Next Article in Journal
WeatherNet: Recognising Weather and Visual Conditions from Street-Level Images Using Deep Residual Learning
Previous Article in Journal
EEG & Eye Tracking User Experiments for Spatial Memory Task on Maps
Open AccessCommunication

Surface Reconstruction for Three-Dimensional Rockfall Volumetric Analysis

Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
*
Author to whom correspondence should be addressed.
ISPRS Int. J. Geo-Inf. 2019, 8(12), 548; https://doi.org/10.3390/ijgi8120548
Received: 8 October 2019 / Revised: 17 November 2019 / Accepted: 25 November 2019 / Published: 30 November 2019
Laser scanning is routinely being used for the characterization and management of rockfall hazards. A key component of many studies is the ability to use the high-resolution topographic datasets for detailed volume estimates. 2.5-Dimensional (2.5D) approaches exist to estimate the volume of rockfall events; however these approaches require rasterization of the point cloud. These 2.5D volume estimates are therefore sensitive to picking an appropriate cell size to preserve resolution while minimizing interpolation, especially for lower volume rockfall events. To overcome the limitations of working with 2.5D raster datasets, surface reconstruction methods originating from the field of computational geometry can be implemented to assess the volume of rockfalls in 3D. In this technical note, the authors address the methods and implications of how the surface of 3D rockfall objects, derived from sequential terrestrial laser scans (TLS), are reconstructed for volumetric analysis. The Power Crust, Convex Hull and Alpha-shape algorithms are implemented to reconstruct a synthetic rockfall object generated in Houdini, a procedural modeling and animation software package. The reconstruction algorithms are also implemented for a selection of three rockfall cases studies which occurred in the White Canyon, British Columbia, Canada. The authors find that there is a trade-off between accurate surface topology reconstruction and ensuring the mesh is watertight manifold; which is required for accurate volumetric estimates. Power Crust is shown to be the most robust algorithm, however, the iterative Alpha-shape approach introduced in the study is also shown to find a balance between hole-filling and loss of detail. View Full-Text
Keywords: rockfall; surface reconstruction; LiDAR; point cloud; Alpha-shape; Power Crust; Convex Hull; volume estimate rockfall; surface reconstruction; LiDAR; point cloud; Alpha-shape; Power Crust; Convex Hull; volume estimate
Show Figures

Figure 1

MDPI and ACS Style

Bonneau, D.; DiFrancesco, P.-M.; Hutchinson, D.J. Surface Reconstruction for Three-Dimensional Rockfall Volumetric Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 548.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop