A Drift-of-Stay Pattern Extraction Method for Indoor Pedestrian Trajectories for the Error and Accuracy Assessment of Indoor Wi-Fi Positioning
Abstract
:1. Introduction
2. Data and Materials
3. Method
3.1. Definition of Pedestrian Trajectory Patterns in Mass Indoor Positioning Data
3.2. Stay Point Extraction
3.2.1. Distance Threshold Determination
3.2.2. Time Threshold Determination
3.2.3. The Algorithm for the Extraction of Stay Points from the Staying Trajectories
Algorithm 1: Stay Point_Detection (WP, distThreh, timeThreh,CE) |
Input: A Wi-Fi point log WP, a distance threshold distThreh and time span threshold timeThreh, an updated centroid CE, the initial CE was set as the starting point of a complete pedestrian trajectory. |
Output: A set of stay points SP = {WP} |
Orderby: Wi-Fi record time T |
1. Loop: All pedestrian positioning records |
2. While j < pointNum do |
3. j = j + 1 |
4. While j < pointNum do |
5. Calculate the distance between CE and Wi-Fi: Distance(CE, pj) |
6. If dist < distThreh, then |
7. Update CE (p0, p1, …, pj) |
8. Calculate the time span between two Wi-Fi points as diffTime = pj.T-pj-1. T |
9. If diffTime is Continuous-time then |
10. SP.insert(WPj) |
11. j = j + 1 |
12. Else |
13. SP.time = SP.Endtime − SP. Starttime |
14. If SP.time > timeThreh then |
15. Clear CE.value |
16. j = j + 1 |
17. Return SP |
3.3. Drift Point Extraction Based on Noncustomer Behavior Patterns
3.3.1. Drift Phenomenon in Stay Points
3.3.2. Extraction of Drift Points from Stay Points
Algorithm 2 Drift Point Detection (WP, distThreh, timeThreh, CE, driftdistThreh, drifttime, Threh) |
Input: A Wi-Fi point log WP, a distance threshold distThreh and time span threshold timeThreh, an updated centroid CE, a distance threshold of drift points and time span threshold of drift points |
Output: A set of stay points and drift points |
Orderby: Wi-Fi record time T |
1. Loop: All pedestrian positioning records |
2. While j < pointNum do |
3. J = j + 1 |
4. While j < pointNum do |
5. Calculate the distance between CE and Wi-Fi point: dist = Distance(CE,pj) |
6. Calculate the time span between two Wi-Fi points: diffTime = pj.T-pj-1.T |
7. Calculate the time span between drift point and stay point: driftdiffTime = pj.T-pj−i.T |
8. Calculate the time span between drift point and stay point: backstayPointdist = pj.T-pj−i.T |
9. If dist<distThreh then |
10. Update CE(p0,p1..pj) |
11. If diffTime is Continuous-time then |
12. DP.insert(WPj) |
13. j = j + 1 |
14. Elif dist > driftdistThreh and diffTime is Continuous-time |
15. and driftdiffTime < drifttimeThreh |
16. i = i + 1 |
17. Elif backstayPointdist< distThreh and diffTime is Continuous-time |
18. DP.insert(WPj,WPj−1,‘‘‘,WPj−i) |
19. DP.time = DP.Endtime − DP.Starttime |
20. i = 0 |
21. If DP.time > timeThreh then |
22. Clear CE.value |
23. j = j + 1 |
24. Return DP |
3.4. Accuracy Analysis Based on Drift Points
4. Experiments and Analysis
4.1. Error and Accuracy of the Indoor Wi-Fi Positioning System
4.2. Analysis of the Spatial Accuracy of the Indoor Wi-Fi Positioning System
4.2.1. Relationship between Crowd Density and Indoor Positioning Error
4.2.2. Relationship between the AP Sensors and Indoor Positioning Error
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.J.; Min, C.; Yoo, C.; Song, J. Understanding customer malling behavior in an urban shopping mall using smartphones. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, Zurich, Switzerland, 8–12 September 2013; pp. 901–910. [Google Scholar]
- Jibiki, K.; Iwata, S.; Tamagawa, S. A study of AED layout method in shopping mall based on the customers’ subconsciousness. AIJ J. Technol. Des. 2017, 23, 643–648. [Google Scholar] [CrossRef]
- Pipelidis, G.; Moslehi Rad, O.R.; Iwaszczuk, D.; Prehofer, C.; Hugentobler, U. Dynamic Vertical Mapping with Crowdsourced Smartphone Sensor Data. Sensors 2018, 18, 480. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.; Barcelo, M.; Morell, A.; Vicario, J.L. A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications. Sensors 2017, 17, 1927. [Google Scholar] [CrossRef] [PubMed]
