b | ND | 7.34 | 89.87 | 2.79 | 92.66 |
10 | 7.45 ± 0.11 fg | 2.05 ± 0.08 j | 85.5 ± 0.6 de | 1.18 ± 0.06 i | 3.49 ± 0.39 cd | 0.29 ± 0.01 c | 9.50 | 87.03 | 3.49 | 90.50 |
11 | 7.17 ± 0.08 ef | 1.39 ± 0.05 bc | 87.4 ± 0.3 hi | 0.80 ± 0.06 f–h | 2.92 ± 0.11 b | 0.34 ± 0.01 c | 8.56 | 88.50 | 2.92 | 91.44 |
12 | 6.38 ± 0.05 b | 2.76 ± 0.05 l | 87.9 ± 0.2 i | 0.92 ± 0.01 gh | 2.08 ± 0.09 a | ND | 9.14 | 88.77 | 2.08 | 90.86 |
13 | 7.06 ± 0.11 de | 2.02 ± 0.03 j | 87.1 ± 0.3 g–i | 0.77 ± 0.02 e–h | 3.02 ± 0.14 b | ND | 9.08 | 87.90 | 3.02 | 90.92 |
14 | 7.11 ± 0.10 de | 1.78 ± 0.03 f–h | 85.6 ± 0.2 de | 0.53 ± 0.01 a–c | 4.54 ± 0.05 gh | 0.41 ± 0.00 d | 8.89 | 86.57 | 4.54 | 91.11 |
15 | 7.17 ± 0.03 e | 1.97 ± 0.01 j | 85.2 ± 0.1 cd | 0.57 ± 0.00 b–d | 4.70 ± 0.03 h | 0.38 ± 0.00 d | 9.14 | 86.13 | 4.70 | 90.86 |
16 | 7.50 ± 0.11 gh | 1.84 ± 0.04 g–i | 83.4 ± 0.3 b | 0.42 ± 0.04 a | 6.53 ± 0.15 i | 0.33 ± 0.01 c | 9.34 | 84.13 | 6.53 | 90.66 |
17 | 8.39 ± 0.06 j | 1.46 ± 0.05 bc | 85.2 ± 0.3 cd | 0.75 ± 0.05 d–h | 4.21 ± 0.20 fg | ND | 9.85 | 85.93 | 4.21 | 90.15 |
18 | 9.32 ± 0.07 k | 2.64 ± 0.02 kl | 83.3 ± 0.2 b | 0.46 ± 0.02 ab | 4.03 ± 0.15 ef | 0.21 ± 0.01 a | 11.96 | 84.00 | 4.03 | 88.04 |
19 | 7.84 ± 0.07 i | 1.28 ± 0.03 b | 86.0 ± 0.1 ef | 0.65 ± 0.04 c–f | 4.23 ± 0.03 fg | ND | 9.12 | 86.67 | 4.23 | 90.88 |
Sample | Species | C18:1 (MUFA) | C18:2 | C18:3 | ∑SFA | PUFA | ∑UFA |
---|---|---|---|---|---|---|---|
1 | C. japonica | 89.9 ± 0.4 f | 5.78 ± 0.19 b–e | ND | 12.36 | 5.78 | 95.63 |
2 | C. japonica | 86.3 ± 0.4 e | 4.33 ± 0.00 a | ND | 12.92 | 4.33 | 90.63 |
3 | C. japonica | 86.0 ± 0.2 de | 5.33 ± 0.00 bc | ND | 12.64 | 5.33 | 91.35 |
4 | C. japonica | 94.3 ± 0.3 g | 7.33 ± 0.00 hi | ND | 15.25 | 7.33 | 101.63 |
5 | C. japonica | 96.4 ± 0.6 hi | 7.33 ± 0.00 hi | ND | 14.75 | 7.33 | 103.69 |
6 | C. japonica | 86.4 ± 0.2 e | 7.11 ± 0.19 g–i | ND | 13.75 | 7.11 | 93.46 |
7 | C. japonica | 85.6 ± 0.9 de | 6.67 ± 0.33 e–h | ND | 14.25 | 6.67 | 92.30 |
8 | C. japonica | 89.6 ± 0.3 f | 5.33 ± 0.00 bc | ND | 13.36 | 5.33 | 94.96 |
9 | C. japonica | 90.4 ± 0.7 f | 5.22 ± 0.19 b | ND | 11.64 | 5.22 | 95.58 |
10 | C. japonica | 98.1 ± 0.8 i | 6.33 ± 0.33 d–g | ND | 14.69 | 6.33 | 104.41 |
11 | C. japonica | 97.8 ± 0.3 i | 5.11 ± 0.19 ab | ND | 13.63 | 5.11 | 102.91 |
12 | C. japonica | 94.5 ± 1.0 gh | 5.11 ± 0.19 ab | ND | 16.02 | 5.11 | 99.63 |
13 | C. japonica | 93.3 ± 0.4 g | 5.56 ± 0.19 b–d | ND | 13.91 | 5.56 | 98.85 |
14 | C. sasanqua | 84.7 ± 0.1 c–e | 6.67 ± 0.00 f–h | ND | 12.25 | 6.67 | 91.41 |
15 | C. sasanqua | 83.6 ± 0.1 c | 7.67 ± 0.00 i | ND | 12.86 | 7.67 | 91.24 |
16 | C. sasanqua | 85.7 ± 0.2 de | 10.33 ± 0.00 j | ND | 13.80 | 10.3 | 96.08 |
