Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality in High Andean Livestock Micro-Watersheds in Northern Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Design
2.3. Base Map and Satellite Framework
2.4. Micro-Watershed Delimitation
2.5. Micro–Watershed Priorization Model
2.6. Land Cover and Land Use (LC/LU) Classification
2.7. Geomorphological Classification of Fluvial Systems
2.8. Hydrogeomorphological Quality Evaluation
3. Results and Discussion
3.1. Morphometry and Preliminary Priority Ranges (PPR) of the Micro-Watersheds
3.2. Micro-Watershed Prioritization using PCWSA
3.3. Land Cover/Land Use (LC/LU)
3.4. Fluvial Typology and Functional Sectors (FS)
3.5. Hydromorphological Quality Determination using IHG
3.6. Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. El Estado de los Recursos de Tierras y aguas del Mundo para la Alimentación y la Agricultura. La Gestión de los Sistemas en Situación de Riesgo; FAO: Roma, Italy, 2012; ISBN 9789253066148. [Google Scholar]
- ONU. La Situación Demográfica en el Mundo, Informe Conciso; ONU: New York, NY, USA, 2014; pp. 1–38. Available online: https://shop.un.org/books/informe-conciso-sobre-la-situacion-43680 (accessed on 6 May 2020).
- FAO. Huella de agua de la industria bananera. In Proceedings of the Foro Mundial Bananero; FAO: Roma, Italy, 2017; p. 5. Available online: http://www.fao.org/3/a-i6914s.pdf (accessed on 6 May 2020).
- PNUMA. Estado del Medio Ambiente en ALC. In Perspectivas del Medio Ambiente: America Latina y El Caribe—GEO ALC 3; PNUMA: Panamá, Panamá, 2010; pp. 59–182. ISBN 9789280729566. [Google Scholar]
- Guevara, P.E.; De La Torre, V.A.A. La situación de los recursos hídricos en el Perú. In Gestión Integrada de los Recursos Hídricos por Cuenca y Cultura del Agua; Guevara Pérez, E., De La Torre Villanueva, A.A., Eds.; ANA: Lima, Perú, 2019; pp. 715–770. ISBN 9786124273278. [Google Scholar]
- Kámiche, Z.J. Agua: Buscando Mecanismos para Lograr un Manejo Eficiente del agua. En Agenda 2011; Universidad del Pacífico: Lima, Perú, 2011; pp. 1–4. [Google Scholar]
- ANA. Política y Estrategia Nacional de Recursos Hídricos; ANA: Lima, Perú, 2015. [Google Scholar]
- Ballarín Ferrer, D.; Rodríguez Muñoz, I. Hidromorfología Fluvial: Algunos Apuntes Aplicados a la Restauración de Ríos en la Cuenca del Duero; Confederación Hidrográfica del Duero (Ministerio de Agricultura, Alimentación y Medio Ambiente): Valladolid, Spain, 2013. [Google Scholar]
- Aguiar, F.C.; Ferreira, M.T. Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: A review. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2013, 147, 1107–1119. [Google Scholar] [CrossRef]
- Lozanovska, I.; Ferreira, M.; Aguiar, F.C. Functional diversity assessment in riparian forests—Multiple approaches and trends: A review. Ecol. Indic. 2018, 95, 781–793. [Google Scholar] [CrossRef]
- Braatne, J.H.; Rood, S.B.; Goater, L.A.; Blair, C.L. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon. Environ. Manag. 2007, 41, 267–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atlas Merrill, M. The Effects of Culverts and Bridges on Stream Geomorphology. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2005. Available online: https://repository.lib.ncsu.edu/handle/1840.16/1476 (accessed on 6 May 2020).
- Gregory, K.; Brookes, A. Hydrogeomorphology downstream from bridges. Appl. Geogr. 1983, 3, 145–159. [Google Scholar] [CrossRef]
- Petts, G.; Gurnell, A. 13.7 Hydrogeomorphic Effects of Reservoirs, Dams, and Diversions. Treatise Geomorphol. 2013, 13, 96–114. [Google Scholar] [CrossRef]
- Vietz, G.J.; Walsh, C.J.; Fletcher, T.D. Urban hydrogeomorphology and the urban stream syndrome. Prog. Phys. Geogr. Earth Environ. 2015, 40, 480–492. [Google Scholar] [CrossRef]
- Mossa, J.; James, L.; James, A. 13.6 Impacts of Mining on Geomorphic Systems. Treatise Geomorphol. 2013, 13, 74–95. [Google Scholar] [CrossRef]
- Roy, S.; Sahu, A.S. Potential interaction between transport and stream networks over the lowland rivers in Eastern India. J. Environ. Manag. 2017, 197, 316–330. [Google Scholar] [CrossRef]
- Butler, D. Grazing Influences on Geomorphic Systems. Treatise Geomorphol. 2013, 13, 68–73. [Google Scholar] [CrossRef]
- Ollero, A.O.; Ferrer, D.B.; Bea, E.D.; Mur, D.M.; Fabre, M.S.; Naverac, V.A.; Arnedo, M.T.E.; García, D.G.; De Matauco, A.I.G.; Gil, L.S. Un índice hidrogeomorfológico (IHG) para la evaluación del estado ecológico de sistemas fluviales. Geographicalia 2007, 52, 113–141. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, E.M. Geomorfología Fluvial I. In Geomorfología; Pearson/Prentice Hall: Madrid, Spain, 2008; pp. 275–302. ISBN 9788483223895. [Google Scholar]
- Elosegi, A.; Sabater, S. Effects of hydromorphological impacts on river ecosystem functioning: A review and suggestions for assessing ecological impacts. Hydrobiologia 2012, 712, 129–143. [Google Scholar] [CrossRef]
- Royall, D. 13.3 Land-Use Impacts on the Hydrogeomorphology of Small Watersheds. Treatise Geomorphol. 2013, 13, 28–47. [Google Scholar] [CrossRef]
- García-Pérez, A.; Rubio, R.K.B.; Meléndez, M.J.B.; Corroto, F.; Rascón, J.; Oliva, M. Estudio ecológico de los bosques homogéneos en el distrito de Molinopampa, Región Amazonas. Rev. Investig. Agroproducción Sustentable 2018, 2, 73–79. [Google Scholar]
- Briceño, N.B.R.; Castillo, E.B.; Maicelo-Quintana, J.; Oliva-Cruz, M.; López, R.S. Deforestación en la Amazonía peruana: Índices de cambios de cobertura y uso del suelo basado en SIG. BAGE 2019, 81, 1–34. [Google Scholar] [CrossRef]
- Salas, L.R.; Barboza, C.E.; Rojas, B.N.B.; Rodriguez, C.N.Y. Deforestación en el área de conservación privada Tilacancha: Zona de recarga hídrica y de abastecimiento de agua para Chachapoyas. Rev. Investig. Agroproducción Sustentable 2018, 2, 54–64. [Google Scholar]
- Salas, L.R.; Barboza, C.E.; Oliva, C.M. Dinámica multitemporal de índices de deforestación en el distrito de Florida, departamento de Amazonas, Perú. Revista INDES 2014, 2, 18–27. [Google Scholar]
- Mendoza, C.M.E.; Salas, L.R.; Barboza, C.E. Análisis multitemporal de la deforestación usando la clasificación basada en objetos, distrito de Leymebamba (Perú). Rev. INDES 2015, 3, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, P.H.; Maicelo, Q.J.L.; Collazos, S.R.; Oliva, C.S.M. Selección, identificación y distribución de malezas (adventicias), en praderas naturales de las principales microcuencas ganaderas de la región Amazonas. Revista INDES 2014, 2, 71–79. [Google Scholar]
- Oliva, C.S.M.; Maicelo, Q.J.L.; Torres, G.C.; Bardales, E.W. Propiedades fisicoquímicas del suelo en diferentes estadios de la agricultura migratoria en el Área de Conservación Privada “Palmeras de Ocol”, distrito de Molinopampa, provincia de Chachapoyas (departamento de Amazonas). Rev. Investig. Agroproducción Sustentable 2017, 1, 9–21. [Google Scholar]
- Oliva, C.S.M.; Collazos, S.R.; Espárraga, E.T.A. Efecto de las plantaciones de Pinus patula sobre las características fisicoquímicas de los suelos en áreas altoandinas de la región Amazonas. Revista INDES 2014, 2, 28–36. [Google Scholar]
- Oliva, C.M.; Collazos, S.R.; Goñas, M.M.; Bacalla, E.; Vigo, M.C.; Vásquez, P.H.; Espinosa, L.S.T.; Maicelo, Q.J.L. Efecto de los sistemas de producción sobre las características físico-químicas de los suelos del distrito de Molinopampa, provincia de Chachapoyas, región Amazonas. Revista INDES 2014, 2, 44–52. [Google Scholar]
- Corroto, F.; Yalta, M.J.R.; Vásquez, P.H.V.; Gamarra, T.O.A. Evaluación de la calidad ecológica del agua en la cuenca alta del río Imaza (Perú). Revista INDES 2014, 2, 20–29. [Google Scholar]
- Chávez, O.J.; Rascón, J.; Eneque, P.A. Evaluación del impacto del vertimiento de aguas residuales en la calidad del río Ventilla, Amazonas. Revista INDES 2015, 3, 99–107. [Google Scholar]
- Gamarra, T.O.A.; Yalta, M.J.R.; Salas, L.R.; Alvarado, C.L.; Oliva, C.S.M. Evaluación de la calidad ecológica del agua en la microcuenca El Chido e intermicrocuenca Allpachaca—Lindapa, Amazonas, Perú. Revista INDES 2014, 2, 49–59. [Google Scholar]
- Leiva, T.D.; Chávez, O.J.; Corroto, F. Evaluación de la calidad fisicoquímica y microbiológica del río Shocol, provincia de Rodríguez de Mendoza, Amazonas. Revista INDES 2014, 2, 62–70. [Google Scholar]
- Yalta, M.J.R.; Salas, L.R.; Alvarado, C.L. Evaluación de la calidad ecológica del agua en las microcuencas de Chinata y Gocta, cuenca media del río Utcubamba, región Amazonas. Revista INDES 2013, 1, 14–28. [Google Scholar]
- Barboza, E.; Corroto, F.; Salas, R.; Gamarra, Ó.; Ballarín, D.; Ollero, A. Hidrogeomorfología en áreas tropicales: Aplicación del índice hidrogeomorfológico (IHG) en el río Utcubamba (Perú). Ecología Aplicada 2017, 16, 39. [Google Scholar] [CrossRef] [Green Version]
- Barboza, E.; Salas, R.; Mendoza, M.; Oliva, M.; Corroto, F. Uso actual del suelo y calidad hidrogeomorfológica del río San Antonio: Alternativas para la restauración fluvial en el Norte de Perú. Rev. de Investig. Altoandinas J. High Andean Res. 2018, 20, 203–214. [Google Scholar] [CrossRef]
- Calle, B.C. Hidrogeomorfologia del Rio Samiria. In Documento Técnico No 22; IIAP: Iquitos, Perú, 1995; p. 29. Available online: http://repositorio.iiap.gob.pe/handle/IIAP/197 (accessed on 6 May 2020).
