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Abstract: The recognition of postearthquake scenes plays an important role in postearthquake rescue
and reconstruction. To overcome the over-reliance on expert visual interpretation and the poor
recognition performance of traditional machine learning in postearthquake scene recognition, this
paper proposes a postearthquake multiple scene recognition (PEMSR) model based on the classical
deep learning Single Shot MultiBox Detector (SSD) method. In this paper, a labeled postearthquake
scenes dataset is constructed by segmenting acquired remote sensing images, which are classified
into six categories: landslide, houses, ruins, trees, clogged and ponding. Due to the insufficiency and
imbalance of the original dataset, transfer learning and a data augmentation and balancing strategy
are utilized in the PEMSR model. To evaluate the PEMSR model, the evaluation metrics of precision,
recall and F1 score are used in the experiment. Multiple experimental test results demonstrate that
the PEMSR model shows a stronger performance in postearthquake scene recognition. The PEMSR
model improves the detection accuracy of each scene compared with SSD by transfer learning and
data augmentation strategy. In addition, the average detection time of the PEMSR model only needs
0.4565s, which is far less than the 8.3472s of the traditional Histogram of Oriented Gradient + Support
Vector Machine (HOG+SVM) method.

Keywords: earthquake disasters; scene recognition; deep learning; classical SSD method;
transfer learning

1. Introduction

Earthquakes are one of the most harmful types of natural disasters in the world. Approximately five
million earthquakes occur every year worldwide, of which about a dozen or twenty have caused serious
harm to humanity, resulting in incalculable environmental damage and loss of life and wealth. Take the
2014 magnitude 6.5 Ludian earthquake as an example: it caused a death toll of 617, triggered at least
1024 landslides with areas equal to 100 m2 or larger and tens of thousands of collapsed buildings [1,2].
The quick and accurate collection of damage information in earthquake-stricken areas is of substantial
significance for the timely rescue of trapped people and postearthquake reconstruction [3,4]. In seismic
emergency rescue work, the most traditional method is onsite investigation by relevant experts [5,6];
however, the workload is extremely large, and the efficiency is low due to the large extent and variety
of disaster areas [7]. It is difficult to reach the disaster sites in time if investigators encounter landslides
or clogged scenes. Due to low efficiency and uncertainty, it is not currently possible to satisfy the
application requirements of rapid assessment and postearthquake rescue.

However, with the rapid development of technologies such as satellite remote sensing and
unmanned aerial vehicles, the ability to acquire real-time information on the Earth’s surface has
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improved [8,9]. Remote sensing images can be acquired quickly and can reflect the objective
world comprehensively and intuitively, and they provide a new information source for the rapid
recognition and assessment of earthquake damage [10,11]. There is a lot of research about disaster
risk assessment based on remote sensing images. Jelének et al. [12] synergically used Sentinel-1 radar
images and Sentinel-2 optical data to analyze postearthquake surface changes and took the 2016
magnitude 7.8 Kaikoura earthquake in New Zealand as an example. They used radar interferometry
to assess earthquake impacts via computing vertical displacements and differential interferograms.
Olen et al. [13] proposed a new method for Potentially Affected Area (PAA) detection following a
natural hazard event based on Sentinel-1 C-band radar data. The proposed method is based on the
coherence time series, which determines the natural variability of coherence within each pixel in
the region of interest and where statistically significant coherence loss has occurred by comparing
pixel-by-pixel syn-event coherence to temporal coherence distributions. They verified the performance
of the method in finding PPA with the case of the 2017 Iran–Iraq earthquake and a landslide-prone
region of NW Argentina. Mondini et al. [14] proposed that using Sentinel-1 SAR C-band images
could well solve the problem of lack of pre and postlandslide optical images due to cloud persistence.
They analyzed 32 global landslide cases, and results showed that changes caused by landslides on
SAR amplitudes were unambiguous in about 84% of cases. Expert visual interpretation methods
that fully utilize high-resolution images have become mainstream in the field of postearthquake
assessment, rescue and reconstruction [15–17]. However, these methods suffer from inefficiency and
high costs in terms of expert resources. Moreover, the interpretation of results differs substantially
across experts [18,19].