17 | C. sasanqua | 84.1 ± 0.3 cd | 7.33 ± 0.00 hi | ND | 14.36 | 7.33 | 91.41 |
18 | C. reticulata | 81.0 ± 0.5 b | 7.11 ± 0.19 g–i | ND | 17.25 | 7.11 | 88.07 |
19 | C. hiemalis | 91.1 ± 1.7 f | 7.89 ± 0.77 i | ND | 14.58 | 7.89 | 98.96 |
20 * | C. japonica | 80.7 | 6.65 | 0.29 | 12.4 | 6.94 | 87.64 |
21 ** | C. sasanqua | 82.3 | 6.20 | 0.30 | 11.2 | 6.50 | 88.80 |
22 ** | C. reticulata | 84.5 | 5.69 | 0.26 | 9.58 | 5.95 | 90.42 |
23 ** | C. oleifera | 83.8 | 7.78 | 0.41 | 8.04 | 8.19 | 91.96 |
Peak | δ (ppm) | Multiplicity | Functional Group | Compound |
---|---|---|---|---|
1 | 5.32 | m | –CH=CH– | acyl group |
2 | 5.25 | m | –CH–O–COR | glyceryl group |
3 | 4.27 | dd | –CH2–O–COR | glyceryl group |
4 | 2.74 | t | =CH–CH2–CH= | acyl group (linoleic and linolenic group) |
5 | 2.29 | dt | –OCO–CH2– | acyl group |
6 | 2.01 | m | –CH2–CH=CH– | acyl group |
7 | 1.61 | m | –OCO–CH2–CH2– | acyl group |
8 | 1.29 | m | –(CH2)n– | acyl group |
9 | 0.98 | t | –CH=CH–CH2–CH3 | linoleic acyl group |
9 | 0.88 | t | –CH2–CH2–CH2–CH3 | saturated oleic except linoleic acyl group |
Fatty Acid | Label | 1H NMR Signal | Reference Area (Signal) | Subtration |
---|---|---|---|---|
Linolenic | E | 0.98 ppm | 22.2 | -- |
Linoleic | A | 2.74 ppm | 33.3 | 2 × linoleic |
Oleic | C | 2.01 ppm | 16.7 | linolenic and linoleic |
Saturated | B | 2.29 ppm | 33.3 | linolenic + linoleic + oleic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreiro, R.; Rodríguez-Solana, R.; Alonso, L.; Salinero, C.; López Sánchez, J.I.; Pérez-Santín, E. Fast 1H-NMR Species Differentiation Method for Camellia Seed Oils Applied to Spanish Ornamentals Plants. Comparison with Traditional Gas Chromatography. Plants 2021, 10, 1984. https://doi.org/10.3390/plants10101984
Barreiro R, Rodríguez-Solana R, Alonso L, Salinero C, López Sánchez JI, Pérez-Santín E. Fast 1H-NMR Species Differentiation Method for Camellia Seed Oils Applied to Spanish Ornamentals Plants. Comparison with Traditional Gas Chromatography. Plants. 2021; 10(10):1984. https://doi.org/10.3390/plants10101984
Chicago/Turabian StyleBarreiro, Rocío, Raquel Rodríguez-Solana, Leocadio Alonso, Carmen Salinero, José Ignacio López Sánchez, and Efrén Pérez-Santín. 2021. "Fast 1H-NMR Species Differentiation Method for Camellia Seed Oils Applied to Spanish Ornamentals Plants. Comparison with Traditional Gas Chromatography" Plants 10, no. 10: 1984. https://doi.org/10.3390/plants10101984
APA StyleBarreiro, R., Rodríguez-Solana, R., Alonso, L., Salinero, C., López Sánchez, J. I., & Pérez-Santín, E. (2021). Fast 1H-NMR Species Differentiation Method for Camellia Seed Oils Applied to Spanish Ornamentals Plants. Comparison with Traditional Gas Chromatography. Plants, 10(10), 1984. https://doi.org/10.3390/plants10101984