# A Spatial Lattice Model Applied for Meteorological Visualization and Analysis

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Basic Idea of the Spatial Lattice Model for Meteorological Analysis

_{i}is the meteorological properties (i $\in $ [1,n]).

_{0}, the position (x

_{0}, y

_{0}, z

_{0}) is constant, and t is a specified value, t

_{0}. This particle will store the meteorological information at time t

_{0}and in the location (x

_{0}, y

_{0}, z

_{0}). In particular, for parameter P

_{i}, when i = 1, there is only one type of meteorological information stored in this particle; when i > 1, the particle can be used to express multiple types of meteorological information. In this way, along with variations in the different parameters, from an extreme perspective, when these particles fill up the meteorological space very densely, the information they carry will approximately represent the meteorological content in the space. Therefore, through the effective integration, organization, and processing of these particles, the meteorological space filled up with meteorological elements can be expressed and analyzed in a flexible manner.

## 3. Application-Oriented Abstraction of 3D Meteorological Space and the Corresponding Spatial Lattice Models

_{a}; when Z

_{a}= 0, the projection surface space is located just in the XY plane, and can be easily used for analysis in two dimensions.

## 4. Realization of the Spatial Lattice Model

## 5. Case Studies

#### 5.1. Expression of Radar Data and NCEP Pressure Field

#### 5.2. Advanced Meteorological Analysis—Taking Cutting as an Case

- If F > 0, then, point O is on the positive side of the cutting plane.
- If F = 0, then, point O is in the plane.
- If F < 0, then, point O is on the negative side of the cutting plane.