In recent years, the development of machine learning has helped to overcome some of these
limitations by promoting the use of computer image recognition and processing [20,21]. Furthermore,
with the development of technologies such as GPU and artificial intelligence, image recognition via
deep learning methods has become more efficient and accurate [22,23], which enables the use of deep
learning to realize postearthquake scene recognition. The core steps of image recognition are typically
feature extraction and classification. In the early days, image recognition mainly used traditional
manual feature extraction methods, such as Scale-invariant Feature Transform (SIFT) [24], Histogram
of Gradient (HOG) [25] and Deformable Parts Model (DPM) [26], in combination with classifiers such
as Support Vector Machine (SVM) [27] and random forest [28]. Since Hinton [29] proposed a solution
to the problem of gradient disappearance in deep network training, deep learning entered a period of
substantial development. After Convolutional Neural Networks (CNNs) [30] were proposed in 2012,
deep learning was developed explosively; CNN has been fully developed and has been applied to
many research fields. There are two typical types of deep learning for image recognition: methods
that are based on region proposal, such as RCNN [31], FAST-RCNN [32], FASTER-RCNN [33] and
R-FCN [34] and methods that are based on regression, such as You Only Look Once (YOLO) [35] and
Single Shot MultiBox Detector (SSD) [36]. The methods of the second type are faster but less accurate
than those of the first type, because they generate bounding boxes in a single net. Compared to YOLO,
the SSD method not only improves the speed but also improves the recognition accuracy, which is
comparable to the RCNN series [36]. Therefore, the SSD method is adopted in our model.

Recently, many researchers have applied deep learning methods to disaster scene recognition.
Ding et al. [37] considered a Google postearthquake image with a spatial resolution of 0.3 m in Ludian
county, Yunnan province of China as an example and used a pretrained AlexNet deep convolution neural
network model for feature extraction, in combination with a SVM classifier, to realize postearthquake
scene recognition. Sun et al. [38] proposed a convolutional neural network that was combined with
multiscale segmentation (CMSCNN) for high-resolution seismic image classification, which realized
improved accuracy. Xu et al. [39] developed a Dense Feature Pyramid model with an encoder–decoder
network (DFPENet) for coseismic landslide recognition, and the experimental results demonstrated
its high-precision, high-efficiency and cross-scene recognition of earthquake disasters. Ji et al. [40]
proposed a CNN feature with the random forest method; compared with CNN, this method improves
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the accuracy of postearthquake collapse identification and the feature extraction performance of
CNN is better than that of texture feature extraction. Song et al. [41] proposed a method that used
the Deeplab v2 neural network for the initial identification of damaged building areas and applied
the simple linear iterative cluster (SLIC) method to accurately extract the area boundaries of the
earthquake-damaged buildings. Finally, a mathematical morphological method was introduced for
eliminating the background noise in this paper.

The methods that are discussed above yielded substantial results in the field of postearthquake
scene recognition through the optimization of network structure and integration with other algorithms.
However, these methods rarely consider the lack of data and may struggle to perform well with
insufficient data. Especially in postearthquake remote sensing image recognition, a substantial obstacle
is the lack of labeled samples. Therefore, it is important to establish a postearthquake scene recognition
model that can perform well with only a small amount of data.

In this paper, a postearthquake multiple scene recognition (PEMSR) model based on the classical
SSD detection method and transfer learning is proposed. The model attempts to collect postearthquake
scenes images and to label them manually for the construction of a dataset. To eliminate the negative
influence of an insufficient dataset, data augmentation and transfer learning [42] are used in this model.
In addition, random oversampling is utilized to overcome the problem of data imbalance. The PEMSR
model and other models are evaluated and compared to examine the model’s performance and the
impacts of data augmentation and transfer learning on the PEMSR model.

2. Materials and Methods

The PEMSR model’s workflow is illustrated in Figure 1, which has five major components: (1)
data collection; (2) data preprocessing; (3) transfer learning with SSD; (4) testing and validation; and (5)
model evaluation.
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Figure 1. PEMSR model’s workflow. Trainval dataset means training and validation dataset.

2.1. Data Collection

In this paper, Google images of the earthquake-stricken area of Ludian County, Zhaotong City,
Yunnan Province of China on August 7, 2014 with a spatial resolution of 0.3 m are collected as the raw
data for recognition. Detailed information is presented in Table 1.

Table 1. Image information.

Date Location Name Spatial Resolution Image Size

2014/08/07 Niulan River 0.3 m 44,667*30,000
2014/08/07 Longtou Mountain 0.3 m 89,387*80,000

2.2. Data Preprocessing

After the images have been obtained, it is necessary to preprocess the raw data so that it can be
adapted for network training. The main steps of data preprocessing are (1) data segmentation and
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classification; (2) ground truth boxes labeling; (3) data augmentation and balance; and (4) dataset
format conversion.

2.2.1. Data Segmentation and Classification

In this phase, the images which had wide ranges were too large to train and test. Hence, we
segmented images through ArcGIS Desktop to extract useful scenes for the experiment. Each image is
cropped to close to 300*300 pixels, which is convenient for the subsequent processing. The segmented
images are classified manually as six types of scenes: landslide, ruins and clogged which are caused
by an earthquake, along with common scenes, namely, houses, ponding and trees. These six types of
scenes constitute our original dataset. The number of instances of each type of scene is specified in
Table 2. Considering the limited amount of data in the original dataset, in order to ensure sufficient
training dataset to avoid overfitting and the confidence of the test results, the segmented images are
randomly divided into a trainval (training and validation) dataset and a test dataset in a 4:1 ratio. As the
original images are too big to present, parts of the original images and the segmented postearthquake
scene images are shown in Figure 2.

Table 2. Number of instances of each scene.

Scene Houses Landslide Ruins Ponding Trees Clogged

Num. 125 52 115 21 26 24
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Figure 2. Results of segmentation and classification. Image (a) is of part of Niulan river and image
(b) is of part of Longtou mountain. Segmented and classified postearthquake scenes: (c) houses, (d)
landslide, (e) ruins, (f) ponding, (g) trees and (h) clogged.



ISPRS Int. J. Geo-Inf. 2020, 9, 238 5 of 16

2.2.2. Ground Truth Boxes Labeling

Classified images with manually labeled of regions of interest (ROIs) are necessary as prior
knowledge in the experiment. The ROIs of every image are delineated by the blue ground truth boxes,
and TXT files are generated for recording the boxes’ information, where each TXT file corresponds to
an image. The TXT file’s format is as follows:

Object Number
ClassName x1min y1min x1max y1max
ClassName x2min y2min x2max y2max

The number of ground truth boxes and each box’s name and location in the corresponding image
are recorded. A labeling result example is presented in Figure 3.
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2.2.3. Data Augmentation and Balance

In the deep learning method, fewer training samples may result in insufficient learning performance
of the model, poor generalization of the model and overfitting. To overcome the problem of insufficient
sample data in the experiment, we apply the data augmentation [43,44] method of rotation and mirroring
to obtain additional similar sample data. As presented in Table 3, the mirroring transformation doubles
the number of original sample data. The rotation transformation is the rotation of the original images by
90, 180 and 270◦, which can increase the number of original sample data four times. In the experiment,
this paper combines the two data augmentation methods and uses them to expand the sample size
to 2, 4 and 8 times the original sample size. In the data augmentation process, the labeled ground
truth boxes are augmented simultaneously, and new corresponding annotation TXT files will also
be generated.

Table 3. Data augmentation method.

Augmentation Method Transformation Parameter

Rotation 90◦, 180◦, 270◦

Mirroring (x, y) = (y, x)

In addition, there is a severe imbalance in the distribution of the original scenes, which may
impact the performance of the model. There are three main approaches to deal with class imbalance
problems, which can be classified as data-level, algorithm-level and hybrid methods. To ameliorate the
sample imbalance problem in the dataset, the random oversampling method [38] is used to replicate
and increase the number of samples in minority classes in this paper. Table 4 presents the data volumes
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after data augmentation and data balance; the number of scenes in the dataset increases and tends to
be more balanced. After each data augmentation, we ensured that the ratio of the trainval (training
and validation) dataset to the test dataset is 4:1. After the last data augmentation and balance, the total
number of trainval dataset is 4608 and the total number of test dataset is 1152.

Table 4. Data volume after augmentation and balance. Two times the original number of data is
obtained via the mirroring transform, four times via the rotation transform and eight times via the
combination of the two transforms. The last row is the data distribution after data balance.

Times Houses Landslide Ruins Ponding Trees Clogged

Original 125 52 115 21 26 24
Twice 250 104 230 42 52 48
Four 500 208 460 84 104 96
Eight 1000 416 920 168 208 192

Balanced 1000 832 920 1008 1040 960

2.2.4. Dataset Format Conversion

In this paper, all experiments are based on a deep learning open source framework, namely,
Caffe [45]. Caffe requires the training data format to be LMDB; hence, it is necessary to convert the
dataset to LMDB format before training. The main steps are as follows:

Create four new folders: Annotations, JPEGImages, ImageSets and Labels. All images are
numbered and stored in the JPEGImages folder, and corresponding TXT label files are stored in the
Labels folder.

Convert the TXT label files to XML format using a script and store them in the Annotations folder.
Run a script to generate trainval (training and validation) dataset and test dataset identification

files and store them in the main folder of ImageSets. Via this approach, the dataset is converted into
VOC format.

Modify and run the conversion script to convert the VOC dataset to LMDB format. The formatted
trainval (training and validation) and test datasets are generated and stored in the LMDB folder. Data
preprocessing is completed.

2.3. Transfer Learning with SSD

Transfer learning has the advantages of low data requirements, flexibility and robustness, which
can improve the PEMSR model training efficiency and accuracy. To overcome the lack of sufficient
labeled samples, this paper utilizes transfer learning [42,43,46] with a pretrained model that is obtained
via SSD training on the PASCAL VOC dataset. There are two types of SSD structures that are most
widely used, including SSD-300 and SSD-512. This paper chooses the SSD-300 as the base model,
which also fits the images size of our dataset 300 * 300. The SSD-300 [36,47] method consists of two
components: a deep convolutional neural network based on the VGGNet-16 network structure [48]
for target preliminary feature extraction and a multiscale convolutional feature detection network.
This network combines multiscale feature maps and convolution operators to generate bounding
boxes with probabilities that they contain the objects of interest. Then, the final recognition results are
obtained via nonmaximum suppression (NMS). Our PEMSR model inherits the advantages of this
structure and fine tunes network parameters by learning from our postearthquake scenes dataset.

Fine-tuning is an important skill for transfer learning. As shown in Figure 4, the parameters of
the PEMSR model are initialized by the parameters of the SSD-300 model that is pretrained on the
PASCAL VOC dataset. At the same time, according to the input postearthquake scenes dataset, the
weights of the layers are fine-tuned for class prediction and the generation of bounding boxes. In the
model training phase, the batch size is set to 64, the weight decay is set to 0.05, the momentum is set to
0.9, the number of iterations is set to 24,000 and the base learning rate is set to 0.01 and divided by 10
when the number of iterations reaches 8000 and 16,000.
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Figure 4. PEMSR network proposed in this paper. The black arrows represent the fixed initial parameters
that are learned on the PASCAL VOC dataset, and the blue arrows represent the weights that are
learned on this paper’s dataset. The sizes of the feature maps in the five subsequent convolutional
layers are 19, 10, 5, 3 and 1.

2.4. Testing and Validation

The dataset of this paper is randomly divided into ten subsets, with seven subsets used as the
training dataset, one subset used as the validation dataset and the remaining subsets used as the test
dataset. After the PEMSR training model was obtained, the test script was run and the test result was
obtained. Figure 5 presents a test recognition result; in the upper left corner of the box, the class name
and the confidence value are specified.
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Figure 5. Example of a test result.

2.5. Model Evaluation

2.5.1. Evaluation Metrics

In this paper, the precision, recall and F1 are selected as evaluation metrics. The precision is
the ratio of the number of positive samples that are identified correctly as positive samples. The
recall reflects whether all positive examples are recognized. The F1 score is the harmonic mean of the
recall and the precision, which is a more comprehensive evaluation metric; a value that exceeds 0.6 is
considered satisfactory. These metrics are calculated as follows:

precision =
tp

tp + f p (1)

recall = tp
tp + f n (2)

F1 = 2 ∗ P ∗ R
P + R (3)

where tp is the number of positive samples that are correctly identified as positive, f p is the number of
negative samples that are incorrectly identified as positive, f n is the number of positive samples that
are not recognized, P is the precision value and R is the recall value.
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2.5.2. Comparison Evaluation with the HOG+SVM Method

For further comparison and evaluation of the PEMSR model, this paper considers the traditional
target recognition method HOG+SVM in this experiment. HOG is used for feature extraction and SVM
is used for feature classification.

The HOG+SVM [25,27,49–51] method mainly includes the following steps:

1) Image graying: convert RGB images to grayscale;
2) Color normalization: normalize the color space by the gamma correction method;
3) Gradient calculation: calculate the gradient of each pixel of the image;
4) Cells segmentation: divide the image into small 6 * 6 cells and statistic gradient histogram;
5) Block descriptor: combine 2 * 2 cells into a block to get the block descriptor;
6) Block descriptor normalization: normalize contrast for each block and collect HOGs over

detection window;
7) SVM classifier: send the HOG feature vector to the SVM classifier.

Besides, the standard SVM is a binary classifier for pattern recognition, and it must be extended to
a multiclass classifier for learning a multiclass problem. Hence, this paper combines the two types of
postearthquake scenes to form 15 new classifiers. For convenience, the six types of scenes are denoted
by A, B, C, D, E and F. Each training on unknown samples will yield 15 training results. In the test, the
corresponding vector of unknown samples is tested on the 15 results; then, voting is conducted for
classification. The complete voting process is as follows:

First, A = B = C = D = E = F = 0;
In the (A, B) classifier, if A wins, then A = A + 1; otherwise, B = B + 1;
In the (A, C) classifier, if A wins, then A = A + 1; otherwise, C = C + 1;
In the (D, F) classifier, if D wins, then D = D + 1; otherwise, F = F + 1;
In the (E, F) classifier, if E wins, then E = E + 1; otherwise, F = F + 1;
Finally, after 15 comparisons, the classification result of the image is Max (A, B, C, D, E, F).

3. Experiments and Results

This section introduces the study area, experimental environment preparation and design
methods that are utilized in this paper. Multiple sets of comparison and optimization experiments
were conducted to identify the optimal PEMSR model.

3.1. Study Area

This paper selected the 2014 magnitude 6.5 Ludian earthquake area as the study area, which
is related to the earthquake time and location. There are several important characteristics of the
study area. Firstly, Ludian County was a poverty-stricken county at the national level, located in
the northeast of Yunnan, China. The local economic conditions were relatively poor and the seismic
resistance of buildings were generally poor, so that too many buildings collapsed when the earthquake
happened. Secondly, the earthquake area was mountainous and coincided with the rainy season so
that caused more serious secondary disasters, such as landslides and mudslides. These scenes are
more obvious and typical on remote sensing images with complex backgrounds, so this paper selected
Ludian earthquake area as the study area.

3.2. Experiment Preparation and Design

Our experiments are conducted on an Ubuntu 14.04 LTS (64-bit) operating system. We train the
model on a GTX 1080 with 8G of memory; other environmental configurations are presented in Table 5.

For evaluating the performance of the PEMSR model and the impacts of transfer learning,
data augmentation and balance on the model more extensively, this paper designed three levels
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of experiments: first, comparison with the HOG+SVM and initial SSD methods to evaluate the
performance of the three models on postearthquake scene recognition; second, after data augmentation
by 2, 4 and 8 times, comparison of the performance of the PEMSR model before and after data
augmentation; and third, comparison of the performance of the model before and after data balancing.

Table 5. Experimental environment configuration.

Environment Version

Operating System Ubuntu 14.04 LTS (64-bit)
Deep Learning Framework Caffe

Memory 64G
GPU Nvidia GTX 1080
CPU Intel(R) Core (TM) i7-6800k

Library CUDA 8.0, CuDNN 8.0

3.3. Experimental Results

3.3.1. Comparison of the Results of Three Methods

The HOG+SVM method and the SSD [36] method of initial parameters are compared with the
PEMSR model for a comparison evaluation. The F1 score results of these methods are presented in
Table 6. According to Table 6, the F1 scores of the HOG+SVM method are only slightly higher than
those of the SSD and PEMSR methods for the ponding and trees scenes, while the F1 scores for the other
scenes are far lower than those of the other two methods. The F1 scores of the SSD and PEMSR models
on houses, landslide, ruins and ponding exceed 60%; the scores do not reach 60% on trees and clogged
which points to the need for further improvement. In addition, the average detection times of both the
SSD and PEMSR methods are shorter than 0.5s; these methods are much faster than the traditional
HOG+SVM recognition method. In summary, deep learning methods outperform the traditional
machine learning method overall. Comparing the performance of SSD and PEMSR, although the SSD
method is slightly faster in terms of the detection time, PEMSR realizes higher recognition accuracy on
several scenes, which reflects the positive influence of transfer learning.

Table 6. F1 score results of the three methods on the original data. HS refers to the F1 score results
of the HOG+SVM method, ADT refers to the average detection time and the bold values are the best
results among the three methods.

Method Houses Landslide Ruins Ponding Trees Clogged ADT

HS 64.86% 33.33% 51.85% 80.00% 40.00% 26.92% 8.3472 s
SSD 75.22% 83.57% 82.95% 70.31% 37.88% 46.21% 0.4123 s

PEMSR 79.17% 86.67% 87.78% 72.73% 39.98% 50.00% 0.4565 s

3.3.2. Results Comparison after Data Augmentation

To optimize the PEMSR model, a data augmentation strategy is used in this paper. The F1 score
results that are obtained after augmentation of the data 2, 4 and 8 times are presented in Table 7.
The overall recognition accuracy of the PEMSR model increases as the samples’ volume increases,
especially for the trees and clogged scenes, which occupy only small parts in the original dataset.
Through data augmentation, the recognition accuracy of each scene has been improved and all scenes’
F1 scores exceed 60%. However, this does not imply that as the sample size increases, the recognition
performance will improve indefinitely. For example, for the ruins data with augmentations of four and
eight times in Table 7, the amount of data increased, but the F1 score declined slightly. It is believed
that the optimal recognition performance has been approached or realized on the ruins samples;
the best recognition performance is realized by the PEMSR model, and it is difficult to improve via
data augmentation.
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Table 7. F1 score results of the PEMSR method under various data volumes. The bold values are the
best results for each scene.