- Newson, M.; Large, A.R. ‘Natural’ rivers, ‘hydromorphological quality’ and river restoration: A challenging new agenda for applied fluvial geomorphology. Earth Surf. Process. Landforms 2006, 31, 1606–1624. [Google Scholar] [CrossRef]
- Vaughan, I.P.; Diamond, M.; Gurnell, A.; Hall, K.; Jenkins, A.; Milner, N.; Naylor, L.; Sear, D.; Woodward, G.; Ormerod, S.J. Integrating ecology with hydromorphology: A priority for river science and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Parlamento Europeo y Consejo de la Unión Europea. Directiva 2000/60/CE del Parlamento Europeo y del Consejo, de 23 de octubre de 2000, por la que se establece un marco comunitario de actuación en el ámbito de la política de aguas; Diario Oficial de las Comunidades Europeas: Luxemburgo, 2000; p. 72. [Google Scholar]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2014, 73, 2079–2100. [Google Scholar] [CrossRef]
- Ollero, O.A.; Ballarín, F.D.; Mora, M.D. Aplicación del índice hidrogeomorfológico IHG en la cuenca del Ebro. Guía metodológica; Confederación Hidrográfica del Ebro, Ministerio de Medio Ambiente y Medio Rural y Marino: Zaragoza, Spain, 2009. [Google Scholar]
- MASTERGEO. Aplicación del índice hidrogeomorfológico IHG en la cuenca del Ebro; Medio Ambiente, Territorio y Geografía—MASTERGEO: Zaragoza, Spain, 2010. [Google Scholar] [CrossRef]
- Ollero, A.; Ibisate, A.; Gonzalo, L.E.; Acín, V.; Ballarín, D.; Díaz, E.; Domenech, S.; Gimeno, M.; Granado, D.; Horacio, J.; et al. The IHG index for hydromorphological quality assessment of rivers and streams: Updated version. Limnetica 2011, 30, 255–262. [Google Scholar]
- De Matauco, A.I.G.; Ojeda, A.O.; Blanco, A.S.D.O.; Naverac, V.A.; García, D.G.; Ferrer, D.B.; Otero, X.H.; García, J.H.; Mur, D.M. Condiciones de referencia para la restauración de la morfología fluvial de los ríos de las cuencas de Oiartzun y Oria (Gipuzkoa). Cuaternario y Geomorfología 2016, 30, 49. [Google Scholar] [CrossRef] [Green Version]
- Talavera, J.M.; Sánchez, R.N. Aplicación del Índice Hidrogeomorfológico (IHG) en la cuenca del Segura: Embalse de la Fuensanta-Llano de la Vida (Desembocadura del río Taibilla). Geogr. Rev. Digit. Para Estud. Geogr. Cienc. Soc. 2019, 10, 238–268. [Google Scholar] [CrossRef]
- Volonte, A.; Campo, A.M.; Gil, V. Estado Ecológico De La Cuenca Baja Del Arroyo San Bernardo, Sierra De La Ventana, Argentina. Revista Geográfica de América Central 2016, 1, 135. [Google Scholar] [CrossRef] [Green Version]
- Parra, J.C.; Espinosa, P.; Jaque, E.; Ollero, A. Caracterización y evaluación hidrogeomorfológica para la restauración fluvial urbana en la cuenca del Andalién (Región Biobío, Chile). In Proceedings of the II Congreso Ibérico de Restauración Fluvial—RESTAURARIOS; Centro Ibérico de Restauración Fluvial (CIREF): Pamplona, Spain, 2015; pp. 692–696. Available online: https://lirias.kuleuven.be/1954031?limo=0 (accessed on 6 May 2020).
- Richardson, R.; Tapia, M.; Landeros, F. Cartografía de riesgo de inundación, por modelo de IHG. Rev. Geográfica de Chile Terra Aust. 2019, 55, 66–73. [Google Scholar] [CrossRef]
- Ollero, O.A. Hidrogeomorfología y Geodiversidad: El patrimonio fluvial; Centro de Documentación del Agua y el Medio Ambiente (CDAMAZ), Agencia de Medio Ambiente y Sostenibilidad (Ayuntamiento de Zaragoza): Zaragoza, Spain, 2017; ISBN 9788469769522. [Google Scholar]
- Horacio, J.; Ollero, A. Clasificación geomorfológica de cursos fluviales apartir de sistemas de información geográfica (S.I.G.). Boletin de la Asociacion de Geografos Espanoles 2011, 56, 373–396. [Google Scholar]
- Bea, E.D.; Ojeda, A.O. Metodología para la clasificación geomorfológica de los cursos fluviales de la cuenca del Ebro. Geographicalia 2016, 47, 23. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, A.O.; Arnedo, M.T.E.; Fabre, M.S.; Izquierdo, V.A.; Ferrer, D.B.; Mur, D.M. Metodología para la tipificación hidromorfológica de los cursos fluviales de Aragón en aplicaciones de la directiva marco de aguas (2000/60/CE). Geographicalia 2016, 44, 7. [Google Scholar] [CrossRef]
- García, J.H.; Ollero, A.; Alberti, A.P. Geomorphic classification of rivers: A new methodology applied in an Atlantic Region (Galicia, NW Iberian Peninsula). Environ. Earth Sci. 2017, 76, 76. [Google Scholar] [CrossRef]
- García, J.H.; Montgomery, D.; Ollero, A.; Ibisate, A.; Alberti, A.P. Application of lithotopo units for automatic classification of rivers: Concept, development and validation. Ecol. Indic. 2018, 84, 459–469. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kandpal, H. Morphometric analysis and prioritization of sub-watersheds in a hilly watershed using weighted sum approach. Arab. J. Geosci. 2019, 12, 118. [Google Scholar] [CrossRef]
- Sabino, E.; Felipe, O.G.; Lavado, W.C. Atlas de erosión de suelos por regiones hidrológicas del Perú. Nota Técnica 002 SENAMHI-DHI-2017 2017, 132. Available online: https://hdl.handle.net/20.500.12542/261 (accessed on 6 May 2020).
- Bali, Y.P.; Karale, R.L. A sediment yield index as a criterion for choosing priority basins. IAHS-AISH Publ. 1977, 122, 180–188. [Google Scholar]
- Gajbhiye, S.; Mishra, S.K.; Pandey, A. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Appl. Water Sci. 2013, 4, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, S.A.; Ajeez, S.A.; Aruchamy, S.; Jegankumar, R. Prioritization of Sub Watershed Based on Morphometric Characteristics Using Fuzzy Analytical Hierarchy Process and Geographical Information System—A Study of Kallar Watershed, Tamil Nadu. Aquat. Procedia 2015, 4, 1322–1330. [Google Scholar] [CrossRef]
- Meshram, S.G.; Sharma, S.K. Prioritization of watershed through morphometric parameters: A PCA-based approach. Appl. Water Sci. 2015, 7, 1505–1519. [Google Scholar] [CrossRef] [Green Version]
- Aher, P.; Adinarayana, J.; Gorantiwar, S. Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. J. Hydrol. 2014, 511, 850–860. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kushwaha, D.P.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. The Implementation of a Hybrid Model for Hilly Sub-Watershed Prioritization Using Morphometric Variables: Case Study in India. Water 2019, 11, 1138. [Google Scholar] [CrossRef] [Green Version]
- GRA; IIAP. Zonificación Ecológica y Económica (ZEE) del departamento de Amazonas; GRA; GRA; IIAP: Iquitos, Perú, 2010.
- Ramírez, B.J.M. Uso actual de la tierra. En Estudios temáticos para la Zonificación Ecológica Económica del departamento de Amazonas; Instituto de Investigaciones de la Amazonía Peruana (IIAP) & Programa de Investigaciones en Cambio Climático, Desarrollo Territorial y Ambiente (PROTERRA): Chachapoyas, Perú, 2010; pp. 1–39. [Google Scholar]
- Municipalidad Provincial de Chachapoyas. Plan de Desarrollo Provincial Concertado de Chachapoyas 2011–2021; Municipalidad Provincial de Chachapoyas: Chachapoyas, Perú, 2011. [Google Scholar]
- ANA. Geohidro: Sistema Nacional de Infromación de Recursos Hídrigcos. Available online: https://geo.ana.gob.pe/geohidro/ (accessed on 30 June 2017).
- MINEDU. Descarga de Información espacial del MED. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on 15 June 2017).
- MTC. Descarga de datos espaciales. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 15 June 2017).
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote. Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- NASA. NASA’s Earth Observing System Data and Information System (EOSDIS). Available online: https://search.asf.alaska.edu/#/?flightDirs= (accessed on 15 June 2017).
- Congedo, L. Semi-Automatic Classification Plugin for QGIS; Sapienza University: Roma, Italy, 2013; p. 25. [Google Scholar]
- Romanholi, M.P.; De Queiroz, A.P. Base hidrográfica ottocodificada na escala 1:25000: Exemplo da bacia do Córrego Itapiranga (SP). Revista Caminhos de Geografia 2018, 19, 46–60. [Google Scholar] [CrossRef]
- Zambrano, R.A.; Torres, C.J.; Ibarra, G.J. Delimitación, codificación de las cuencas hidrográficas según los métodos de Pfasftetter y Strahler utilizando Modelos de Elevación Digital y técnicas de Teledetección. In Proceedings of the Anais XV Simpósio Brasileiro de Sensoriamento Remoto—SBSR; Instituto Nacional de Investigación Espacial del Brasil (INPE): Curitiva, Brazil, 2011; pp. 1105–1112. [Google Scholar]
- De Amorim, T.A.; Moreira, S.A.; Fontes, M.G.S.; Ferreira, F.V.; Borelli, A.J. PgHydro—Objetos Hidrográficos em banco de dados geográfico. In Proceedings of the XX Simpósio Brasileiro de Recursos Hídricos; Associação Brasileira de Recursos Hídricos (ABRH): Bento Gonçalves, RS, BraZil, 2013; pp. 1–8. [Google Scholar]
- Gilvear, D.J.; Hunter, P.; Stewardson, M. Remote Sensing: Mapping Natural and Managed River Corridors from the Micro to the Network Scale. In River Science: Research and Management for the 21st Century; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; John Wiley & Sons, Ltd.: Chennai, India, 2016; pp. 171–196. [Google Scholar]
- Large, A.R.G.; Gilvear, D. UsingGoogle Earth, A Virtual-Globe Imaging Platform, for Ecosystem Services-Based River Assessment. River Res. Appl. 2014, 31, 406–421. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill Book Company: New York, NY, USA, 1964; pp. 4–76. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Zavoianu, I. Morphometry of Drainage Basins; Elsevier Science: Bucharest, Romania, 1985; ISBN 9780080870113. [Google Scholar]
- Gray, D.M. Interrelationships of watershed characteristics. J. Geophys. Res. Space Phys. 1961, 66, 1215–1223. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of drainage system and slopes in badlands at Perth Amboy, NEW Jessey. Geol. Soc. Am. Bull. 1956, 67, 597. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Trans. Am. Geophys. Union 1932, 13, 350. [Google Scholar] [CrossRef]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Department of Geology, Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote. Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Chuvieco, E. Fundamentals of Satellite Remote Sensing. An Enviromental Approach, 2nd ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2016; ISBN 978-1-4987-2807-2. [Google Scholar]
- MINAM. Mapa nacional de cobertura vegetal. Memoria Descriptiva; Dirección General de Evaluación, Valoración y Financiamiento del Patrimonio Natural: Lima, Perú, 2015.
- Ramírez, I.; Zubieta, R.; Luna, L.; López, C. Análisis regional y comparación metodológica del cambio en la cubierta forestal en la Región Mariposa Monarca Informe Técnico Final Convenio KE31; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2005. [Google Scholar]
- Vargas, G.E. Análisis y clasificación del uso y cobertura de la tierra con interpretación de imágenes; Instituto Geográfico Agustin Codazzi (IGAC) & Ministerio de Hacienda y Crédito Público: Bogotá, Colombia, 1992. [Google Scholar]
- MINAM. Protocolo: Evaluacion de la Exactitud Tematica del Mapa de Deforestación; Dirección General de Ordenamiento Territorial: Lima, Perú, 2014.
- Story, M.; Congalton, R.G. Accuracy Assessment: A User’ s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Pasiok, R.; Dębek, Ł. RiverGIS. Available online: http://rivergis.com/index.html (accessed on 15 June 2017).
- Pardo, P.J.E.; Palomar, V.J. Metodología para la caracterización geomorfológica de los barrancos del sur de Menorca mediante perfiles transversales. In Proceedings of the X Congreso del Grupo de Métodos Cuantitativos, Sistemas de Información Geográfica y Teledetección; García Cuesta, J.L., Molina de la Torre, I., López, G.A., Eds.; Universidad de Valladolid: Valladolid, Spain, 2002; pp. 1–13. [Google Scholar]
- Ollero, O.A.; Ballarín, F.D.; Díaz, B.E.; Mora, M.D.; Sánchez, F.M.; Acín, N.V.; Echeverría, A.M.; Granado, G.D.; González de, M.A.I.; Sánchez, G.L.; et al. IHG: Un índice para la valoración hidrogeomorfológica de sistemas fluviales. Limnetica 2008, 27, 171–187. [Google Scholar]
- Melton, M.A. Correlation Structure of Morphometric Properties of Drainage Systems and Their Controlling Agents. J. Geol. 1958, 66, 442–460. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Rai, P.K.; Mohan, K.; Mishra, S.; Ahmad, A.; Mishra, V.N. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Appl. Water Sci. 2014, 7, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363. [Google Scholar] [CrossRef] [PubMed]
- Sanín, M.J.; Anthelme, F.; Pintaud, J.-C.; Galeano, G.; Bernal, R. Juvenile Resilience and Adult Longevity Explain Residual Populations of the Andean Wax Palm Ceroxylon quindiuense after Deforestation. PLoS ONE 2013, 8, e74139. [Google Scholar] [CrossRef] [PubMed]
Variables | Symbology | Unit | Formula | References |
---|---|---|---|---|
Linear Variables | ||||
Maximum altitude | Hmax | m.a.s.l. | Maximum altitude of watershed | |
Minimum altitude | Hmin | m.a.s.l. | Minimum altitude of watershed | |
Basin perimeter | P | km | Perimeter of watershed | |
Basin area | A | km2 | Plan area of watershed | |
Stream order | u | Hierarchical rank | [80] | |
Total of flows of the order u | Nu | Total number of streams of order u | [81] | |
Stream length | Lu | km | Total length of stream of order u | [81] |
Mean stream length | Lsm | km | Lu/Nu | [81] |
Length of the main channel | L | km | Length of the main channel | [82] |
Slope of the main channel | Sl | % | (Hmax of the main channel − Hmin)/L | [82] |
Basin length | Lb | km | 1.312 × A0.568 | [83] |
Bifurcation ratio | Rb | Nu/(Nu + 1) | [84] | |
Areal Variables | ||||
Mean slope of the basin 1 | Sb | % | ΔH × ΣLl/A | [82] |
Drainage density | Dd | km/km2 | ΣLu/A | [85] |
Stream frequency | Fs | km−2 | ΣNu/A | [85] |
Texture ratio | Rt | km−1 | ΣNu/P | [81] |
Mean length of overland Flow | Lom | km | 1/2Dd | [81] |
Shape Variables | ||||
Form factor | Ff | A/Lb2, Ff < 1 | [85] | |
Circularity ratio | Rc | 4πA/P2, RC ≤ 1 | [86] | |
Compactness coefficient | Cc | 0.2821P/A0.5, Cc ≥ 1 | [80] | |
Elongation ratio | Re | 1.128A0.5/Lb, Re ≤ 1 | [84] |
Geomorphological Aspects | Geomorphological Parameters | Classification | Range | Symbol |
---|---|---|---|---|
Channel geomorphology | Type of channel | Single channel | N1 | |
Multiple channels | N2 | |||
Transition | N3 | |||
Sinuosity Index | Straight | <1.05 | S1 | |
Winding | 1.05–1.3 | S2 | ||
Twisty | 1.3–1.5 | S3 | ||
Meandering | >1.5 | S4 | ||
Channel slope | Slope | Level | <0.5% | P1 |
Nearly level | 0.5–2% | P2 | ||
Gentle slope | 2–10% | P3 | ||
Steep | >10% | P4 | ||
Valley geomorphology | Confinement | Totally confined | <3 | E1 |
Very confined | 3–12 | E2 | ||
Moderately confined | 12–22 | E3 | ||
Gently confined | 22–40 | E4 | ||
Unconfined | >40 | E5 | ||
Valley bottom width | Null | V1 | ||
Narrow | <50 m | V2 | ||
Medium | 50–250 m | V3 | ||
Wide | 250–1000 m | V4 | ||
Very Wide | >1000 m | V5 |
Functional Quality (FQ) | Channel Quality (CQ) | Riparian Quality (RQ) | IHG Index | Hydrogeomorphological Quality |
---|---|---|---|---|
0–6 | 0–6 | 0–6 | 0–20 | Very bad |
7–13 | 7–13 | 7–13 | 21–41 | Poor |
14–19 | 14–19 | 14–19 | 42–59 | Moderate |
20–24 | 20–24 | 20–24 | 60–74 | Good |
25–30 | 25–30 | 25–30 | 75–90 | Very good |
Variables | Leimebamba | Molinopampa | |||||
---|---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | San Antonio | Ventilla | ||
Linear variables | |||||||
Hmax (m.a.s.l.) | 4165 | 4275 | 3793 | 4085 | 3715 | 3790 | |
Hmin (m.a.s.l.) | 2422 | 3205 | 2198 | 3022 | 1954 | 2015 | |
P (km) | 44.669 | 32.753 | 34.159 | 28.350 | 76.506 | 87.367 | |
A (km2) | 48.745 | 42.967 | 52.034 | 23.943 | 149.785 | 232.267 | |
Stream order, u | 1 | 5 | 7 | 11 | 5 | 9 | 26 |
2 | 1 | 2 | 3 | 1 | 2 | 6 | |
3 | 2 | 0 | 1 | 0 | 1 | 3 | |
Nu | u | 8 | 9 | 15 | 6 | 12 | 35 |
Lu (km) | 26.792 | 16.623 | 36.165 | 16.715 | 58.238 | 131.967 | |
Lsm (km) | 3.349 | 1.847 | 2.411 | 2.786 | 4.853 | 3.770 | |
L (km) | 17.340 | 7.299 | 13.087 | 11.235 | 27.684 | 38.113 | |
Sl (%) | 4.516 | 9.248 | 9.674 | 7.058 | 5.375 | 3.655 | |
Lb (km) | 11.931 | 11.106 | 12.382 | 7.967 | 22.574 | 28.961 | |
Rb | 2.750 | 3.500 | 3.333 | 5.000 | 3.250 | 3.167 | |
Areal Variables | |||||||
Sb (%) | 56.298 | 44.476 | 41.281 | 39.391 | 30.097 | 31.017 | |
Dd (km/km2) | 0.550 | 0.387 | 0.695 | 0.698 | 0.389 | 0.568 | |
Fs (km−2) | 0.164 | 0.209 | 0.288 | 0.251 | 0.080 | 0.151 | |
Rt (km−1) | 0.179 | 0.275 | 0.439 | 0.212 | 0.157 | 0.401 | |
Lom (km) | 0.910 | 1.292 | 0.719 | 0.716 | 1.286 | 0.880 | |
Shape Variables | |||||||
Ff | 0.342 | 0.348 | 0.339 | 0.377 | 0.294 | 0.277 | |
Rc | 0.307 | 0.503 | 0.560 | 0.374 | 0.322 | 0.382 | |
Cc | 1.805 | 1.410 | 1.336 | 1.634 | 1.763 | 1.617 | |
Re | 0.660 | 0.666 | 0.657 | 0.693 | 0.612 | 0.594 |
Variables | Leimebamba | Molinopampa | ||||
---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | San Antonio | Ventilla | |
Rb | 6 | 2 | 3 | 1 | 4 | 5 |
Dd | 4 | 6 | 2 | 1 | 5 | 3 |
Fs | 4 | 3 | 1 | 2 | 6 | 5 |
Rt | 5 | 3 | 1 | 4 | 6 | 2 |
Lom | 3 | 1 | 5 | 6 | 2 | 4 |
Ff | 4 | 5 | 3 | 6 | 2 | 1 |
Rc | 1 | 5 | 6 | 3 | 2 | 4 |
Cc | 6 | 2 | 1 | 4 | 5 | 3 |
Re | 4 | 5 | 3 | 6 | 2 | 1 |
Variables | Rb | Dd | Fs | Rt | Lom | Ff | Rc | Cc | Re |
---|---|---|---|---|---|---|---|---|---|
Rb | 1.000 | 0.432 | 0.465 | −0.136 | −0.338 | 0.603 * | 0.075 | −0.144 | 0.587 |
Dd | 1.000 | 0.718 * | 0.437 | −0.988 *** | 0.397 | 0.212 | −0.218 | 0.386 | |
Fs | 1.000 | 0.515 | −0.650 * | 0.708 * | 0.730 * | −0.732 * | 0.706 * | ||
Rt | 1.000 | −0.439 | −0.231 | 0.727 * | −0.742 * | −0.232 | |||
Lom | 1.000 | −0.324 | −0.133 | 0.139 | −0.314 | ||||
Ff | 1.000 | 0.252 | −0.246 | 0.999 *** | |||||
Rc | 1.000 | −0.993 *** | 0.259 | ||||||
Cc | 1.000 | −0.250 | |||||||
Re | 1.000 |
Variables | Initial Eigen Value | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
Rb | 4.538 | 50.424 | 50.424 | 4.538 | 50.424 | 50.424 | 3.044 | 33.817 | 33.817 |
Dd | 2.407 | 26.743 | 77.166 | 2.407 | 26.743 | 77.166 | 3.012 | 33.466 | 67.283 |
Fs | 1.510 | 16.783 | 93.949 | 1.510 | 16.783 | 93.949 | 2.400 | 26.666 | 93.949 |
Rt | 0.517 | 5.742 | 99.691 | ||||||
Lom | 0.028 | 0.309 | 100.000 | ||||||
Ff | 2.354 × 10−16 | 2.615 × 10−15 | 100.000 | ||||||
Rc | −1.559 × 10−17 | −1.732 × 10−16 | 100.000 | ||||||
Cc | −3.626 × 10−17 | −4.029 × 10−16 | 100.000 | ||||||
Re | −9.133 × 10−17 | −1.015 × 10−15 | 100.000 |
Variables | Principal Component—Unrotated | Principal Component—Rotated (VARIMAX) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
