From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland
Abstract
1. Introduction
2. Materials and Methods
2.1. The SDG Indicator
2.2. Algorithm Implementation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Statistics Division (UNSD). Sustainable Development Goals Report; UNSD: Washington, DC, USA, 2016. [Google Scholar]
- United Nations. SDG Indicators. 2018. Available online: https://unstats.un.org (accessed on 13 June 2018).
- UNECE. Joint UNECE/Eurostat/OECD Working Group on Statistics on Sustainable Development. Available online: https://www.unece.org/stats/groups/wgssd.tor.html (accessed on 10 October 2018).
- Guo, H.; Liu, Z.; Jiang, H.; Wang, C.; Liu, J.; Liang, D. Big Earth Data: A new challenge and opportunity for Digital Earth’s development. Int. J. Digit. Earth 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Boulton, G. The challenges of a Big Data Earth. Big Earth Data 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Giuliani, G.; Dao, H.; De Bono, A.; Chatenoux, B.; Allenbach, K.; De Laborie, P.; Rodila, D.; Alexandris, N.; Peduzzi, P. Live monitoring of earth surface (LiMES): A framework for monitoring environmental changes from earth observations. Remote Sens. Environ. 2017, 202, 222–233. [Google Scholar] [CrossRef]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Lewis, A.; Lymburner, L.; Purss, M.B.; Brooke, B.; Evans, B.; Ip, A.; Dekker, A.G.; Irons, J.R.; Minchin, S.; Mueller, N.; et al. Rapid, high-resolution detection of environmental change over continental scales from satellite data—The Earth Observation Data Cube. Int. J. Digit. Earth 2016, 9, 106–111. [Google Scholar] [CrossRef]
- Purss, M.B.; Lewis, A.; Oliver, S.; Ip, A.; Sixsmith, J.; Evans, B.; Edberg, R.; Frankish, G.; Hurst, L.; Chan, T. Unlocking the Australian Landsat Archive—From dark data to High Performance Data infrastructures. GeoResJ 2015, 6 (Suppl. C), 135–140. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, G.; Chatenoux, B.; De Bono, A.; Rodila, D.; Richard, J.P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef]
- Group on Earth Observations (GEO). Earth Observations in Support of the 2030 Agenda for Sustainable Development; Japan Aerospace Exploration Agency (JAXA) on Behalf of GEO under the EO4SDG Initiative: Tokyo, Japan, 2017. [Google Scholar]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- World Resources Institute. Forests and SDGs: Taking a Second Look|World Resources Institute. Available online: https://www.wri.org/blog/2017/09/forests-and-sdgs-taking-second-look (accessed on 9 October 2018).
- Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J. The Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: A Review of the Current Status, Future Trends, and Practical Considerations; Lund University Center for Sustainability Studies (LUCSUS) and the Scientific and Technical Advisory Panel of the Global Environment Facility (STAP/GEF): Lund, Sweden, 2014. [Google Scholar]
- Rouse, J.W., Jr. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA: College Station, TX, USA, 1972.
- Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: College Station, TX, USA, 1974.
- RColditz, R.; Ressl, R.A.; Bonilla-Moheno, M. Trends in 15-year MODIS NDVI time series for Mexico. In Proceedings of the 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France, 22–24 July 2015; pp. 1–4. [Google Scholar]
- Ceroni, M.; Achkar, M.; Gazzano, I.; Burgueño, J. Study of the NDVI with multi-scale and time-series analysis using SPOT imagery during the period 1998–2012 in Uruguay. Rev. Teledetec. 2015, 31–42. [Google Scholar] [CrossRef]
- Picoli, M.C.; Camara, G.; Sanches, I.; Simões, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Schubarth, C.; IC Infraconsult AG; Weibel, F.; OFS. L’utilisation du sol en Suisse–Résultats de la statistique de la superficie; Office fédéral de la statistique (OFS): Neuchâtel, Switzerland, 2013. [Google Scholar]
- IFN. L’inventaire forestier national suisse (IFN). 2018. Available online: https://www.lfi.ch/lfi/lfi-fr.php (accessed on 18 February 2018).
- FAO of the UN. FRA 2000 on Definitions of Forest and Forest Change. 2018. Available online: http://www.fao.org/docrep/006/ad665e/ad665e00.htm#TopOfPage (accessed on 15 June 2018).
- VanderPlas, J. Python Data Science Handbook: Essential Tools for Working with Data; O’Reilly Media, Inc.: Newton, MA, USA, 2016. [Google Scholar]
- Office Fédéral de l’Environnement OFEV, “Division Forêts. 2018. Available online: https://www.bafu.admin.ch/bafu/fr/home/office/divisions-sections/division-forets.html (accessed on 18 April 2018).
- Canton de Genève. Forêt|Nature. 2018. Available online: http://ge.ch/nature/foret (accessed on 18 April 2018).
- République et Canton du Jura. Forêts jurassiennes—République et Canton du Jura. Available online: https://www.jura.ch/DEN/ENV/Forets/Forets-jurassiennes.html (accessed on 22 August 2018).
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001, 10, 321–328. [Google Scholar] [CrossRef]
- SITG. Cartes professionnelles|SITG. 2018. Available online: https://ge.ch/sitg/cartes/professionnelles (accessed on 18 April 2018).
- Desai, D.; Schomerus, M. ‘There Was A Third Man…’: Tales from a Global Policy Consultation on Indicators for the Sustainable Development Goals-Desai-2018-Development and Change. Dev. Chang. 2017, 49, 89–115. [Google Scholar] [CrossRef]
- Kaika, M. ‘Don’t call me resilient again!’: The New Urban Agenda as immunology … or … what happens when communities refuse to be vaccinated with ‘smart cities’ and indicators. Environ. Urban. 2017, 29, 89–102. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Jones, M.O.; Moreno, A.; Kimball, J.S.; Naugle, D.E.; Erickson, T.A.; Richardson, A.D. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017, 9, 863. [Google Scholar] [CrossRef]
- Redowan, M.; Kanan, A.H. Potentials and Limitations of NDVI and other Vegetation Indices (VIS) for Monitoring Vegetation Parameters from Remotely Sensed Data. Bangladesh Res. Pub. J. 2012, 7, 291–299. [Google Scholar]
- Baniya, B.; Tang, Q.; Huang, Z.; Sun, S.; Techato, K.A. Spatial and Temporal Variation of NDVI in Response to Climate Change and the Implication for Carbon Dynamics in Nepal. Forests 2018, 9, 329. [Google Scholar] [CrossRef]
- Schmidt, S.; Alewell, C.; Meusburger, K. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland. Remote Sens. Environ. 2018, 211, 89–104. [Google Scholar] [CrossRef]
- Poursanidis, D.; Chrysoulakis, N.; Mitraka, Z. Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 259–269. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- González-Alonso, F.; Merino-De-Miguel, S.; Roldán-Zamarrón, A.; García-Gigorro, S.; Cuevas, J.M. Forest biomass estimation through NDVI composites. The role of remotely sensed data to assess Spanish forests as carbon sinks. Int. J. Remote Sens. 2006, 27, 5409–5415. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- European Space Agency. Satellite Earth Observations in Support of the Sustainable Development Goals—Special 2018 Edition; European Space Agency: Paris, France, 2018. [Google Scholar]
Reference | ||||
---|---|---|---|---|
Non-Forest | Forest | Total | ||
Classified | Non-Forest | 370416 | 25465 | 395881 |
Forest | 7831 | 43622 | 51453 | |
Total | 378247 | 69087 | 447334 | |
Overall accuracy 414038/447334 = 93% | ||||
Producer’s Accuracy | User’s Accuracy | |||
Non-Forest | 370416/378247 = 98% | Non-Forest | 370416/395881 = 94% | |
Forest | 43622/69087 = 63% | Forest | 43622/51453 = 85% |
Forest Surface (km2) | Forest Pixels (nr.) | Forest Percentage (%) | |
---|---|---|---|
1999–2002 | 36.61 | 58572 | 13.09 |
2003–2007 | 30.05 | 48088 | 10.75 |
2008–2012 | 31.58 | 50522 | 11.29 |
2013–2017 | 32.16 | 51453 | 11.50 |
Relative Variation (%) | 1999–2002 | 2003–2007 | 2008–2012 | 2013–2017 |
---|---|---|---|---|
1999–2002 | −17.92 | −13.74 | −12.16 | |
2003–2007 | 5.09 | 7.02 | ||
2008–2012 | 1.84 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honeck, E.; Castello, R.; Chatenoux, B.; Richard, J.-P.; Lehmann, A.; Giuliani, G. From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. ISPRS Int. J. Geo-Inf. 2018, 7, 455. https://doi.org/10.3390/ijgi7120455
Honeck E, Castello R, Chatenoux B, Richard J-P, Lehmann A, Giuliani G. From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. ISPRS International Journal of Geo-Information. 2018; 7(12):455. https://doi.org/10.3390/ijgi7120455
Chicago/Turabian StyleHoneck, Erica, Roberto Castello, Bruno Chatenoux, Jean-Philippe Richard, Anthony Lehmann, and Gregory Giuliani. 2018. "From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland" ISPRS International Journal of Geo-Information 7, no. 12: 455. https://doi.org/10.3390/ijgi7120455
APA StyleHoneck, E., Castello, R., Chatenoux, B., Richard, J.-P., Lehmann, A., & Giuliani, G. (2018). From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. ISPRS International Journal of Geo-Information, 7(12), 455. https://doi.org/10.3390/ijgi7120455