Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Tri-Clustering Analysis
2.3. Experiment: Tri-Clustering Dutch Temperature Data at Multiple Temporal Resolutions
3. Results
3.1. Spatio-Temporal Clusters at Daily Resolution
3.2. Spatio-Temporal Clusters at Monthly Resolution
3.3. Spatio-Temporal Clusters at Yearly Resolution
3.4. Comparisons of Spatio-Temporal Clusters at Different Temporal Resolutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Z.; Yang, C.; Liu, K.; Hu, F.; Jin, B. Automatic scaling hadoop in the cloud for efficient process of big geospatial data. ISPRS Int. J. Geo-Inf. 2016, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Sagl, G.; Loidl, M.; Beinat, E. A visual analytics approach for extracting spatio-temporal urban mobility information from mobile network traffic. ISPRS Int. J. Geo-Inf. 2012, 1, 256–271. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, S.; Jiang, Z.; Ali, R.Y.; Eftelioglu, E.; Tang, X.; Gunturi, V.; Zhou, X. Spatiotemporal data mining: A computational perspective. ISPRS Int. J. Geo-Inf. 2015, 4, 2306–2338. [Google Scholar] [CrossRef]
- Miller, H.J.; Han, J. Geographic Data Mining and Knowledge Discovery: An Overview. In Geographic Data Mining and Knowledge Discovery, 2nd ed.; Miller, H.J., Han, J., Eds.; Taylor & Francis Group: London, UK, 2009; pp. 1–26. [Google Scholar]
- Kisilevich, S.; Mansmann, F.; Nanni, M.; Rinzivillo, S. Spatio-Temporal Clustering. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: New York, NY, USA, 2010; pp. 855–874. [Google Scholar]
- Wu, X.J.; Zurita-Milla, R.; Kraak, M.J. Co-clustering geo-referenced time series: Exploring spatio-temporal patterns in Dutch temperature data. Int. J. Geogr. Inf. Sci. 2015, 29, 624–642. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kamber, M.; Pei, J. Data Mining Concepts and Techniques; Morgan Kaufman MIT Press: Burlington, MA, USA, 2012. [Google Scholar]
- Mueller, E.; Sandoval, J.; Mudigonda, S.; Elliott, M. A cluster-based machine learning ensemble approach for geospatial data: Estimation of health insurance status in Missouri. ISPRS Int. J. Geo-Inf. 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Andrienko, G.; Andrienko, N.; Rinzivillo, S.; Nanni, M.; Pedreschi, D.; Giannotti, F. Interactive Visual Clustering of Large Collections of Trajectories. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST), Atlantic City, NJ, USA, 12–13 October 2009. [Google Scholar]
- Wang, H.; Du, Y.; Sun, Y.; Liang, F.; Yi, J.; Wang, N. Clustering Complex Trajectories Based on Topologic Similarity and Spatial Proximity: A Case Study of the Mesoscale Ocean Eddies in the South China Sea. ISPRS Int. J. Geo-Inf. 2019, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Henriques, R.; Madeira, S.C. Triclustering algorithms for three-dimensional data analysis: A comprehensive survey. ACM Comput. Surv. (CSUR) 2018, 51, 95. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Cheng, C.; Zurita-Milla, R.; Song, C. An overview of clustering methods for geo-referenced time series: From one-way clustering to co- and tri-clustering. Int. J. Geogr. Inf. Sci. 2020, 1–27. [Google Scholar] [CrossRef]
- Mills, R.T.; Hoffman, F.M.; Kumar, J.; Hargrove, W.W. Cluster analysis-based approaches for geospatiotemporal data mining of massive data sets for identification of forest threats. Proc. Comput. Sci. 2011, 4, 1612–1621. [Google Scholar] [CrossRef] [Green Version]
- Andrienko, G.; Andrienko, N.; Bremm, S.; Schreck, T.; Von Landesberger, T.; Bak, P.; Keim, D. Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Comput. Gr. Forum 2010, 29, 913–922. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. Hierarchical self-organizing maps for clustering spatiotemporal data. Int. J. Geogr. Inf. Sci. 2013, 27, 2026–2042. [Google Scholar] [CrossRef]
- White, M.A.; Hoffman, F.; Hargrove, W.W.; Nemani, R.R. A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett. 2005, 32, L04705. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zurita-Milla, R.; Kraak, M.-J. A novel analysis of spring phenological patterns over Europe based on co-clustering. J. Geophys. Res. Biogeosci. 2016, 121, 1434–1448. [Google Scholar] [CrossRef] [Green Version]
- Andreo, V.; Izquierdo-Verdiguier, E.; Zurita-Milla, R.; Rosà, R.; Rizzoli, A.; Papa, A. Identifying Favorable Spatio-Temporal Conditions for West Nile Virus Outbreaks by Co-Clustering of Modis LST Indices Time Series. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Ullah, S.; Daud, H.; Dass, S.C.; Khan, H.N.; Khalil, A. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach. Geospatial Health 2017, 12, 567. [Google Scholar]
- Zhao, L.; Zaki, M.J. Tricluster: An Effective Algorithm for Mining Coherent Clusters in 3D Microarray Data. In Proceedings of the 2005 Acm Sigmod International Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005. [Google Scholar]
- Wu, X.; Zurita-Milla, R.; Izquierdo Verdiguier, E.; Kraak, M.-J. Triclustering Georeferenced Time Series for Analyzing Patterns of Intra-Annual Variability in Temperature. Ann. Am. Assoc. Geogr. 2018, 108, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Adepeju, M. Modifiable temporal unit problem (MTUP) and its effect on space-time cluster detection. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, Q.; Li, Z.; Wu, M. The Impact of MTUP to Explore Online Trajectories for Human Mobility Studies. In Proceedings of the 1st Acm Sigspatial Workshop on Prediction of Human Mobility, Redondo Beach, CA, USA, 7–10 November 2017. [Google Scholar]
- Openshaw, S. The Modifiable Unit Problem. Geo Books; Headley Brothers Ltd. Kent: Norwick, UK, 1983. [Google Scholar]
- Jiang, B.; Brandt, S.A. A fractal perspective on scale in geography. ISPRS Int. J. Geo-Inf. 2016, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Josselin, D.; Louvet, R. Impact of the Scale on Several Metrics Used in Geographical Object-Based Image Analysis: Does GEOBIA Mitigate the Modifiable Areal Unit Problem (MAUP)? ISPRS Int. J. Geo-Inf. 2019, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Coltekin, A.; Sabbata, S.C.; Willi, D.; Vontobel, I.; Pfister, S.; Kuhn, M.; Lacayo, M. Modifiable Temporal Unit Problem. In Proceedings of the ISPRS/ICA workshop Persistent problems in geographic visualization (ICC2011), Paris, France, 2–7 July 2011. [Google Scholar]
- de Jong, R.; de Bruin, S. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 2012, 9, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zurita-Milla, R.; Kraak, M.-J. Visual discovery of synchronization in weather data at multiple temporal resolutions. Cartogr. J. 2013, 50, 247–256. [Google Scholar] [CrossRef]
- Zhao, Z.; Shaw, S.-L.; Yin, L.; Fang, Z.; Yang, X.; Zhang, F.; Wu, S. The effect of temporal sampling intervals on typical human mobility indicators obtained from mobile phone location data. Int. J. Geogr. Inf. Sci. 2019, 33, 1471–1495. [Google Scholar] [CrossRef]
- Estrella, N.; Sparks, T.; Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Chang. Biol. 2007, 13, 1737–1747. [Google Scholar] [CrossRef]
- Sim, K.; Aung, Z.; Gopalkrishnan, V. Discovering Correlated Subspace Clusters In 3D Continuous-Valued Data. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia, 13–17 December 2010. [Google Scholar]
- Amar, D.; Yekutieli, D.; Maron-Katz, A.; Hendler, T.; Shamir, R. A hierarchical Bayesian model for flexible module discovery in three-way time-series data. Bioinformatics 2015, 31, i17–i26. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Dhillon, I.; Ghosh, J.; Merugu, S.; Modha, D.S. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. J. Mach. Learn. Res. 2007, 8, 1919–1986. [Google Scholar]
- Lenderink, G.; Mok, H.; Lee, T.; Van Oldenborgh, G. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 2011, 15, 3033–3041. [Google Scholar] [CrossRef] [Green Version]
- Nocke, T.; Schumann, H.; Böhm, U. Methods for the visualization of clustered climate data. Comput. Stat. 2004, 19, 75–94. [Google Scholar] [CrossRef]
num. of Changed Elements | Station-Cluster1 | Station-Cluster2 | Station-Cluster3 | Station-Cluster4 | Year-Cluster1 | Year-Cluster2 | Year-Cluster3 | Year-Cluster4 | |
---|---|---|---|---|---|---|---|---|---|
Temporal Resolutions | |||||||||
daily → monthly | 0 | −1 | −3 | 4 | −7 | 4 | 3 | 0 | |
daily → yearly | 0 | 0 | 0 | 0 | −4 | 5 | −1 | 0 | |
monthly → yearly | 0 | 1 | 3 | −4 | 3 | 1 | −4 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zheng, D. Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series. ISPRS Int. J. Geo-Inf. 2020, 9, 210. https://doi.org/10.3390/ijgi9040210
Wu X, Zheng D. Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series. ISPRS International Journal of Geo-Information. 2020; 9(4):210. https://doi.org/10.3390/ijgi9040210
Chicago/Turabian StyleWu, Xiaojing, and Donghai Zheng. 2020. "Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series" ISPRS International Journal of Geo-Information 9, no. 4: 210. https://doi.org/10.3390/ijgi9040210
APA StyleWu, X., & Zheng, D. (2020). Tri-Clustering Based Exploration of Temporal Resolution Impacts on Spatio-Temporal Clusters in Geo-Referenced Time Series. ISPRS International Journal of Geo-Information, 9(4), 210. https://doi.org/10.3390/ijgi9040210