Times Houses Landslide Ruins Ponding Trees Clogged

Original 79.17% 86.67% 87.78% 72.73% 39.98% 50.00%
Twice 80.00% 86.24% 87.34% 72.79% 53.33% 63.16%
Four 80.61% 85.48% 88.06% 74.42% 57.14% 60.00%
Eight 88.28% 90.37% 88.02% 76.08% 64.10% 62.06%

3.3.3. Results Comparison after Data Balancing

The imbalance of the dataset may make the performance of the PEMSR model biased toward
minority samples. Several experiments were conducted to evaluate this hypothesis. After we used
random oversampling to make data samples more balanced, the recognition F1 score results presented
in Table 8 were obtained. They are performed on the original, augmented and balanced samples. The
F1 score results of data augmentation are the optimal recognition accuracy on each scene in the previous
augmentation experiments. After the samples are balanced, the F1 scores on the ponding, trees and
clogged scenes, which occupy relatively small parts of the previous dataset, increase substantially;
those for the other scenes do not change substantially.

Table 8. F1 score results of the PEMSR model under various conditions. SI refers to the best F1 score
results after the sample volume was increased, and SB refers to the F1 score results after the sample
was balanced. The bold values are the best results among several experiments for each scene.

Data Houses Landslide Ruins Ponding Trees Clogged

Original 79.17% 86.67% 87.78% 72.73% 39.98% 50.00%
SI 88.28% 90.37% 88.06% 76.08% 64.10% 63.16%
SB 87.88% 92.32% 89.02% 83.66% 77.34% 72.16%

3.3.4. Optimal PEMSR Model

Based on the results of comparative experiments, the optimal PEMSR model is regarded as the
model with data augmentation by a factor of eight and data balancing. According to Figure 6, it can
be seen that the loss value decreases rapidly in the first 50 epochs and then gradually flattens until it
converges. Test results of the optimal PEMSR model are presented in Figure 7, and its precision, recall
and F1 score are presented in Table 9. All these values exceed 70% on all scenes and exceed 90% on the
landslide scene. Hence, satisfactory recognition performance has been realized.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 17 

 

Table 8. F1 score results of the PEMSR model under various conditions. SI refers to the best F1 score 

results after the sample volume was increased, and SB refers to the F1 score results after the sample 

was balanced. The bold values are the best results among several experiments for each scene. 

Data Houses Landslide Ruins Ponding Trees Clogged 

Original 79.17% 86.67% 87.78% 72.73% 39.98% 50.00% 

SI 88.28% 90.37% 88.06% 76.08% 64.10% 63.16% 

SB 87.88% 92.32% 89.02% 83.66% 77.34% 72.16% 

3.3.4. Optimal PEMSR Model 

Based on the results of comparative experiments, the optimal PEMSR model is regarded as the 

model with data augmentation by a factor of eight and data balancing. According to Figure 6, it can 

be seen that the loss value decreases rapidly in the first 50 epochs and then gradually flattens until it 

converges. Test results of the optimal PEMSR model are presented in Figure 7, and its precision, recall 

and F1 score are presented in Table 9. All these values exceed 70% on all scenes and exceed 90% on 

the landslide scene. Hence, satisfactory recognition performance has been realized. 

 

 

 

 

 

 

 

 

 

Figure 6. Relation between epochs and loss value of optimal PEMSR model. 

Table 9. Test results of the optimal PEMSR model. This model is trained after data augmentation by 

a factor of 8 and data balancing. 

Metrics Houses Landslide Ruins Ponding Trees Clogged 

Precision 84.01% 91.55% 90.42% 84.00% 83.33% 72.91% 

Recall 92.12% 93.10% 87.66% 83.33% 72.22% 71.43% 

F1 87.88% 92.32% 89.02% 83.66% 77.34% 72.16% 

 

Figure 6. Relation between epochs and loss value of optimal PEMSR model.



ISPRS Int. J. Geo-Inf. 2020, 9, 238 11 of 16

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 13 of 18 

ISPRS Int. J. Geo-Inf. 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/ijgi 

 451 

Figure 7. Examples of optimal PEMSR model test results. From top to bottom, scenes of houses, 452 
landslide, ruins, clogged, ponding and trees are shown. 453 

Figure 7. Examples of optimal PEMSR model test results. From top to bottom, scenes of houses,
landslide, ruins, clogged, ponding and trees are shown.



ISPRS Int. J. Geo-Inf. 2020, 9, 238 12 of 16

Table 9. Test results of the optimal PEMSR model. This model is trained after data augmentation by a
factor of 8 and data balancing.

Metrics Houses Landslide Ruins Ponding Trees Clogged

Precision 84.01% 91.55% 90.42% 84.00% 83.33% 72.91%
Recall 92.12% 93.10% 87.66% 83.33% 72.22% 71.43%

F1 87.88% 92.32% 89.02% 83.66% 77.34% 72.16%

4. Discussion

The proposed PEMSR model realizes six types of postearthquake scene recognition. Then, the
model is optimized, and the recognition performance is improved. Through several experiments, the
PEMSR model demonstrates two advantages. First, the PEMSR model based on SSD with transfer
learning outperforms the HOG+SVM method in recognition. Second, data augmentation and balancing
overcome the problems caused by insufficient and imbalanced datasets, which improves the accuracy
of the PEMSR model on postearthquake scene recognition. In addition, the model facilitates the
identification of areas that merit further study.

4.1. PEMSR Model with Transfer Learning Outperforms Other Methods

According to Table 6, the PEMSR model shows a higher recognition efficiency compared with the
traditional HOG+SVM machine learning method: the average detection time required is only 0.4565s,
while that of the HOG+SVM method is 8.3472s, and its overall recognition accuracy is higher. The
application of the transfer learning method results in a significant improvement on the task of training
a model with insufficient samples. The PEMSR model that is proposed in this paper is based on the
SSD method which uses the transfer learning strategy to reduce the required training sample data
volume. As Table 10 shows, the overall accuracy for each type of scene is improved due to the transfer
learning strategy, although the average detection time is slightly longer compared to the SSD method.
The PEMSR model shows better overall accuracy via transfer learning.

Table 10. F1 score results for PEMSR and the SSD method on the original data. ADT refers to the
average detection time and the bold values are the best results among the two methods for each scene.

Method Houses Landslide Ruins Ponding Trees Clogged ADT

SSD 75.22% 83.57% 82.95% 70.31% 37.88% 46.21% 0.4123 s
PEMSR 79.17% 86.67% 87.78% 72.73% 39.98% 50.00% 0.4565 s

4.2. Data Augmentation and Balancing Improves the Accuracy of PEMSR Model

Most deep learning methods require sufficient sample data; otherwise, the training performance
will be poor or overfitting will occur. In the PEMSR model, data augmentation is used to overcome the
problem of poor original samples. Table 11 presents the F1 score results of each postearthquake scene
for every augmentation experiment. The overall recognition accuracy of the PEMSR model increases
with each data augmentation. However, there are also scenes with very small improvements, such as
ruins. On this scene, the recognition performance is close to the optimal recognition performance of
the PEMSR model. The ruins recognition result F1 score tends to be stable, with only a few fluctuations
in each different experiment, and it is difficult to improve the performance via data augmentation.
The imbalanced dataset may bias the model towards the majority class of the sample, whereas the
recognition of the minority class of the sample is not satisfactory. Whilst simply increasing the amount
of training data may not continue to improve the performance of the model, we consider applying the
oversampling method in data augmentation to balance the dataset. The results demonstrate that when
our dataset was balanced, the recognition performance of the PEMSR model improved substantially,
especially on classes of scenes that occupy small proportions of the original dataset, such as ponding,
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trees and clogged. It is concluded that our PEMSR model offers advantages when faced with sample
shortages and imbalance.

Table 11. F1 score results after each data augmentation of the PEMSR model. SB refers to the F1 score
results after data balancing. The bold values are the best results for each scene.

