The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Unit of Analysis and Aggregation of Data
2.3. Analytical Strategy
3. Results
3.1. Near-Repeat Analysis
3.2. Negative Binomial Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Minimum | Median | Mean | Maximum | SD |
---|---|---|---|---|---|
Street robberies | |||||
Initiator event a | 0.00 | 0.00 | 0.15 | 22 | 0.90 |
Spatially lagged response | 0.00 | 0.00 | 0.17 | 10.43 | 0.58 |
Criminogenic places | |||||
Restaurant (alcohol) b | 0.09 | 595.73 | 742.23 | 4035.64 | 615.16 |
Restaurant (no alcohol) b | 0.11 | 482.60 | 608.173 | 4931.76 | 482.19 |
Café b | 0.09 | 518.88 | 604.87 | 4279.51 | 467.88 |
Fast-food restaurant b | 0.18 | 482.72 | 558.80 | 4870.47 | 391.19 |
Grocery store b | 0.06 | 417.01 | 482.90 | 4198.00 | 353.97 |
ATM b | 0.40 | 845.92 | 975.60 | 6733.42 | 651.55 |
Bus stop b | 0.01 | 283.35 | 311.56 | 2654.96 | 202.37 |
Train station b | 18.75 | 2953.17 | 3087.81 | 9170.43 | 1661.10 |
High school b | 0.46 | 1303.79 | 1586.23 | 8920.38 | 1148.70 |
Park b | 0.08 | 295.18 | 375.24 | 3734.17 | 321.76 |
Socioeconomic indicators | |||||
Population | 0.00 | 5.58 | 27.17 | 1417.55 | 70.52 |
Affluence | −1.70 | 0.19 | 0.00 | 2.56 | 0.89 |
Deprivation | −1.15 | −0.13 | 0.00 | 5.31 | 0.88 |
Heterogeneity | 0.00 | 0.17 | 0.17 | 0.67 | 0.11 |
References
- Jean, P.K. Pockets of Crime: Broken Windows, Collective Efficacy, and the Criminal Point of View; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Vandeviver, C.; Bernasco, W. The geography of crime and crime control. Appl. Geogr. 2017, 86, 220–225. [Google Scholar] [CrossRef]
- Sampson, R.J.; Groves, W.B. Community structure and crime: Testing social-disorganization theory. Am. J. Sociol. 1989, 94, 774–802. [Google Scholar] [CrossRef]
- Brantingham, P.L.; Brantingham, P.J. Environment, routine and situation: Toward a pattern theory of crime. Adv. Criminol. Theory 1993, 5, 259–294. [Google Scholar]
- Bernasco, W.; Block, R. Robberies in Chicago: A block-level analysis of the influence of crime generators, crime attractors, and offender anchor points. J. Res. Crime Delinq. 2011, 48, 33–57. [Google Scholar] [CrossRef]
- Haberman, C.P.; Ratcliffe, J.H. Testing for temporally differentiated relationships among potentially criminogenic places and census block street robbery counts. Criminology 2015, 53, 457–483. [Google Scholar] [CrossRef]
- Rummens, A.; Hardyns, W.; Pauwels, L. The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context. Appl. Geogr. 2017, 86, 255–261. [Google Scholar] [CrossRef]
- Mburu, L.W.; Helbich, M. Environmental risk factors influencing bicycle theft: A spatial analysis in London, UK. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Sampson, R.J. Great American City: Chicago and the Enduring Neighborhood Effect; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Gerell, M.; Kronkvist, K. Violent crime, collective efficacy and city-centre effects in Malmö. Br. J. Criminol. 2017, 57, 1185–1207. [Google Scholar] [CrossRef]
- Braga, A.A.; Papachristos, A.V.; Hureau, D.M. The effects of hot spots policing on crime: An updated systematic review and meta-analysis. Justice Q. 2014, 31, 633–663. [Google Scholar] [CrossRef]
- Ceccato, V.; Haining, R. Crime in border regions: The Scandinavian case of Öresund, 1998–2001. Ann. Assoc. Am. Geogr. 2004, 94, 807–826. [Google Scholar]
- Haberman, C.P.; Ratcliffe, J.H. The predictive policing challenges of near repeat armed street robberies. Polic. A J. Policy Pract. 2012, 6, 151–166. [Google Scholar] [CrossRef]
- Helbich, M.; Arsanjani, J.J. Spatial eigenvector filtering for spatiotemporal crime mapping and spatial crime analysis. Cartogr. Geogr. Inf. Sci. 2015, 42. [Google Scholar] [CrossRef]
- Glasner, P.; Leitner, M. Evaluating the impact the weekday has on near-repeat victimization: A spatio-temporal analysis of street robberies in the city of Vienna, Austria. ISPRS Int. J. Geo Inf. 2017, 6, 3. [Google Scholar] [CrossRef]
- Nobles, M.R.; Ward, J.T.; Tillyer, R. The impact of neighborhood context on spatiotemporal patterns of burglary. J. Res. Crime Delinq. 2016, 53, 711–740. [Google Scholar] [CrossRef]
- Morgan, F. Repeat burglary in a Perth suburb: Indicator of short-term or long-term risk? Crime Prev. Stud. 2001, 12, 83–118. [Google Scholar]
- Townsley, M.; Homel, R.; Chaseling, J. Infectious burglaries. A test of the near repeat hypothesis. Br. J. Criminol. 2003, 43, 615–633. [Google Scholar] [CrossRef]
- Johnson, D. The space/time behaviour of dwelling burglars: Finding near repeat patterns in serial offender data. Appl. Geogr. 2013, 41, 139–146. [Google Scholar] [CrossRef]
- Bernasco, W. Them again? Same-offender involvement in repeat and near repeat burglaries. Eur. J. Criminol. 2008, 5, 411–431. [Google Scholar] [CrossRef]
- Chainey, S.P.; da Silva, B.F.A. Examining the extent of repeat and near repeat victimisation of domestic burglaries in Belo Horizonte, Brazil. Crime Sci. 2016, 5, 1. [Google Scholar] [CrossRef]
- Wu, L.; Xu, X.; Ye, X.; Zhu, X. Repeat and near-repeat burglaries and offender involvement in a large Chinese city. Cartogr. Geogr. Inf. Sci. 2015, 42, 178–189. [Google Scholar] [CrossRef]
- Block, S.; Fujita, S. Patterns of near repeat temporary and permanent motor vehicle thefts. Crime Prev. Community Saf. 2013, 15, 151–167. [Google Scholar] [CrossRef]
- Tseloni, A.; Pease, K. Repeat personal victimization.‘Boosts’ or ‘Flags’? Br. J. Criminol. 2003, 43, 196–212. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bowers, K.J. Near Repeats and Crime Forecasting; Springer: New York, NY, USA, 2013. [Google Scholar]
- Johnson, S.D. Repeat burglary victimisation: A tale of two theories. J. Exp. Criminol. 2008, 4, 215–240. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Piza, E.L. Joint utility of event-dependent and environmental crime analysis techniques for violent crime forecasting. Crime Delinq. 2013, 59, 243–270. [Google Scholar] [CrossRef]
- Moreto, W.D.; Piza, E.L.; Caplan, J.M. “A plague on both your houses?”: Risks, repeats and reconsiderations of urban residential burglary. Justice Q. 2014, 31, 1102–1126. [Google Scholar] [CrossRef]
- Kennedy, L.W.; Caplan, J.M.; Piza, E.L.; Buccine-Schraeder, H. Vulnerability and exposure to crime: Applying risk terrain modeling to the study of assault in Chicago. Appl. Spat. Anal. Policy 2016, 9, 529–548. [Google Scholar] [CrossRef]
- Piza, E.L.; Carter, J.G. Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Q. 2018, 35, 842–870. [Google Scholar] [CrossRef]
- Caplan, J.M.; Kennedy, L.W.; Miller, J. Risk terrain modeling: Brokering criminological theory and GIS methods for crime forecasting. Justice Q. 2011, 28, 360–381. [Google Scholar] [CrossRef]
- Groff, E.R.; Lockwood, B. Criminogenic facilities and crime across street segments in Philadelphia: Uncovering evidence about the spatial extent of facility influence. J. Res. Crime Delinq. 2014, 51, 277–314. [Google Scholar] [CrossRef]
- Hoppe, L.; Gerell, M. Near-repeat burglary patterns in Malmö: Stability and change over time. Eur. J. Criminol. 2019, 16, 3–17. [Google Scholar] [CrossRef]
- Ratcliffe, J.H. Geocoding crime and a first estimate of a minimum acceptable hit rate. Int. J. Geogr. Inf. Sci. 2004, 18, 61–72. [Google Scholar] [CrossRef]
- Barnum, J.D.; Caplan, J.M.; Kennedy, L.W.; Piza, E.L. The crime kaleidoscope: A cross-jurisdictional analysis of place features and crime in three urban environments. Appl. Geogr. 2017, 79, 203–211. [Google Scholar] [CrossRef]
- Weisburd, D.; Groff, E.R.; Yang, S.-M. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Rosser, G.; Davies, T.; Bowers, K.J.; Johnson, S.D.; Cheng, T. Predictive crime mapping: Arbitrary grids or street networks? J. Quant. Criminol. 2017, 33, 569–594. [Google Scholar] [CrossRef]
- Gerell, M. Smallest is better? The spatial distribution of arson and the modifiable areal unit problem. J. Quant. Criminol. 2017, 33, 293–318. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Bernasco, W.; Xiao, L.; Zhou, S.; Liao, W. Testing indicators of risk populations for theft from the person across space and time: The significance of mobility and outdoor activity. Ann. Am. Assoc. Geogr. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- Mburu, L.W.; Helbich, M. Crime risk estimation with a commuter-harmonized ambient population. Ann. Am. Assoc. Geogr. 2016, 106. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Ratcliffe, J.H. Near Repeat Calculator (Version 1.3); Temple University: Philadelphia, PA, USA; The National Institute of Justice: Washington, DC, USA, 2009. [Google Scholar]
- Chainey, S.; Ratcliffe, J. GIS and Crime Mapping; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Grubesic, T.H.; Mack, E.A. Spatio-temporal interaction of urban crime. J. Quant. Criminol. 2008, 24, 285–306. [Google Scholar] [CrossRef]
- Youstin, T.J.; Nobles, M.R.; Ward, J.T.; Cook, C.L. Assessing the generalizability of the near repeat phenomenon. Crim. Justice Behav. 2011, 38, 1042–1063. [Google Scholar] [CrossRef]
- Johnson, S.D.; Bernasco, W.; Bowers, K.J.; Elffers, H.; Ratcliffe, J.; Rengert, G.; Townsley, M. Space-time patterns of risk: A cross national assessment of residential burglary victimization. J. Quant. Criminol. 2007, 23, 201–219. [Google Scholar] [CrossRef]
- Hilbe, J.M. Modeling Count Data; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: London, UK, 2013. [Google Scholar]
- Hart, T.C.; Miethe, T.D. Street robbery and public bus stops: A case study of activity nodes and situational risk. Secur. J. 2014, 27, 180–193. [Google Scholar] [CrossRef]
Days | ||||