- Guvenc, I.; Chong, C.C. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Liu, Y.; Yang, X. Systemerror correction based on particle swarm optimization in TOA indoor location. Electron. Meas. Technol. 2017, 40, 189–192. [Google Scholar]
- Akgul, F.O.; Pahlavan, K. A Novel Statistical AOA Model Pertinent to Indoor Geolocation. J. Geogr. Inf. Syst. 2010, 2, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef]
- Bocquet, M.; Loyez, C.; Benlarbi-Delai, A. Using enhanced-TDOA measurement for indoor positioning. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 612–614. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, C.; Li, Y.; Jiang, H.; Wang, Z. An enhanced TDoA approach handling multipath interference in Wi-Fi based indoor localization systems. In Proceedings of the International Midwest Symposium on Circuits and Systems, Boston, MA, USA, 6–9 August 2017; pp. 160–163. [Google Scholar]
- Mazuelas, S.; Bahillo, A.; Lorenzo, R.M.; Fernandez, P.; Lago, F.A.; Garcia, E.; Blas, J.; Abril, E.J. Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks. IEEE J. Sel. Top. Signal Process. 2009, 3, 821–831. [Google Scholar] [CrossRef]
- Passafiume, M.; Maddio, S.; Cidronali, A. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks. Sensors 2017, 17, 717. [Google Scholar] [CrossRef]
- Zhang, W.; Hua, X.; Yu, K.; Qiu, W.; Chang, X.; Wu, B.; Chen, X. Radius based domain clustering for Wi-Fi indoor positioning. Sens. Rev. 2017, 37, 54–60. [Google Scholar] [CrossRef]
- Qin, J.; Sun, S.; Deng, Q.; Liu, L.; Tian, Y. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks. Sensors 2017, 17, 1275. [Google Scholar] [CrossRef]
- Pastell, M.; Frondelius, L.; Järvinen, M.; Backman, J. Filtering methods to improve the accuracy of indoor positioning data for dairy cows. Biosyst. Eng. 2018, 169, 22–31. [Google Scholar] [CrossRef]
- Walters, C. Characterization of Smart Phone Received Signal Strength Indication for WLAN Indoor Positioning Accuracy Improvement. J. Netw. 2014, 9, 1061–1065. [Google Scholar]
- Papaioannou, S.; Wen, H.; Markham, A.; Trigoni, N. Fusion of Radio and Camera Sensor Data for Accurate Indoor Positioning. In Proceedings of the International Conference on Mobile Ad Hoc and Sensor Systems, Philadelphia, PA, USA, 28–30 October 2014; pp. 109–117. [Google Scholar]
- He, S.; Chan, S.H.G. Sectjunction: Wi-Fi indoor localization based on junction of signal sectors. In Proceedings of the IEEE International Conference on Communications, Sydney, NSW, Australia, 10–14 June 2014; pp. 2605–2610. [Google Scholar]
- Yang, S.; Dessai, P.; Verma, M.; Gerla, M. FreeLoc: Calibration-free crowdsourced indoor localization. In Proceedings of the IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2481–2489. [Google Scholar]
- Lymberopoulos, D.; Liu, J.; Yang, X.; Choudhury, R.R.; Sen, S.; Handziski, V. Microsoft Indoor Localization Competition: Experiences and Lessons Learned. GetMobile 2015, 18, 24–31. [Google Scholar] [CrossRef]
- Farshad, A.; Li, J.; Marina, M.K.; Garcia, F.J. A microscopic look at Wi-Fi fingerprinting for indoor mobile phone localization in diverse environments. In International Conference on Indoor Positioning and Indoor Navigation; IEEE: Busan, Korea, 2013; pp. 1–10. [Google Scholar]
- Liu, Y.; Yang, Z.; Wang, X.; Jian, L. Location, localization, and localizability. J. Comput. Sci. Technol. 2010, 25, 274–297. [Google Scholar] [CrossRef]
- He, S.; Chan, S.H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun. Surv. Tutor. 2017, 18, 466–490. [Google Scholar] [CrossRef]
- Wallbaum, M.; Diepolder, S. Benchmarking wireless lan location systems wireless lan location systems. In Proceedings of the Second IEEE International Workshop on Mobile Commerce and Services, Munich, Germany, 19 July 2005; pp. 42–51. [Google Scholar]
- Niu, J.; Lu, B.; Cheng, L.; Gu, Y.; Shu, L. ZiLoc: Energy efficient Wi-Fi fingerprint-based localization with low-power radio. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference, Shanghai, China, 7–10 April 2013; pp. 4558–4563. [Google Scholar]
- Ji, Y.; Biaz, S.; Wu, S.; Qi, B. Optimal Sniffers Deployment on Wireless Indoor Localization. In Proceedings of the International Conference on Computer Communications and Networks, Honolulu, HI, USA, 13–16 August 2007; pp. 251–256. [Google Scholar]
- Males, J.R.; Worrell, G.C. Wireless Based Positioning Method and Apparatus. U.S. Patent 8081991B2, 20 December 2011. [Google Scholar]
- Nishida, K.; Toda, H.; Kurashima, T.; Suhara, Y. Probabilistic identification of visited point-of-interest for personalized automatic check-in. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Washington, DC, USA, 13–17 September 2014; pp. 631–642. [Google Scholar]
- Nuaimi, K.A.; Kamel, H. A survey of indoor positioning systems and algorithms. In Proceedings of the International Conference on Innovations in Information Technology, Abu Dhabi, UAE, 25–27 April 2011; pp. 185–190. [Google Scholar]
- Liu, H.; Gan, Y.; Yang, J.; Sidhom, S.; Wang, Y.; Chen, Y.; Ye, F. Push the limit of Wi-Fi based localization for smartphones. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2012; pp. 305–316. [Google Scholar]
- Xie, H.; Gu, T.; Tao, X.; Ye, H.; Lv, J. MaLoc: A practical magneticfingerprinting approach to indoor localization using smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Washington, DC, USA, 13–17 September 2014; pp. 243–253. [Google Scholar]
- Xiao, Z.; Wen, H.; Markham, A.; Trigoni, N.; Blunsom, P.; Frolik, J. Non-Line-of-Sight Identification and Mitigation Using Received Signal Strength. IEEE Trans. Wirel. Commun. 2014, 14, 1689–1702. [Google Scholar] [CrossRef]
- Seco, F.; Jiménez, A.R.; Prieto, C.; Roa, J.; Koutsou, K. A survey of mathematical methods for indoor localization. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 26–28 August 2009; pp. 9–14. [Google Scholar]
- Sun, G.; Chen, J.; Guo, W.; Liu, K.R. Signal Processing Techniques in Network Aided Positioning. IEEE Signal Process. Mag. 2005, 22, 12–23. [Google Scholar]
- Vaupel, T.; Seitz, J.; Kiefer, F.; Haimerl, S.; Thielecke, J. Wi-Fi positioning: System considerations and device calibration. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 15–17 September 2010; pp. 1–7. [Google Scholar]
- Honkavirta, V.; Perala, T.; Ali-Loytty, S.; Piché, R. A comparative survey of WLAN location fingerprinting methods. In Proceedings of the 2009 6th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 19 March 2009; pp. 243–251. [Google Scholar]
- Sun, W.; Liu, J.; Wu, C.; Yang, Z.; Zhang, X.; Liu, Y. MoLoc: On Distinguishing Fingerprint Twins. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems, Philadelphia, PA, USA, 8–11 July 2013; pp. 226–235. [Google Scholar]
- Han, D.; Jung, S.; Lee, M.; Yoon, G. Building a practical Wi-Fi-based indoor navigation system. IEEE Pervasive Comput. 2014, 13, 72–79. [Google Scholar]
- Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man Cybern. Part C 2007, 37, 1067–1080. [Google Scholar] [CrossRef]
- De Montjoye, Y.A.; Radaelli, L.; Singh, V.K. Unique in the shoppingmall: On the reidentifiability of credit card metadata. Science 2015, 347, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Faragher, R.; Harle, R. An analysis of the accuracy of bluetooth low energy for indoor positioning applications. Phys. Rev. A 2014, 84, 8049–8054. [Google Scholar]
- Khalajmehrabadi, A.; Gatsis, N.; Akopian, D. Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1974–2002. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y. Location Determination within Wireless Networks; VDM Verlag Dr. Müller: Saarbrücken, Germany, 2009. [Google Scholar]
- Wan, N.; Lin, G.; Wilson, G.J. Addressing location uncertainties in GNSS-based activity monitoring: A methodological framework. Trans. Gis 2017, 21, 764. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, H.; Qi, H.; Ping, P.; Li, X. An adaptive trajectory clustering method based on grid and density in mobile pattern analysis. Sensors 2017, 17, 2013. [Google Scholar] [CrossRef]
