Next Article in Journal
A Multi-Scale Representation of Point-of-Interest (POI) Features in Indoor Map Visualization
Previous Article in Journal
Evaluation of Geological and Ecological Bearing Capacity and Spatial Pattern along Du-Wen Road Based on the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to an Ideal Solution (TOPSIS) Method
Open AccessArticle

A Postearthquake Multiple Scene Recognition Model Based on Classical SSD Method and Transfer Learning

School of Resource and Environment Science, Wuhan University, Wuhan 430079, China
*
Author to whom correspondence should be addressed.
ISPRS Int. J. Geo-Inf. 2020, 9(4), 238; https://doi.org/10.3390/ijgi9040238
Received: 28 February 2020 / Revised: 20 March 2020 / Accepted: 7 April 2020 / Published: 11 April 2020
(This article belongs to the Special Issue GIS in Seismic Disaster Risk Assessment and Management)
The recognition of postearthquake scenes plays an important role in postearthquake rescue and reconstruction. To overcome the over-reliance on expert visual interpretation and the poor recognition performance of traditional machine learning in postearthquake scene recognition, this paper proposes a postearthquake multiple scene recognition (PEMSR) model based on the classical deep learning Single Shot MultiBox Detector (SSD) method. In this paper, a labeled postearthquake scenes dataset is constructed by segmenting acquired remote sensing images, which are classified into six categories: landslide, houses, ruins, trees, clogged and ponding. Due to the insufficiency and imbalance of the original dataset, transfer learning and a data augmentation and balancing strategy are utilized in the PEMSR model. To evaluate the PEMSR model, the evaluation metrics of precision, recall and F1 score are used in the experiment. Multiple experimental test results demonstrate that the PEMSR model shows a stronger performance in postearthquake scene recognition. The PEMSR model improves the detection accuracy of each scene compared with SSD by transfer learning and data augmentation strategy. In addition, the average detection time of the PEMSR model only needs 0.4565s, which is far less than the 8.3472s of the traditional Histogram of Oriented Gradient + Support Vector Machine (HOG+SVM) method. View Full-Text
Keywords: earthquake disasters; scene recognition; deep learning; classical SSD method; transfer learning earthquake disasters; scene recognition; deep learning; classical SSD method; transfer learning
Show Figures

Figure 1

MDPI and ACS Style

Xu, Z.; Chen, Y.; Yang, F.; Chu, T.; Zhou, H. A Postearthquake Multiple Scene Recognition Model Based on Classical SSD Method and Transfer Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 238.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop