The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Unit of Analysis and Aggregation of Data
2.3. Analytical Strategy
3. Results
3.1. Near-Repeat Analysis
3.2. Negative Binomial Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Minimum | Median | Mean | Maximum | SD |
---|---|---|---|---|---|
Street robberies | |||||
Initiator event a | 0.00 | 0.00 | 0.15 | 22 | 0.90 |
Spatially lagged response | 0.00 | 0.00 | 0.17 | 10.43 | 0.58 |
Criminogenic places | |||||
Restaurant (alcohol) b | 0.09 | 595.73 | 742.23 | 4035.64 | 615.16 |
Restaurant (no alcohol) b | 0.11 | 482.60 | 608.173 | 4931.76 | 482.19 |
Café b | 0.09 | 518.88 | 604.87 | 4279.51 | 467.88 |
Fast-food restaurant b | 0.18 | 482.72 | 558.80 | 4870.47 | 391.19 |
Grocery store b | 0.06 | 417.01 | 482.90 | 4198.00 | 353.97 |
ATM b | 0.40 | 845.92 | 975.60 | 6733.42 | 651.55 |
Bus stop b | 0.01 | 283.35 | 311.56 | 2654.96 | 202.37 |
Train station b | 18.75 | 2953.17 | 3087.81 | 9170.43 | 1661.10 |
High school b | 0.46 | 1303.79 | 1586.23 | 8920.38 | 1148.70 |
Park b | 0.08 | 295.18 | 375.24 | 3734.17 | 321.76 |
Socioeconomic indicators | |||||
Population | 0.00 | 5.58 | 27.17 | 1417.55 | 70.52 |
Affluence | −1.70 | 0.19 | 0.00 | 2.56 | 0.89 |
Deprivation | −1.15 | −0.13 | 0.00 | 5.31 | 0.88 |
Heterogeneity | 0.00 | 0.17 | 0.17 | 0.67 | 0.11 |
References
- Jean, P.K. Pockets of Crime: Broken Windows, Collective Efficacy, and the Criminal Point of View; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Vandeviver, C.; Bernasco, W. The geography of crime and crime control. Appl. Geogr. 2017, 86, 220–225. [Google Scholar] [CrossRef]
- Sampson, R.J.; Groves, W.B. Community structure and crime: Testing social-disorganization theory. Am. J. Sociol. 1989, 94, 774–802. [Google Scholar] [CrossRef] [Green Version]
- Brantingham, P.L.; Brantingham, P.J. Environment, routine and situation: Toward a pattern theory of crime. Adv. Criminol. Theory 1993, 5, 259–294. [Google Scholar]
- Bernasco, W.; Block, R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points. J. Res. Crime Delinq. 2011, 48, 33–57. [Google Scholar] [CrossRef]
- Haberman, C.P.; Ratcliffe, J.H. Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts. Criminology 2015, 53, 457–483. [Google Scholar] [CrossRef]
- Rummens, A.; Hardyns, W.; Pauwels, L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Appl. Geogr. 2017, 86, 255–261. [Google Scholar] [CrossRef]
- Mburu, L.W.; Helbich, M. Environmental risk factors influencing bicycle theft: A spatial analysis in London, UK. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Sampson, R.J. Great American City: Chicago and the Enduring Neighborhood Effect; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Gerell, M.; Kronkvist, K. Violent crime, collective efficacy and city-centre effects in Malmö. Br. J. Criminol. 2017, 57, 1185–1207. [Google Scholar] [CrossRef] [Green Version]
- Braga, A.A.; Papachristos, A.V.; Hureau, D.M. The effects of hot spots policing on crime: An updated systematic review and meta-analysis. Justice Q. 2014, 31, 633–663. [Google Scholar] [CrossRef]
- Ceccato, V.; Haining, R. Crime in border regions: The Scandinavian case of Öresund, 1998–2001. Ann. Assoc. Am. Geogr. 2004, 94, 807–826. [Google Scholar]
- Haberman, C.P.; Ratcliffe, J.H. The predictive policing challenges of near repeat armed street robberies. Polic. A J. Policy Pract. 2012, 6, 151–166. [Google Scholar] [CrossRef]
- Helbich, M.; Arsanjani, J.J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr. Geogr. Inf. Sci. 2015, 42. [Google Scholar] [CrossRef]
- Glasner, P.; Leitner, M. Evaluating the impact the weekday has on near-repeat victimization: A spatio-temporal analysis of street robberies in the city of Vienna, Austria. ISPRS Int. J. Geo Inf. 2017, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Nobles, M.R.; Ward, J.T.; Tillyer, R. The impact of neighborhood context on spatiotemporal patterns of burglary. J. Res. Crime Delinq. 2016, 53, 711–740. [Google Scholar] [CrossRef]
- Morgan, F. Repeat burglary in a Perth suburb: Indicator of short-term or long-term risk? Crime Prev. Stud. 2001, 12, 83–118. [Google Scholar]
- Townsley, M.; Homel, R.; Chaseling, J. Infectious burglaries. A test of the near repeat hypothesis. Br. J. Criminol. 2003, 43, 615–633. [Google Scholar] [CrossRef]
- Johnson, D. The space/time behaviour of dwelling burglars: Finding near repeat patterns in serial offender data. Appl. Geogr. 2013, 41, 139–146. [Google Scholar] [CrossRef]
- Bernasco, W. Them again? Same-offender involvement in repeat and near repeat burglaries. Eur. J. Criminol. 2008, 5, 411–431. [Google Scholar] [CrossRef] [Green Version]
- Chainey, S.P.; da Silva, B.F.A. Examining the extent of repeat and near repeat victimisation of domestic burglaries in Belo Horizonte, Brazil. Crime Sci. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xu, X.; Ye, X.; Zhu, X. Repeat and near-repeat burglaries and offender involvement in a large Chinese city. Cartogr. Geogr. Inf. Sci. 2015, 42, 178–189. [Google Scholar] [CrossRef]
- Block, S.; Fujita, S. Patterns of near repeat temporary and permanent motor vehicle thefts. Crime Prev. Community Saf. 2013, 15, 151–167. [Google Scholar] [CrossRef]
- Tseloni, A.; Pease, K. Repeat personal victimization.‘Boosts’ or ‘Flags’? Br. J. Criminol. 2003, 43, 196–212. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.D.; Bowers, K.J. Near Repeats and Crime Forecasting; Springer: New York, NY, USA, 2013. [Google Scholar]
- Johnson, S.D. Repeat burglary victimisation: A tale of two theories. J. Exp. Criminol. 2008, 4, 215–240. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Piza, E.L. Joint utility of event-dependent and environmental crime analysis techniques for violent crime forecasting. Crime Delinq. 2013, 59, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Moreto, W.D.; Piza, E.L.; Caplan, J.M. “A plague on both your houses?”: Risks, repeats and reconsiderations of urban residential burglary. Justice Q. 2014, 31, 1102–1126. [Google Scholar] [CrossRef]
- Kennedy, L.W.; Caplan, J.M.; Piza, E.L.; Buccine-Schraeder, H. Vulnerability and exposure to crime: Applying risk terrain modeling to the study of assault in Chicago. Appl. Spat. Anal. Policy 2016, 9, 529–548. [Google Scholar] [CrossRef] [Green Version]
- Piza, E.L.; Carter, J.G. Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Q. 2018, 35, 842–870. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Miller, J. Risk terrain modeling: Brokering criminological theory and GIS methods for crime forecasting. Justice Q. 2011, 28, 360–381. [Google Scholar] [CrossRef]
- Groff, E.R.; Lockwood, B. Criminogenic facilities and crime across street segments in Philadelphia: Uncovering evidence about the spatial extent of facility influence. J. Res. Crime Delinq. 2014, 51, 277–314. [Google Scholar] [CrossRef]
- Hoppe, L.; Gerell, M. Near-repeat burglary patterns in Malmö: Stability and change over time. Eur. J. Criminol. 2019, 16, 3–17. [Google Scholar] [CrossRef]
- Ratcliffe, J.H. Geocoding crime and a first estimate of a minimum acceptable hit rate. Int. J. Geogr. Inf. Sci. 2004, 18, 61–72. [Google Scholar] [CrossRef]
- Barnum, J.D.; Caplan, J.M.; Kennedy, L.W.; Piza, E.L. The crime kaleidoscope: A cross-jurisdictional analysis of place features and crime in three urban environments. Appl. Geogr. 2017, 79, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Weisburd, D.; Groff, E.R.; Yang, S.-M. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Rosser, G.; Davies, T.; Bowers, K.J.; Johnson, S.D.; Cheng, T. Predictive crime mapping: Arbitrary grids or street networks? J. Quant. Criminol. 2017, 33, 569–594. [Google Scholar] [CrossRef] [Green Version]
- Gerell, M. Smallest is better? The spatial distribution of arson and the modifiable areal unit problem. J. Quant. Criminol. 2017, 33, 293–318. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W.; Xiao, L.; Zhou, S.; Liao, W. Testing indicators of risk populations for theft from the person across space and time: The significance of mobility and outdoor activity. Ann. Am. Assoc. Geogr. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- Mburu, L.W.; Helbich, M. Crime risk estimation with a commuter-harmonized ambient population. Ann. Am. Assoc. Geogr. 2016, 106. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Ratcliffe, J.H. Near Repeat Calculator (Version 1.3); Temple University: Philadelphia, PA, USA; The National Institute of Justice: Washington, DC, USA, 2009. [Google Scholar]
- Chainey, S.; Ratcliffe, J. GIS and Crime Mapping; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Grubesic, T.H.; Mack, E.A. Spatio-temporal interaction of urban crime. J. Quant. Criminol. 2008, 24, 285–306. [Google Scholar] [CrossRef]
- Youstin, T.J.; Nobles, M.R.; Ward, J.T.; Cook, C.L. Assessing the generalizability of the near repeat phenomenon. Crim. Justice Behav. 2011, 38, 1042–1063. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bernasco, W.; Bowers, K.J.; Elffers, H.; Ratcliffe, J.; Rengert, G.; Townsley, M. Space-time patterns of risk: A cross national assessment of residential burglary victimization. J. Quant. Criminol. 2007, 23, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Hilbe, J.M. Modeling Count Data; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: London, UK, 2013. [Google Scholar]
- Hart, T.C.; Miethe, T.D. Street robbery and public bus stops: A case study of activity nodes and situational risk. Secur. J. 2014, 27, 180–193. [Google Scholar] [CrossRef]
Days | ||||
Location | 0–7 | 8–14 | 15–21 | 22–28 |
Same location | 5.16 ** | 2.25 ** | 1.93 ** | 1.84 ** |
1–105 m | 0.97 | 0.89 | 0.81 | 0.74 |
106–210 m | 1.18 ** | 1.13 * | 1.04 | 1.0 |
211–315 m | 1.20 ** | 1.0 | 1.03 | 1.06 |
316–420 m | 1.15 ** | 1.13 ** | 1.03 | 1.03 |
421–525 m | 1.12 ** | 0.98 | 1.01 | 1.01 |
526–630 m | 1.08 * | 1.0 | 0.98 | 0.95 |
0–4 | 5–8 | 9–12 | 13–16 | |
Same location | 7.41 ** | 2.44 ** | 2.26 ** | 1.9 ** |
1–105 m | 0.97 | 1.0 | 0.78 | 0.98 |
106–210 m | 1.26 ** | 1.07 | 1.17 * | 1.05 |
211–315 m | 1.16 ** | 1.23 ** | 0.98 | 1.04 |
316–420 m | 1.15 ** | 1.14 * | 1.07 * | 1.11 * |
421–525 m | 1.09 * | 1.16 * | 0.92 | 1.0 |
526–630 m | 1.09 * | 1.07 * | 0.97 | 1.0 |
0–1 | 2–2 | 3–3 | 4–4 | |
Same location | 32.35 ** | 4.0 ** | 2.39 ** | 1.32 |
1–105 m | 1.60 * | 0.87 | 0.93 | 0.76 |
106–210 m | 1.56 * | 1.46 ** | 1.28 | 0.86 |
211–315 m | 1.60 ** | 1.14 | 1.02 | 1.08 |
316–420 m | 1.25 * | 1.25 * | 1.06 | 1.09 |
421–525 m | 1.37 ** | 1.07 | 1.05 | 1.0 |
526–630 m | 1.36 * | 1.1 | 1.12 | 0.91 |
Response Variable: Initiator Events | |||||
---|---|---|---|---|---|
Offset Variable: Street Segment Length | |||||
Predictor Variables | b | IRR | SE | z | p-Value |
Constant | −8.4758 | 0.0002 | 0.1010 | −83.935 | 0.000 *** |
Criminogenic places | |||||
Restaurant (alcohol) | −0.0978 | 0.9069 | 0.1438 | −0.680 | 0.496 |
Restaurant (no alcohol) | −0.1846 | 0.8314 | 0.1202 | −1.537 | 0.124 |
Cafe | 0.2157 | 1.2408 | 0.1300 | 1.660 | 0.097 |
Fast-food restaurant | 0.2569 | 1.2930 | 0.1259 | 2.041 | 0.041 * |
Grocery store | 0.8698 | 2.3865 | 0.1366 | 6.369 | 0.000 *** |
ATM | 0.3485 | 1.4169 | 0.1551 | 2.247 | 0.025 * |
Bus stop | −0.2659 | 0.7666 | 0.0768 | −3.460 | 0.000 *** |
Train station | 1.1171 | 3.0561 | 0.1022 | 10.935 | 0.000 *** |
High school | 0.1474 | 1.1588 | 0.0977 | 1.509 | 0.131 |
Park | 0.1938 | 1.2138 | 0.0840 | 2.306 | 0.021 * |
Socioeconomic indicators | |||||
Population | 0.0891 | 1.0933 | 0.0294 | 3.039 | 0.002 ** |
Affluence | −0.1048 | 0.9006 | 0.0747 | −1.403 | 0.161 |
Deprivation | 0.4053 | 1.4997 | 0.0723 | 5.609 | 0.000 *** |
Heterogeneity | 0.1123 | 1.1189 | 0.0743 | 1.513 | 0.130 |
Spatially lagged response | 0.4054 | 1.4999 | 0.0486 | 8.350 | 0.000 *** |
Fit statistics | |||||
Nagelkerke’s R2 | 0.38 | ||||
Pearson’s dispersion statistic | 1.23 | ||||
Moran’s I | 0.032 | 0.001 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasmusson, M.; Helbich, M. The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS Int. J. Geo-Inf. 2020, 9, 188. https://doi.org/10.3390/ijgi9040188
Rasmusson M, Helbich M. The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS International Journal of Geo-Information. 2020; 9(4):188. https://doi.org/10.3390/ijgi9040188
Chicago/Turabian StyleRasmusson, Markus, and Marco Helbich. 2020. "The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden" ISPRS International Journal of Geo-Information 9, no. 4: 188. https://doi.org/10.3390/ijgi9040188
APA StyleRasmusson, M., & Helbich, M. (2020). The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS International Journal of Geo-Information, 9(4), 188. https://doi.org/10.3390/ijgi9040188