- Qingwu, H.U.; Wang, M.; Qingquan, L.I. Urban Hotspot and Commercial Area Exploration with Check-in Data. Acta Geod. Cartogr. Sin. 2014, 43, 314–321. [Google Scholar]
- Wang, M.; Li, Q.; Hu, Q.; Zhou, M.; Li, Q.Q.; Hu, Q.W. Quality Analysis on Crowd Sourcing Geographic Data with Open Street Map Data. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1490–1494. [Google Scholar]
- Wu, L.; Hu, S.; Yin, L.; Wang, Y.; Chen, Z.; Guo, M.; Chen, H.; Xie, Z. Optimizing Cruising Routes for Taxi Drivers Using a Spatio-Temporal Trajectory Model. ISPRS Int. J. Geo-Inf. 2017, 6, 373. [Google Scholar] [CrossRef]
- Zheng, L.; Xia, D.; Zhao, X.; Tan, L.; Li, H.; Chen, L.; Liu, W. Spatial-temporal travel pattern mining using massive taxi trajectory data. Physica A 2018, 501, 24–41. [Google Scholar] [CrossRef]
- Yang, C.; Shao, H.R. Wi-Fi-based indoor positioning. Commun. Mag. IEEE 2015, 53, 150–157. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, B.; Song, S.; Zhao, Q.; Yao, X.; Wang, W. Statistical analysis of the stability of bus vehicles based on GPS trajectory data. Mod. Phys. Lett. B 2019, 33, 1950015. [Google Scholar] [CrossRef]
- Giannotti, F.; Nanni, M.; Pedreschi, D.; Pinelli, F. Trajectory pattern analysis for urban traffic. In Proceedings of the International Workshop on Computational Transportation Science, Washington, DC, USA, 3 November 2009. [Google Scholar]
- Yoo, J.; Kim, H.J.; Johansson, K.H. Mapless indoor localization by trajectory learning from a crowd. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016. [Google Scholar]
- Yoo, J.; Johansson, K.H.; Kim, H.J. Indoor Localization Without a Prior Map by Trajectory Learning from Crowdsourced Measurements. IEEE Trans. Instrum. Meas. 2017, 66, 2825–2835. [Google Scholar] [CrossRef]
Floor | Time | CM | CDP | AVE (m) | SD (m) | AoD (m) | SDoD (m) |
---|---|---|---|---|---|---|---|
Ground Floor | 1 day | 35,478 | 463 | 3.21 | 2.43 | 9.12 | 1.16 |
1 week | 210,562 | 3126 | 3.32 | 2.22 | 9.11 | 0.96 | |
1 month | 1,015,468 | 13,659 | 3.09 | 2.35 | 8.89 | 1.12 | |
Second Floor | 1 day | 32,156 | 421 | 3.11 | 2.54 | 9.12 | 0.96 |
1 week | 200,456 | 2965 | 3.89 | 2.23 | 9.56 | 0.89 | |
1 month | 1,008,632 | 12,654 | 3.81 | 2.41 | 8.95 | 1.07 | |
Third Floor | 1 day | 38,456 | 481 | 3.65 | 2.33 | 9.66 | 1.13 |
1 week | 226,544 | 3248 | 3.65 | 2.47 | 9.43 | 0.98 | |
1 month | 1,125,986 | 14,025 | 3.42 | 2.69 | 9.13 | 1.03 |
Model Summary | Coefficients | ||||
---|---|---|---|---|---|
Adjusted R2 | Std. | Model | T | Sig. | |
1st Floor | 0.977 | 33.698 | Crowd Density | 182.658 | 0.03 |
2nd Floor | 0.931 | 38.365 | Crowd Density | 188.634 | 0.04 |
3rd Floor | 0.948 | 35.291 | Crowd Density | 186.889 | 0.01 |
Model Summary | Coefficients | ||||
---|---|---|---|---|---|
Adjusted R2 | Std. | Model | T | Sig. | |
1st Floor | 0 | 99.312 | Crowd Density | 0.461 | 0.791 |
2nd Floor | 0 | 96.567 | Crowd Density | 0.369 | 0.801 |
3rd Floor | 0 | 91.226 | Crowd Density | 0.335 | 0.737 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Hu, Q.; Wang, S. A Drift-of-Stay Pattern Extraction Method for Indoor Pedestrian Trajectories for the Error and Accuracy Assessment of Indoor Wi-Fi Positioning. ISPRS Int. J. Geo-Inf. 2019, 8, 468. https://doi.org/10.3390/ijgi8110468
Yu D, Hu Q, Wang S. A Drift-of-Stay Pattern Extraction Method for Indoor Pedestrian Trajectories for the Error and Accuracy Assessment of Indoor Wi-Fi Positioning. ISPRS International Journal of Geo-Information. 2019; 8(11):468. https://doi.org/10.3390/ijgi8110468
Chicago/Turabian StyleYu, Dengbo, Qingwu Hu, and Shaohua Wang. 2019. "A Drift-of-Stay Pattern Extraction Method for Indoor Pedestrian Trajectories for the Error and Accuracy Assessment of Indoor Wi-Fi Positioning" ISPRS International Journal of Geo-Information 8, no. 11: 468. https://doi.org/10.3390/ijgi8110468
APA StyleYu, D., Hu, Q., & Wang, S. (2019). A Drift-of-Stay Pattern Extraction Method for Indoor Pedestrian Trajectories for the Error and Accuracy Assessment of Indoor Wi-Fi Positioning. ISPRS International Journal of Geo-Information, 8(11), 468. https://doi.org/10.3390/ijgi8110468