Rb | 0.549 | 0.534 | 0.033 | −0.035 | 0.715 * | 0.275 |
Dd | 0.762 ** | 0.098 | −0.634 * | 0.148 | 0.272 | 0.947 *** |
Fs | 0.993 *** | −0.043 | 0.056 | 0.647 * | 0.576 | 0.490 |
Rt | 0.499 | −0.825 ** | −0.232 | 0.794 ** | −0.381 | 0.458 |
Lom | −0.690 * | −0.080 | 0.713 * | −0.087 | −0.186 | −0.974 *** |
Ff | 0.703 * | 0.607 * | 0.318 | 0.113 | 0.968 *** | 0.120 |
Rc | 0.688 * | −0.592 | 0.412 | 0.986 *** | 0.146 | 0.021 |
Cc | −0.698 * | 0.585 | −0.402 | −0.983 *** | −0.153 | −0.035 |
Re | 0.699 * | 0.601 * | 0.329 | 0.120 | 0.966 *** | 0.108 |
Variables | Lom | Ff | Rc |
---|---|---|---|
Lom | 1.000 | −0.324 | −0.133 |
Ff | −0.324 | 1.000 | 0.252 |
Rc | −0.133 | 0.252 | 1.000 |
Sum of correlation | 0.543 | 0.928 | 1.119 |
Grand total | 2.590 | 2.590 | 2.590 |
Weight | 0.209 | 0.358 | 0.432 |
Leimebamba | Molinopampa | |||||
---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | San Antonio | Ventilla | |
Composite Factor (CF) | 2.491 | 4.159 | 4.711 | 4.698 | 1.998 | 2.922 |
Priority Rank | 2 | 4 | 6 | 5 | 1 | 3 |
LC/LU | Leimebamba | Molinopampa | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | Total | San Antonio | Ventilla | Total | |||||||||
km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | km2 | % | |
Fo | 20.69 | 42.4 | 2.10 | 4.9 | 13.56 | 26.1 | 0.50 | 2.1 | 36.85 | 22.0 | 69.74 | 46.6 | 72.57 | 31.2 | 142.31 | 37.2 |
AG/S | 20.46 | 42.0 | 32.85 | 76.4 | 19.03 | 36.6 | 16.95 | 70.8 | 89.29 | 53.2 | 23.54 | 15.7 | 97.65 | 42.0 | 121.19 | 31.7 |
GC | 7.60 | 15.6 | 7.62 | 17.7 | 19.37 | 37.2 | 6.50 | 27.1 | 41.08 | 24.5 | 56.02 | 37.4 | 61.15 | 26.3 | 117.17 | 30.7 |
WB | – | – | 0.40 | 0.9 | – | – | – | – | 0.40 | 0.2 | 0.22 | 0.1 | 0.13 | 0.1 | 0.36 | 0.1 |
BA | – | – | – | – | 0.07 | 0.1 | – | – | 0.07 | 0.0 | 0.27 | 0.2 | 0.77 | 0.3 | 1.03 | 0.3 |
Total | 48.75 | 100.0 | 42.97 | 100.0 | 52.03 | 100.0 | 23.94 | 100.0 | 167.69 | 100.0 | 149.79 | 100.0 | 232.27 | 100.0 | 382.06 | 100.0 |
Valley Geomorphology | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E1V1 | E2V2 | E3V2 | E3V3 | E4V2 | E2V1 | E2V3 | E4V3 | E5V3 | |||
Channel Geomorphology | S1P3 | 5.99 | 2.36 | 1.17 | 7.21 | – | – | – | – | – | 16.73 |
S1P4 | 1.33 | 12.74 | 3.70 | 6.63 | 1.07 | – | – | – | – | 25.47 | |
S2P2 | – | 1.05 | – | 4.39 | – | – | – | – | – | 5.44 | |
S2P3 | 6.33 | 5.26 | 3.37 | 2.14 | – | 2.17 | 2.14 | 8.99 | 2.14 | 32.54 | |
S2P4 | 6.79 | 2.14 | 8.74 | – | – | – | – | – | – | 17.68 | |
S3P3 | – | – | – | 2.14 | – | – | – | – | – | 2.14 | |
Total | 20.44 | 23.55 | 16.98 | 22.52 | 1.07 | 2.17 | 2.14 | 8.99 | 2.14 | 100.00 |
Valley Geomorphology | Total | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E2V2 | E3V1 | E3V3 | E4V3 | E3V2 | E4V4 | E5V4 | E1V1 | E1V2 | E2V1 | |||
Channel Geomorphology | S1P2 | 0.53 | – | – | – | – | – | – | – | – | – | 0.53 |
S1P3 | 6.40 | 2.70 | 0.60 | – | – | – | – | – | – | – | 9.70 | |
S1P4 | 3.89 | – | – | – | – | – | – | – | – | – | 3.89 | |
S2P1 | – | – | – | 4.22 | – | – | – | – | – | – | 4.22 | |
S2P2 | 2.18 | – | 5.16 | 1.08 | – | – | – | – | – | – | 8.42 | |
S2P3 | 5.00 | – | 12.80 | 4.77 | 2.16 | 1.80 | 0.75 | – | – | – | 27.27 | |
S2P4 | 17.81 | – | 4.39 | 0.56 | – | 0.55 | – | 0.59 | 1.66 | 8.14 | 33.70 | |
S3P2 | – | – | 3.34 | – | – | – | – | – | – | – | 3.34 | |
S3P3 | 1.62 | – | 1.11 | – | – | – | 1.64 | – | – | – | 4.36 | |
S4P1 | – | – | – | – | – | – | 2.94 | – | – | – | 2.94 | |
S4P2 | – | – | – | 1.62 | – | – | – | – | – | – | 1.62 | |
Total | 37.43 | 2.70 | 27.40 | 12.24 | 2.16 | 2.34 | 5.33 | 0.59 | 1.66 | 8.14 | 100.00 |
Leimebamba | Molinopampa | Grand Total | ||||||
---|---|---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | Total | San Antonio | Ventilla | Total | |
12 | 12 | 19 | 10 | 53 | 17 | 48 | 65 | 118 |
Quality | Leimebamba | Molinopampa | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atuen | Cabildo | Pomacochas | Timbambo | Total | San Antonio | Ventilla | Total | |||||||||
km | % | km | % | km | % | km | % | km | % | km | % | km | % | km | % | |
