Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Temporal Pattern of PUPs and DOPs
2.3.2. Multiscale Analysis Method of OD Flow Based on the Chord Diagram Plot
3. Results
3.1. Spatial-Temporal Characteristics of PUPs and DOPs
3.2. Multitime Scale Patterns of Urban Resident Travel
3.3. Spatial Multiscale Patterns of Urban Resident Travel
3.4. Spatial-Temporal Patterns of Urban Human Travel with Taxi OD Data
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; O’Kelly, M.; Kwan, M.P. Examining commuting patterns: Results from a journey-to-work model disaggregated by gender and occupation. Urban Stud. 2011, 48, 891–909. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from gps-enabled taxi data in shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Gao, S. Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age. Spat. Cogn. Comput. 2015, 15, 86–114. [Google Scholar] [CrossRef]
- Kim, J.; Thapa, B.; Jang, S.; Yang, E. Seasonal spatial activity patterns of visitors with a mobile exercise application at Seoraksan National Park, South Korea. Sustainability 2018, 10, 2263. [Google Scholar] [CrossRef]
- Chowell, G.; Hyman, J.M.; Eubank, S.; Castillo-Chavez, C. Scaling laws for the movement of people between locations in a large city. Phys Rev. E 2003, 68, 066102. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile landscapes: Using location data from cell phones for urban analysis. Environ. Plan. B 2006, 33, 727–748. [Google Scholar] [CrossRef]
- González, M.C.; Hidalgo, C.A.; Barabási, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Jiang, B.; Yin, J.; Zhao, S. Characterizing the human mobility pattern in a large street network. Phys. Rev. E 2009, 80, 021136. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.; Ma, X.; Tong, D.; Liu, Y. Intra-urban human mobility patterns: An urban morphology perspective. Phys. A 2012, 391, 1702–1717. [Google Scholar] [CrossRef]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Chong, S. On the Levy-walk nature of human mobility. In Proceedings of the IEEE INFOCOM, Piscataway, NJ, USA, 11–16 March 2008; pp. 924–932. [Google Scholar]
- Song, C.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef]
- Song, C.; Koren, T.; Wang, P.; Barabási, A. Modelling the scaling properties of human mobility. Nat. Phys. 2010, 6, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Raubal, M.; Liu, Y. Correlating mobile phone usage and travel behavior—A case study of Harbin, China. Comput. Environ. Urban 2012, 36, 118–130. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Ratti, C. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J. Urban Technol. 2010, 17, 41–60. [Google Scholar] [CrossRef]
- Ahas, R.; Aasa, A.; Silm, S.; Tiru, M. Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transport Res C-Emer. 2010, 18, 45–54. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, C. Street—based topological representations and analyses for predicting traffic flow in GIS. Int. J. Geogr. Inf. Sci. 2009, 23, 1119–1137. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, C.; Gao, S.; Xiao, Y.; Tian, Y. Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst. 2012, 14, 463–483. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, T.; Wang, H.; Zeng, Z. Dynamic accessibility mapping using floating car data: A network-constrained density estimation approach. J. Transp. Geogr. 2011, 19, 379–393. [Google Scholar] [CrossRef]
- Kang, C.; Qin, K. Understanding operation behaviors of taxicabs in cities by matrix factorization. Comput. Environ. Urban 2016, 60, 79–88. [Google Scholar] [CrossRef]
- Sun, J.B.; Yuan, J.; Wang, Y.; Si, H.B.; Shan, X.M. Exploring space–time structure of human mobility in urban space. Phys. A 2011, 390, 929–942. [Google Scholar] [CrossRef]
- Castro, P.S.; Zhang, D.; Chen, C.; Li, S.; Pan, G. From taxi GPS traces to social and community dynamics: A survey. ACM Comput. Surv. (CSUR) 2013, 46, 1–34. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, J.; Wang, H.; Wang, Y.; An, S. Revealing intra-urban travel patterns and service ranges from taxi trajectories. J. Transp. Geogr. 2017, 61, 72–86. [Google Scholar] [CrossRef]