Location | 0–7 | 8–14 | 15–21 | 22–28 |
Same location | 5.16 ** | 2.25 ** | 1.93 ** | 1.84 ** |
1–105 m | 0.97 | 0.89 | 0.81 | 0.74 |
106–210 m | 1.18 ** | 1.13 * | 1.04 | 1.0 |
211–315 m | 1.20 ** | 1.0 | 1.03 | 1.06 |
316–420 m | 1.15 ** | 1.13 ** | 1.03 | 1.03 |
421–525 m | 1.12 ** | 0.98 | 1.01 | 1.01 |
526–630 m | 1.08 * | 1.0 | 0.98 | 0.95 |
0–4 | 5–8 | 9–12 | 13–16 | |
Same location | 7.41 ** | 2.44 ** | 2.26 ** | 1.9 ** |
1–105 m | 0.97 | 1.0 | 0.78 | 0.98 |
106–210 m | 1.26 ** | 1.07 | 1.17 * | 1.05 |
211–315 m | 1.16 ** | 1.23 ** | 0.98 | 1.04 |
316–420 m | 1.15 ** | 1.14 * | 1.07 * | 1.11 * |
421–525 m | 1.09 * | 1.16 * | 0.92 | 1.0 |
526–630 m | 1.09 * | 1.07 * | 0.97 | 1.0 |
0–1 | 2–2 | 3–3 | 4–4 | |
Same location | 32.35 ** | 4.0 ** | 2.39 ** | 1.32 |
1–105 m | 1.60 * | 0.87 | 0.93 | 0.76 |
106–210 m | 1.56 * | 1.46 ** | 1.28 | 0.86 |
211–315 m | 1.60 ** | 1.14 | 1.02 | 1.08 |
316–420 m | 1.25 * | 1.25 * | 1.06 | 1.09 |
421–525 m | 1.37 ** | 1.07 | 1.05 | 1.0 |
526–630 m | 1.36 * | 1.1 | 1.12 | 0.91 |
Response Variable: Initiator Events | |||||
---|---|---|---|---|---|
Offset Variable: Street Segment Length | |||||
Predictor Variables | b | IRR | SE | z | p-Value |
Constant | −8.4758 | 0.0002 | 0.1010 | −83.935 | 0.000 *** |
Criminogenic places | |||||
Restaurant (alcohol) | −0.0978 | 0.9069 | 0.1438 | −0.680 | 0.496 |
Restaurant (no alcohol) | −0.1846 | 0.8314 | 0.1202 | −1.537 | 0.124 |
Cafe | 0.2157 | 1.2408 | 0.1300 | 1.660 | 0.097 |
Fast-food restaurant | 0.2569 | 1.2930 | 0.1259 | 2.041 | 0.041 * |
Grocery store | 0.8698 | 2.3865 | 0.1366 | 6.369 | 0.000 *** |
ATM | 0.3485 | 1.4169 | 0.1551 | 2.247 | 0.025 * |
Bus stop | −0.2659 | 0.7666 | 0.0768 | −3.460 | 0.000 *** |
Train station | 1.1171 | 3.0561 | 0.1022 | 10.935 | 0.000 *** |
High school | 0.1474 | 1.1588 | 0.0977 | 1.509 | 0.131 |
Park | 0.1938 | 1.2138 | 0.0840 | 2.306 | 0.021 * |
Socioeconomic indicators | |||||
Population | 0.0891 | 1.0933 | 0.0294 | 3.039 | 0.002 ** |
Affluence | −0.1048 | 0.9006 | 0.0747 | −1.403 | 0.161 |
Deprivation | 0.4053 | 1.4997 | 0.0723 | 5.609 | 0.000 *** |
Heterogeneity | 0.1123 | 1.1189 | 0.0743 | 1.513 | 0.130 |
Spatially lagged response | 0.4054 | 1.4999 | 0.0486 | 8.350 | 0.000 *** |
Fit statistics | |||||
Nagelkerke’s R2 | 0.38 | ||||
Pearson’s dispersion statistic | 1.23 | ||||
Moran’s I | 0.032 | 0.001 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasmusson, M.; Helbich, M. The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS Int. J. Geo-Inf. 2020, 9, 188. https://doi.org/10.3390/ijgi9040188
Rasmusson M, Helbich M. The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS International Journal of Geo-Information. 2020; 9(4):188. https://doi.org/10.3390/ijgi9040188
Chicago/Turabian StyleRasmusson, Markus, and Marco Helbich. 2020. "The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden" ISPRS International Journal of Geo-Information 9, no. 4: 188. https://doi.org/10.3390/ijgi9040188
APA StyleRasmusson, M., & Helbich, M. (2020). The Relationship between Near-Repeat Street Robbery and the Environment: Evidence from Malmö, Sweden. ISPRS International Journal of Geo-Information, 9(4), 188. https://doi.org/10.3390/ijgi9040188