A Study on a Matching Algorithm for Urban Underground Pipelines
Abstract
1. Introduction
2. Related Work
3. Holistic Stroke Matching
3.1. Geometric Similarity
3.2. Structural Similarity
4. Partial Stroke Matching
4.1. Stroke Partial Matching Algorithm Based on Segment Decomposition (SPMA-S)
4.2. Stroke Partial Matching Algorithm Based on Vertex Decomposition (SPMA-V)
5. Experiment
5.1. Experimental Data and Matching Process
5.2. Comparative Experiments and Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shi, L.; Liu, Z.; Fu, J.; Yan, S. Research on the utility tunnel location technology based on ZigBee communication network. Ce Ca 2017, 42, 167–171. [Google Scholar]
- Eskandari, M.; Omidvar, B.; Modiri, M.; Nekooie, M.A.; Alesheikh, A.A. Geospatial Analysis of Earthquake Damage Probability of Water Pipelines Due to Multi-Hazard Failure. ISPRS Int. J. Geo-Inf. 2017, 6, 169. [Google Scholar] [CrossRef]
- Li, W.; Han, Y.; Liu, Y.; Zhu, C.; Ren, Y.; Wang, Y.; Chen, G. Real-Time Location-Based Rendering of Urban Underground Pipelines. ISPRS Int. J. Geo-Inf. 2018, 7, 32. [Google Scholar] [CrossRef]
- Li, S.; Cheng, C.; Pu, G.; Chen, B. QRA-Grid: Quantitative Risk Analysis and Grid-based Pre-warning Model for Urban Natural Gas Pipeline. ISPRS Int. J. Geo-Inf. 2019, 8, 122. [Google Scholar] [CrossRef]
- Gong, M.X.; Yuan, S.; Chu, Z.W.; Zhang, S.L.; Fang, C.L. Underground Pipeline Data Matching Considering Multiple Spatial Similarities. Acta Geod. Cartogr. Sin. 2015, 44, 1392–1400. [Google Scholar]
- Chen, Y.M.; Gong, J.Y.; Shi, W.Z. A Distance-based Matching Algorithm for Multi-scale Road Networks. Acta Geo. Carto. Sin. 2007, 36, 84–90. [Google Scholar]
- Deng, M.; Li, Z.L.; Chen, X.Y. Extended Hausdorff distance for spatial objects in GIS. Int. J. Geograph. Inform. Sci. 2007, 21, 459–475. [Google Scholar]
- Davis, M. JCS Conflation Suite Technical Report. 2003. Available online: http://www.vividsolutions.com/JCS/main.htm (accessed on 1 January 2003).
- Tong, X.H.; Deng, S.S.; Shi, W.Z. A Probabilistic Theory-based Matching Method. Acta Geod. Cartogr. Sin. 2007, 36, 210–217. [Google Scholar]
- Liu, H.; Qian, H.; Wang, X. Road Network Global Matching Method using Analytical Hierarchy Process. Geomat. Inform. Sci. Wuhan Univ. 2015, 40, 644–651. [Google Scholar]
- Saalfeld, A. Conflation: Automated Map Compilation. Int. J. Geogr. Inform. Sys. 1988, 2, 217–218. [Google Scholar] [CrossRef]
- Thomson, R.C.; Brooks, R. Exploiting Perceptual Grouping for Map Analysis, Understanding and Generalization: The Case of Road and River Networks. In Graphics Recognition Algorithms and Applications: 4th International Workshop, GREC 2001 Kingston, Ontario, Canada, September 7–8, 2001 Selected Papers; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2390, pp. 148–157. [Google Scholar]
- Thomson, R.C. The ’stroke’ Concept in Geographic Network Generalization and Analysis. In Progress in Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2006; pp. 681–697. [Google Scholar]
- Zhang, J.; Wang, Y.; Zhao, W. An Improved Hybrid Method for Enhanced Road Feature Selection in Map Generalization. ISPRS Int. J. Geo-Inf. 2017, 6, 196. [Google Scholar] [CrossRef]
- Xavier, E.M.A.; Ariza-López, F.J.; Ureña-Cámara, M.A. A survey of measures and methods for matching geospatial vector datasets. ACM Comput. Surv. 2016, 49, 1–34. [Google Scholar] [CrossRef]
- Walter, V.; Fritsch, D. Matching Spatial Data Sets: A Statistical Approach. Int. J. Geogr. Inform. Sys. 1999, 13, 445–473. [Google Scholar] [CrossRef]
- Olteanu-Raimond, A.M.; Mustière, S.; Ruas, A. Knowledge formalization for vector data matching using belief theory. J. Spat. Inf. Sci. 2015, 10, 21–46. [Google Scholar] [CrossRef]
- Chehreghan, A.; Abbaspour, R.A. An assessment of spatial similarity degree between polylines on multi-scale, multi-source maps. Geocarto Int. 2017, 32, 471–487. [Google Scholar] [CrossRef]
- Beeri, C.; Kan-za, Y.; Safra, E.; Sagiv, Y. Object Fusion in Geographic Information Systems. In Proceedings of the 30th VLDB Conference, Toronto, ON, Canada, 31 August–3 September 2004; pp. 816–827. [Google Scholar]
- Badard, T. On the Automatic Retrieval of Updates in Geographic Databases Based on Geographic Data Matching Tools. Bulletin du Comit Franais de Cartographie. 1999, 162, 34–40. [Google Scholar]
- An, X.; Sun, Q.; Yu, B. Feature Matching from Network Data at Different Scales Based on Similarity Measure. Wuhan Daxue Xuebao 2012, 37, 219–224. [Google Scholar]
- Filin, S.; Doytsher, Y. Detection of Corresponding Objects in a Linear-Based Map Conflation. Survey. Land Inform. Sys. 2000, 60, 117–128. [Google Scholar]
- Abdolmajidi, E.; Mansourian, A.; Will, J.; Harrie, L. Matching Authority and VGI Road Networks using an Extended Node-based Matching Algorithm. Geospat. Inform. Sci. 2015, 18, 65–80. [Google Scholar] [CrossRef]
- Veltkamp, R.C. Shape Matching: Similarity Measures and Algorithms. In Proceedings of the International Conference on Shape Modeling and Applications, Genova, Italy, 7–11 May 2001. [Google Scholar]
- Volz, S. An Iterative Approach for Matching Multiple Representations of Street Data. In Proceedings of the ISPRS Workshop-Multiple Rep. Interoperability of Spatial Data, Hannover, Germany, 22–24 February 2006; Volume 36, pp. 22–24. [Google Scholar]
- Koukoletsos, T.; Haklay, M.; Ellul, C. Assessing Data Completeness of VGI through an Automated Matching Procedure for Linear Data. Trans. GIS 2012, 16, 477–498. [Google Scholar] [CrossRef]
- Samal, A.; Seth, S.; Cueto, K. A feature-based approach to conflation of geospatial sources. Int. J. Geogr. Inform. Sci. 2004, 18, 459–489. [Google Scholar] [CrossRef]
- Zhang, M.; Meng, L. Delimited Stroke Oriented Algorithm-Working Principle and Implementation for the Matching of Road Networks. Ann. GIS 2008, 14, 44–53. [Google Scholar] [CrossRef]
- Zhai, R. Research on Automated Matching Methods for Multi-Scale Vector Spatial Data Based on Global Consistency Evaluation. Ph.D. Thesis, Information Engineering University, Zhengzhou, China, 2011. [Google Scholar]
- Wang, X.; Qian, H.; He, H.; Chen, J.; Hu, H. Matching Method for Road Networks Considering the Similarity of the Neighborhood Habitation Cluster. Acta Geod. Cartogr. Sin. 2016, 45, 103–111. [Google Scholar]
- Fan, H.; Yang, B.; Zipf, A.; Rousell, A. A Polygon-based Approach for Matching OpenStreetMap Road Networks with Regional Transit Authority data. Int. J. Geogr. Inform. Sci. 2016, 30, 748–764. [Google Scholar]
- Hu, Y. Matching of Roads under Different Scales for Updating Map Data. Geomat. Inform. Sci. Wuhan Univ. 2010, 35, 451–456. [Google Scholar]
- Liu, C.; Qian, H.; Wang, X.; He, H.; Chen, J. A Linkage Matching Method for Road Networks Considering the Similarity of Upper and Lower Spatial Relation. Acta Geod. Cartogr. Sin. 2016, 45, 1371–1383. [Google Scholar]
- Mantel, D.; Lipeck, U. Matching Cartographic Objects in Spatial Databases. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS: Istanbul, Turkey, 2004; Volume XXXV, pp. 12–23. [Google Scholar]
- Zhang, M.; Meng, L. An Iterative Road-matching Approach for the Integration of Postal Data. Comp. Environ. Urban Sys. 2007, 31, 597–615. [Google Scholar] [CrossRef]
- Zhao, D.; Sheng, Y. Research on Automatic Matching of Vector Road Networks Based on Global Optimization. Acta Geod. Cartogr. Sin. 2010, 39, 416–421. [Google Scholar]
- Song, W.; Keller, J.M.; Haithcoat, T.L.; Davis, C.H. Relaxation-Based Point Feature Matching for Vector Map Conflation. Trans. GIS 2011, 15, 43–60. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Luan, X. Automated Matching Crowdsourcing Road Networks Using Probabilistic Relaxation. Acta Geod. Cartogr. Sin. 2012, 4, 281–286. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Luan, X. A Probabilistic Relaxation Approach for Matching Road Networks. Int. J. Geogr. Inform. Sci. 2013, 27, 319–338. [Google Scholar] [CrossRef]
- Yang, L.; Zuo, Z.; Wang, R. Matching Road Network Combining Hierarchical Strokes and Probabilistic Relaxation Method. Open Auto. Contr. Sys. J. 2014, 6, 268–276. [Google Scholar] [CrossRef][Green Version]
- Tong, X.; Liang, D.; Jin, Y. A Linear Road Object Matching Method for Conflation Based on Optimization and Logistic Regression. Int. J. Geogr. Inform. Sci. 2014, 28, 824–846. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, Y.; Gao, X. Road Networks Matching Using Multiple Logistic Regression. Geomat. Inform. Sci. Wuhan Univ. 2016, 41, 171–177. [Google Scholar]
- Mustière, S. Results of experiments on Automated Matching of Networks at Different Scales. In Proceedings of the ISPRS Workshop-Multiple Resentation and Interoperability of Spatial Data, Hannover, Germany, 22–24 February 2006; pp. 92–100. [Google Scholar]
- Mustière, S.; Devogele, T. Matching Networks with Different Levels of Detail. GeoInformatica 2008, 12, 435–453. [Google Scholar] [CrossRef]
- Zhang, L.G.; Wu, J.Q.; Gao, W. Hand Gesture Recognition Based on Hausdorff Distance. J. Imag. Graph. 2002, 7, 1144–1150. [Google Scholar]
- Bruns, H.T.; Egenhofer, M.J. Similarity of spatial scenes. In Proceedings of the 7th Symposium on Spatial Data Handling, Delft, The Netherlands, 12–16 August 1996; pp. 173–184. [Google Scholar]
Study Data | Data Sources | Data Format | Number of Pipelines | Total Length (m) |
Integrated pipeline (gas) | Institute of surveying and mapping | MDB | 1138 | 11,255.573 |
Professional pipeline (gas) | The gas company | MDB | 1274 | 11,966.123 |
Integrated Pipeline Segment | Number of Integrated Pipeline Segments | Professional Pipeline Segment | Number of Professional Pipeline Segments | Matching Type |
---|---|---|---|---|
661–662 | 1 | TR412–TR413 | 1 | 1:1 |
906–905 | 2 | TR679–TR680 | 1 | n:1 |
421–117 | 2 | 1TR2003–1TR1108 | 3 | n:m |
Algorithm Step | f(C) | f(W) | f(U) | P(%) | R(%) | Time Consumed (s) |
---|---|---|---|---|---|---|
Holistic Stroke Matching | 578 | 0 | 379 | 100.0 | 60.4 | 2.94 |
SPMA-S Matching | 192 | 47 | 3 | 80.3 | 98.5 | 1.43 |
SPMA-V Matching | 187 | 25 | 8 | 88.2 | 95.9 | 1.16 |
Algorithm Type | f(C) | f(W) | f(U) | P(%) | R(%) | Time Consumed (s) |
---|---|---|---|---|---|---|
Stroke algorithm | 957 | 72 | 11 | 93.0 | 98.8 | 6.53 |
Node–segment algorithm | 918 | 97 | 25 | 90.4 | 97.3 | 7.95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Guo, Q.; Xu, X.; Xie, Y. A Study on a Matching Algorithm for Urban Underground Pipelines. ISPRS Int. J. Geo-Inf. 2019, 8, 352. https://doi.org/10.3390/ijgi8080352
Wang S, Guo Q, Xu X, Xie Y. A Study on a Matching Algorithm for Urban Underground Pipelines. ISPRS International Journal of Geo-Information. 2019; 8(8):352. https://doi.org/10.3390/ijgi8080352
Chicago/Turabian StyleWang, Shuai, Qingsheng Guo, Xinglin Xu, and Yuwu Xie. 2019. "A Study on a Matching Algorithm for Urban Underground Pipelines" ISPRS International Journal of Geo-Information 8, no. 8: 352. https://doi.org/10.3390/ijgi8080352
APA StyleWang, S., Guo, Q., Xu, X., & Xie, Y. (2019). A Study on a Matching Algorithm for Urban Underground Pipelines. ISPRS International Journal of Geo-Information, 8(8), 352. https://doi.org/10.3390/ijgi8080352