- Stopher, P.; FitzGerald, C.; Zhang, J. Search for a global positioning system device to measure person travel. Transport Res C-Emer. 2008, 16, 350–369. [Google Scholar] [CrossRef]
- Wolf, J.; Oliveira, M.; Thompson, M. The impact of trip underreporting on VMT and travel time estimates: Preliminary findings from the California statewide household travel survey GPS study. Transp. Res. Rec. 2003, 1854, 189–198. [Google Scholar] [CrossRef]
- Dai, X.; Ferman, M.A.; Roesser, R.P. A simulation evaluation of a real-time traffic information system using probe vehicles. In Proceedings of the IEEE Intelligent Transportation Systems 1, Shanghai, China, 12–15 October 2003; pp. 475–480. [Google Scholar]
- Kühne, R.; Schäfer, R.-P.; Mikat, J.; Thiessenhusen, K.-U.; Böttger, U.; Lorkowski, S. New approaches for traffic management in metropolitan areas. In Proceedings of the 10th IFAC Symposium, Tokyo, Japan, 4–6 August 2003; pp. 4–6. [Google Scholar]
- Lü, W.; Zhu, T.; Wu, D.; Dai, H.; Huang, J. A heuristic path-estimating algorithm for large-scale real-time traffic information calculating. SCI China Ser. E 2008, 51, 165–174. [Google Scholar]
- Tong, D.; Coifman, B.; Merr, C.J. New perspectives on the use of GPS and GIS to support a highway performance study. Trans. GIS 2009, 13, 69–85. [Google Scholar] [CrossRef]
- Berkow, M.; Monsere, C.; Koonce, P.; Bertini, R.; Wolfe, M. Prototype for data fusion using stationary and mobile data: Sources for improved arterial performance measurement. Transp. Res. Rec. 2009, 2099, 102–112. [Google Scholar] [CrossRef]
- Bricka, S.; Bhat, C.R. A comparative analysis of GPS-based and travel survey-based data. Transp. Res. Rec. 2006, 1972, 9–20. [Google Scholar] [CrossRef]
- Liu, L.; Andris, C.; Ratti, C. Uncovering cabdrivers’ behaviour patterns from their digital traces. Comput. Environ. Urban 2010, 34, 541–548. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N. A visual analytics approach to exploration of large amounts of movement data. In Proceedings of the 10th international conference on Visual Information Systems VISUAL ’08, Salerno, Italy, 11–12 September 2008; pp. 1–4. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Rinzivillo, S.; Nanni, M.; Pedreschi, D.; Giannotti, F. Interactive visual clustering of large collections of trajectories. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Atlantic City, NJ, USA, 11–16 October 2009; pp. 3–10. [Google Scholar]
- Andrienko, G.; Andrienko, N.; Dykes, J.; Fabrikant, S.I.; Wachowicz, M. Geovisualization of dynamics, movement and change: Key issues and developing approaches in visualization research. Inf. Vis. 2008, 7, 173–180. [Google Scholar] [CrossRef]
- Dodge, S.; Weibel, R.; Lautenschütz, A.K. Towards a taxonomy of movement patterns. Inf. Vis. 2008, 7, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Zhuang, Y.; Li, Q.; Mao, Q. Mining time-dependent attractive areas and movement patterns from taxi trajectory data. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–6. [Google Scholar]
- Guo, D.; Zhu, X.; Jin, H.; Gao, P.; Andris, C. Discovering Spatial Patterns in Origin—Destination Mobility Data. Trans. GIS 2012, 16, 411–429. [Google Scholar] [CrossRef]
- Ferreira, N.; Poco, J.; Vo, H.T.; Freire, J.; Silva, C.T. Visual exploration of big spatio-temporal urban data: A study of New York city taxi trips. IEEE Tran. Vis. Comput. Graph. 2013, 19, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ye, T.; Lu, M.; Yuan, X.; Qu, H.; Yuan, J.; Wu, Q. Visual exploration of sparse traffic trajectory data. IEEE Tran. Vis. Comput. Graph. 2014, 20, 1813–1822. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Ai, T.H.; Yang, W.; Zhang, X.; Xin, R.; Chen, X.Y. Visual analysis of residents travel pattern based on Circos Graph. J. Cent. China Norm. Univ. (Nat. Sci.) 2016, 50, 471–480. (In Chinese) [Google Scholar]
- Tobler, W.R. Experiments in migration mapping by computer. Am. Cartogr. 1987, 14, 155–163. [Google Scholar] [CrossRef]
- Andrienko, G.; Andrienko, N. Spatio-temporal aggregation for visual analysis of movements. In Proceedings of the 2008 IEEE Symposium on visual analytics science and technology, Sacramento, CA, USA, 30 October–1 November 2008; pp. 51–58. [Google Scholar]
- Wood, J.; Dykes, J.; Slingsby, A. Visualisation of origins, destinations and flows with OD maps. Cartogr. J. 2010, 47, 117–129. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Z.; Yu, B.; Zhao, H.; Yuan, X. Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In Proceedings of the 2011 IEEE Pacific Visualization Symposium (PacificVis), Hong Kong, China, 1–4 March 2011; pp. 163–170. [Google Scholar]
- Liu, L.; Biderman, A.; Ratti, C. Urban mobility landscape: Real time monitoring of urban mobility patterns. In Proceedings of the 11th International Conference on Computers in Urban Planning and Urban Management, Hong Kong, China, 16–18 June 2009; pp. 1–16. [Google Scholar]
- Hurter, C.; Tissoires, B.; Conversy, S. Fromdady: Spreading aircraft trajectories across views to support iterative queries. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Slingsby, A.; Wood, J.; Dykes, J. Treemap cartography for showing spatial and temporal traffic patterns. J. Maps 2010, 6, 135–146. [Google Scholar] [CrossRef]
- Liu, H.; Gao, Y.; Lu, L.; Liu, S.; Qu, H.; Ni, L.M. Visual analysis of route diversity. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology, Rhode Island, UK, 23–28 October 2011; pp. 171–180. [Google Scholar]
- Lu, M.; Wang, Z.; Liang, J.; Yuan, X. OD-Wheel: Visual design to explore OD patterns of a central region. In Proceedings of the 2015 IEEE Pacific Visualization Symposium (PacificVis), Hangzhou, China, 14–17 April 2015; pp. 87–91. [Google Scholar]
- Beijing Municipal Bureau of Statistics (BMBS). Beijing Statistical Yearbook; Beijing Municipal Bureau of Statistics: Beijing, China, 2006–2016. Available online: http://tjj.beijing.gov.cn/nj/main/2016-tjnj/zk/indexch.htm.2016.11.04 (accessed on 13 January 2019).
- Beijing Municipal Commission of Transport (BMCT); Beijing Transport Institute (BTI). Fifth Comprehensive Survey on Urban Traffic in Beijing; Beijing Municipal Commission of Transport: Beijing, China, 2016.
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Abel, G.J.; Muttarak, R.; Liu, S. Circular visualization of China’s internal migration flows 2010–2015. Environ. Plan. A 2017, 49, 2432–2436. [Google Scholar] [CrossRef]
FCD | Taxi ID | Time | Longitude | Latitude | Speed | Direction | State |
---|---|---|---|---|---|---|---|
JL | 1000075621 | 20121225000014 | 116.1048 | 39.9638 | 11 | 290 | 0 |
JL | 1000075621 | 20121225000044 | 116.1040 | 39.96299 | 9 | 200 | 0 |
… | … | … | … | … | … | … | … |
JYJ | 13331156462 | 20121225150826 | 116.2918 | 39.88956 | 43 | 268 | 1 |
JYJ | 13331156462 | 20121225150937 | 116.2901 | 39.88969 | 45 | 270 | 1 |
… | … | … | … | … | … | … | … |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, H.; Ni, X.; Zeng, W. Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data. ISPRS Int. J. Geo-Inf. 2019, 8, 257. https://doi.org/10.3390/ijgi8060257
Wang H, Huang H, Ni X, Zeng W. Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data. ISPRS International Journal of Geo-Information. 2019; 8(6):257. https://doi.org/10.3390/ijgi8060257
Chicago/Turabian StyleWang, Huihui, Hong Huang, Xiaoyong Ni, and Weihua Zeng. 2019. "Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data" ISPRS International Journal of Geo-Information 8, no. 6: 257. https://doi.org/10.3390/ijgi8060257
APA StyleWang, H., Huang, H., Ni, X., & Zeng, W. (2019). Revealing Spatial-Temporal Characteristics and Patterns of Urban Travel: A Large-Scale Analysis and Visualization Study with Taxi GPS Data. ISPRS International Journal of Geo-Information, 8(6), 257. https://doi.org/10.3390/ijgi8060257