Functional quality | ||||||||||||||||
Very bad | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Poor | – | – | – | – | 4.21 | 11.7 | – | – | 4.21 | 4.4 | – | – | 13.61 | 10.3 | 13.61 | 7.2 |
Moderate | 8.93 | 33.3 | 1.15 | 6.9 | 8.84 | 24.4 | – | – | 18.91 | 19.6 | 10.25 | 17.6 | 3.11 | 2.4 | 13.36 | 7.0 |
Good | 9.06 | 33.8 | 7.61 | 45.8 | 5.64 | 15.6 | – | – | 22.31 | 23.2 | 15.64 | 26.9 | 25.99 | 19.7 | 41.63 | 21.9 |
Very good | 8.81 | 32.9 | 7.87 | 47.3 | 17.48 | 48.3 | 16.72 | 100.0 | 50.86 | 52.8 | 32.34 | 55.5 | 89.26 | 67.6 | 121.61 | 63.9 |
Channel quality | ||||||||||||||||
Very bad | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Poor | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Moderate | 10.20 | 38.1 | 2.09 | 12.5 | 13.05 | 36.1 | – | – | 25.34 | 26.3 | – | – | 16.72 | 12.7 | 16.72 | 8.8 |
Good | 13.01 | 48.6 | 9.84 | 59.2 | 11.60 | 32.1 | – | – | 34.45 | 35.8 | 13.33 | 22.9 | 13.34 | 10.1 | 26.67 | 14.0 |
Very good | 3.58 | 13.4 | 4.70 | 28.3 | 11.51 | 31.8 | 16.72 | 100.0 | 36.51 | 37.9 | 44.91 | 77.1 | 101.91 | 77.2 | 146.82 | 77.2 |
Riparian quality | ||||||||||||||||
Very bad | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Poor | – | – | – | – | 4.03 | 11.1 | – | – | 4.03 | 4.2 | – | – | 13.61 | 10.3 | 13.61 | 7.2 |
Moderate | 1.27 | 4.8 | 5.97 | 35.9 | 4.21 | 11.7 | – | – | 11.45 | 11.9 | 16.57 | 28.5 | 8.28 | 6.3 | 24.86 | 13.1 |
Good | 21.94 | 81.9 | 7.10 | 42.7 | 17.74 | 49.1 | 8.835 | 52.9 | 55.62 | 57.8 | 14.91 | 25.6 | 30.05 | 22.8 | 44.96 | 23.6 |
Very good | 3.58 | 13.4 | 3.55 | 21.4 | 10.18 | 28.2 | 7.88 | 47.1 | 25.19 | 26.2 | 26.75 | 45.9 | 80.02 | 60.6 | 106.78 | 56.1 |
Hydrogeomorphological quality (IHG index) | ||||||||||||||||
Very bad | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Poor | – | – | – | – | 8.14 | 22.5 | – | – | 8.14 | 8.5 | – | – | 13.61 | 10.3 | 13.61 | 7.2 |
Moderate | 15.94 | 59.5 | 4.84 | 29.1 | 4.81 | 13.3 | – | – | 25.60 | 26.6 | 10.25 | 17.6 | 5.74 | 4.4 | 15.99 | 8.4 |
Good | 7.27 | 27.1 | 8.18 | 49.2 | 12.99 | 35.9 | 0.97 | 5.8 | 29.41 | 30.5 | 17.88 | 30.7 | 32.69 | 24.8 | 50.57 | 26.6 |
Very good | 3.58 | 13.4 | 3.59 | 21.6 | 10.22 | 28.3 | 15.75 | 94.2 | 33.14 | 34.4 | 30.11 | 51.7 | 79.92 | 60.6 | 110.03 | 57.8 |
Total | 26.79 | 100.0 | 16.62 | 100.0 | 36.17 | 100.0 | 16.72 | 100.0 | 96.29 | 100.0 | 58.24 | 100.0 | 131.97 | 100.0 | 190.21 | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Briceño, N.B.; Barboza Castillo, E.; Gamarra Torres, O.A.; Oliva, M.; Leiva Tafur, D.; Barrena Gurbillón, M.Á.; Corroto, F.; Salas López, R.; Rascón, J. Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality in High Andean Livestock Micro-Watersheds in Northern Peru. ISPRS Int. J. Geo-Inf. 2020, 9, 305. https://doi.org/10.3390/ijgi9050305
Rojas Briceño NB, Barboza Castillo E, Gamarra Torres OA, Oliva M, Leiva Tafur D, Barrena Gurbillón MÁ, Corroto F, Salas López R, Rascón J. Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality in High Andean Livestock Micro-Watersheds in Northern Peru. ISPRS International Journal of Geo-Information. 2020; 9(5):305. https://doi.org/10.3390/ijgi9050305
Chicago/Turabian StyleRojas Briceño, Nilton B., Elgar Barboza Castillo, Oscar Andrés Gamarra Torres, Manuel Oliva, Damaris Leiva Tafur, Miguel Ángel Barrena Gurbillón, Fernando Corroto, Rolando Salas López, and Jesús Rascón. 2020. "Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality in High Andean Livestock Micro-Watersheds in Northern Peru" ISPRS International Journal of Geo-Information 9, no. 5: 305. https://doi.org/10.3390/ijgi9050305
APA StyleRojas Briceño, N. B., Barboza Castillo, E., Gamarra Torres, O. A., Oliva, M., Leiva Tafur, D., Barrena Gurbillón, M. Á., Corroto, F., Salas López, R., & Rascón, J. (2020). Morphometric Prioritization, Fluvial Classification, and Hydrogeomorphological Quality in High Andean Livestock Micro-Watersheds in Northern Peru. ISPRS International Journal of Geo-Information, 9(5), 305. https://doi.org/10.3390/ijgi9050305