Times Houses Landslide Ruins Ponding Trees Clogged

Original 79.17% 86.67% 87.78% 72.73% 39.98% 50.00%
Twice 80.00% 86.24% 87.34% 72.79% 53.33% 63.16%
Four 80.61% 85.48% 88.06% 74.42% 57.14% 60.00%
Eight 88.28% 90.37% 88.02% 76.08% 64.10% 62.06%

SB 87.88% 92.32% 89.02% 83.66% 77.34% 72.16%

4.3. Future Enhancements

As reported in this paper, the PEMSR model realizes excellent recognition performance in
postearthquake scene recognition. However, there is scope for further development and application.
For example, this paper does not consider the influence of the image resolution on the recognition
performance. In the future, contrast experiments will be conducted through image blurring, and the
influence of the resolution on PEMSR model recognition performance will be explored. Besides, the
samples of this paper come from a mountainous seismic area, and the recognition effect of the model in
the urban building dense area needs further verification. Furthermore, we consider taking the common
scenes such as houses, trees and ponding as a type of background sample and analyze their impact on
model recognition of scenes caused by earthquakes. At the same time, more types of scenes caused
by earthquakes were added, such as ground cracks. Finally, the application of additional knowledge
from disaster science to realize hierarchical recognition of postearthquake scenes is a subject for further
investigation. For example, ruins can be divided into severe and mild damage classes, which may be
more valuable for postearthquake relief and reconstruction.

5. Conclusions

This paper proposes a PEMSR model based on the classical SSD detection method that was
focused on overcoming the over-reliance on expert visual interpretation and the poor recognition
performance of traditional machine learning in postearthquake scene recognition. In the model, a
transfer learning and data augmentation strategy are utilized to overcome the dataset insufficiency;
moreover, a random oversampling method is used to overcome dataset imbalance. The results of
several comparison and optimization experiments demonstrate that the model realizes satisfactory
performance in postearthquake scene recognition and that transfer learning, data augmentation and
data balancing strategies improve the recognition performance of the PEMSR model. Although there
are many opportunities for further exploration and development, the results thus far are encouraging
in the field of postearthquake scene recognition.

Author Contributions: Zhiqiang Xu and Yumin Chen conceived and designed the experiments; Fan Yang and
Tianyou Chu processed the data; Zhiqiang Xu, Fan Yang and Hongyan Zhou performed the experiments; Zhiqiang
Xu and Yumin Chen wrote the paper; Tianyou Chu and Hongyan Zhou prepared the figures for the paper. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work is financially supported by National Key R&D Program of China: (grant number
2018YFB0505302); and the National Nature Science Foundation of China: (grant number 41671380).

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2020, 9, 238 14 of 16

References

1. Lin, X.; Zhang, H.; Chen, H.; Chen, H.; Lin, J. Field investigation on severely damaged aseismic buildings in
2014 Ludian earthquake. Earthq. Eng. Eng. Vib. 2015, 14, 169–176. [CrossRef]

2. Chong, X. Utilizing coseismic landslides to analyze the source and rupturing process of the 2014 Ludian
earthquake. J. Eng. Geol. 2015, 23, 755–759.

3. Shibayama, A.; Hisada, Y. An Efficient System for Acquiring Earthquake Damage Information in Damaged
Area. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6
August 2004.

4. Ajami, S.; Fattahi, M. The role of earthquake information management systems (EIMSs) in reducing
destruction: A comparative study of Japan, Turkey and Iran. Disaster Prev. Manag. Int. J. 2009, 18, 150–161.
[CrossRef]

5. Li, H.; Xiao, S.; Huo, L. Damage investigation and analysis of engineering structures in the Wenchuan
earthquake. J. Build. Struct. 2008, 4, 10–19.

6. Saisi, A.; Gentile, C. Post-earthquake diagnostic investigation of a historic masonry tower. J. Cult. Herit.
2015, 16, 602–609. [CrossRef]

7. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F., Jr. Towards automated post-earthquake inspections
with deep learning-based condition-aware models. arXiv 2018, arXiv:1809.09195.

8. Dong, Y.; Li, Q.; Dou, A.; Wang, X. Extracting damages caused by the 2008 Ms 8.0 Wenchuan earthquake
from SAR remote sensing data. J. Asian Earth Sci. 2011, 40, 907–914. [CrossRef]

9. Eisenbeiss, H. A mini unmanned aerial vehicle (UAV): System overview and image acquisition. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 1–7.

10. Liu, J.-h.; Shan, X.-j.; Yin, J.-y. Automatic recognition of damaged town buildings caused by earthquake
using remote sensing information: Taking the 2001 Bhuj, India, earthquake and the 1976 Tangshan, China,
earthquake as examples. Acta Seismol. Sin. 2004, 17, 686–696. [CrossRef]

11. Gong, L.X.; Wang, C.; Wu, F.; Zhang, J.F.; Zhang, H.; Li, Q. Earthquake-Induced Building Damage Detection
with Post-Event Sub-Meter VHR TerraSAR-X Staring Spotlight Imagery. Remote Sens. 2016, 8, 887. [CrossRef]
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