Next Article in Journal
Analyzing and Visualizing Emotional Reactions Expressed by Emojis in Location-Based Social Media
Previous Article in Journal
Spatiotemporal Data Clustering: A Survey of Methods
Article Menu

Export Article

Open AccessArticle
ISPRS Int. J. Geo-Inf. 2019, 8(3), 114; https://doi.org/10.3390/ijgi8030114

A Real-Time and Open Geographic Information System and Its Application for Smart Rivers: A Case Study of the Yangtze River

1
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
2
Collaborative Innovation Center of Geospatial Technology, 129 Luoyu Road, Wuhan 430079, China
*
Author to whom correspondence should be addressed.
Received: 18 January 2019 / Revised: 20 February 2019 / Accepted: 23 February 2019 / Published: 28 February 2019
Full-Text   |   PDF [5150 KB, uploaded 28 February 2019]   |  

Abstract

The timely sharing and interoperation of multi-source cross-sectoral information is an important issue for a Geographic Information System (GIS). To study this issue, a real-time and open GIS model called GeoSensor is proposed in this work. GeoSensor integrates the real-time GIS model, real-time computation framework, and Open Geospatial Consortium services. This paper illustrates the system architecture and the implementation methods of the GeoSensor. One of the methods developed is the conceptual mapping of a real-time GIS data model to open GIS models and services and a real-time computation framework. The other method developed is the integration of open GIS services, a real-time computation framework, and hybrid databases. The GeoSensor was tested in a case study of building a smart river. In the case study, a comprehensive sensor web was constructed and integrated with the real-time information on rainfall, beacon, channel, sediment, and water levels derived from space-based sensors, air-borne sensors, and underground sensors from multiple sectors in the Yangtze River basin. The GeoSensor manages the comprehensive sensor web with 32 types of sensors and more than 10 billion observation records. Three application systems were developed based on the GeoSensor to manage flood control, hydropower production, and navigation of the Yangtze River. The results of the three application systems show that the real-time and open system improves the management efficiency of the Yangtze River. This system is promising for managing smart rivers. View Full-Text
Keywords: real-time and open GIS; smart rivers; Yangtze River; flood control; hydropower production; navigation real-time and open GIS; smart rivers; Yangtze River; flood control; hydropower production; navigation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chen, Z.; Chen, N. A Real-Time and Open Geographic Information System and Its Application for Smart Rivers: A Case Study of the Yangtze River. ISPRS Int. J. Geo-Inf. 2019, 8, 114.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top