## 6. Conclusions and Discussion

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Dobesch, H.; Dumolard, P.; Dyras, I. Spatial Interpolation for Climate Data-the Use of GIS in Climatology and Meteorology; ISTE: London, UK, 2013. [Google Scholar]
- Wilhelmi, O.V.; Betancourt, T.L. Evolution of NCAR’s GIS Initiative: Demonstration of GIS Interoperability. Bull. Am. Meteorol. Soc.
**2005**, 86, 176–178. [Google Scholar] [CrossRef] - Sanyal, J.; Zhang, S.; Dyer, J.; Mercer, A.; Amburn, P.; Moorhead, R.J. Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty. IEEE Trans. Vis. Comput. Graph.
**2010**, 16, 1421–1430. [Google Scholar] [CrossRef] [PubMed] - Titov, A.; Gordov, E.; Okladnikov, I.; Shulgina, T. Web-system for processing and visualization of meteorological data for Siberian environment research. Int. J. Digit. Earth
**2009**, 2 (Suppl. S1), 105–119. [Google Scholar] [CrossRef] - Sun, X.J.; Shen, S.H.; Leptoukh, G.G.; Wang, P.X.; Di, L.P.; Lu, M. Development of a Web-based visualization platform for climate research using Google Earth. Comput. Geosci.
**2012**, 47, 160–168. [Google Scholar] [CrossRef] - Luo, W.; Chang, Z.; Kong, L.; Link, R.; Hejazi, M.; Clarke, L.; Maciejewski, R. Web-Based Visualization of the Global Change Assessment Model. Available online: https://diglib.eg.org/handle/10.2312/envirvis.20151085.013-017 (accessed on 9 March 2017).
- Adamowski, J.; Adamowski, K.; Prokoph, A. Quantifying the spatial temporal variability of annual streamflow and meteorological changes in eastern Ontario and southwestern Quebec using wavelet analysis and GIS. J. Hydrol.
**2013**, 499, 27–40. [Google Scholar] [CrossRef] - Nocke, T.; Sterzel, T.; Bottinger, M.; Worbel, M. Visualization of Climate and Climate Change Data: An Overview. 2008. Available online: https://www.pik-potsdam.de/members/nocke/.personal/NockeSterzelBoettingerWrobel06.pdf (accessed on 7 March 2017).
- Grotjahn, R.; Barlow, M.; Black, R.; Cavazos, T.; Gutowski, W.; Gyakum, J.; Katz, R.; Kumar, A.; Leung, L.-Y.; Schumacher, R.; et al. US CLIVAR Workshop on Analyses, Dynamics, and Modeling of Large-Scale Meteorological Patterns Associated with Extreme Temperature and Precipitation Events; US CLIVAR Report, US CLIVAR Project Office: Washington, DC, USA, 2014; p. 42. [Google Scholar]
- Lee, J.; Kwan, M.P. A combinatorial data model for representing topological relations among 3D geographical features in micro-spatial environments. Int. J. Geogr. Inf. Sci.
**2005**, 19, 1039–1056. [Google Scholar] [CrossRef] - Tsuzuki, M.d.S.G.; Takase, F.K.; Garcia, M.A.S.; Martins, T.D.C. Converting CSG models into Meshed B-Rep Models Using Euler Operators and Propagation Based Marching. J. Braz. Soc. Mech. Sci. Eng.
**2007**, 29, 337–344. [Google Scholar] [CrossRef] - Foley, J.; van Dam, A.; Feiner, S.; Hughes, J. Computer Graphics: Principles and Practice, 2nd ed.; Addison Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Wu, L.X. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Comput. Geosci.
**2004**, 30, 405–418. [Google Scholar] [CrossRef] - Shi, W.Z.; Yang, B.S.; Li, Q.Q. An object-oriented data model for complex objects in three-dimensional geographical information systems. Int. J. Geogr. Inf. Sci.
**2003**, 17, 411–430. [Google Scholar] [CrossRef] - Jessell, M.W.; Ailleres, L.; Kemp, E.A.D. Towards an integrated inversion of geoscientific data: What price of geology? Tectonophysics
**2010**, 490, 294–306. [Google Scholar] [CrossRef] - Crum, T.D.; Alberty, R. The WSR-88D and the WSR-88D Operational Support Facility. Bull. Am. Meteorol. Soc.
**1993**, 74, 1669–1687. [Google Scholar] [CrossRef] - Wang, J. Operational Applications of CINRAD Weather Radar Network in Shandong. Meteorological
**2006**, 32, 102–106. [Google Scholar] - Craglia, M.; Goodchild, M.F.; Annoni, A.; Camara, G.; Gould, M.; Kuhn, W.; Mark, D.; Masser, I.; Maguire, D.; Liang, S.; et al. Next-Generation Digital Earth—A Position Paper from the Vespucci Initiative for the Advancement of Geographic Information Science. Int. J. Spat. Data Infrastruct. Res.
**2008**, 3, 146–167. [Google Scholar] - Goodchild, M.F. The Future of Digital Earth. Ann. GIS
**2012**, 18, 93–98. [Google Scholar] [CrossRef] - Guo, H.; Liu, Z.; Zhu, L. Digital Earth: Decadal Experiences and Some Thoughts. Int. J. Digit. Earth
**2010**, 3, 31–46. [Google Scholar] [CrossRef] - Chen, M.; Lin, H.; Hu, M.Y.; Li, H.; Zhang, C.X. Real Geographic Scenario Based Virtual Social Environment: Integrate Geography with Social Research. Environ. Plan. B Plan. Des.
**2013**, 40, 1103–1121. [Google Scholar] [CrossRef] - Chen, M.; Lin, H.; Kolditz, O.; Chen, C. Developing Dynamic Virtual Geographic Environments (VGEs) for Geographic Research. Environ. Earth Sci.
**2015**, 74, 6975–6980. [Google Scholar] [CrossRef] - Lin, H.; Batty, M.; Jørgensen, S.E.; Fu, B.; Konecny, M.; Voinov, A.; Torrens, P.; Lu, G.; Zhu, A.X.; Wilson, J.P.; et al. Virtual Environments Begin to Embrace Process-Based Geographic Analysis. Trans. GIS
**2015**, 19, 493–498. [Google Scholar] [CrossRef] - Lin, H.; Chen, M.; Lu, G. Virtual Geographic Environment: A Workspace for Computer-Aided Geographic Experiments. Ann. Assoc. Am. Geogr.
**2013**, 103, 465–482. [Google Scholar] [CrossRef] - Lin, H.; Chen, M.; Lu, G.N.; Zhu, Q.; Gong, J.H.; You, X.; Wen, Y.N.; Xu, B.L.; Hu, M.Y. Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool. Earth Sci. Rev.
**2012**, 126, 74–84. [Google Scholar] [CrossRef] - Lu, G.N. Geographic analysis-oriented Virtual Geographic Environment: Framework, structure and functions. Sci. China Earth Sci.
**2011**, 54, 733–743. [Google Scholar] [CrossRef]

**Figure 6.**Spatial lattice model for stereoscopic space. (

**a**) Construction of projection voxel lattice model; (

**b**) Construction of curved voxel lattice model.

**Figure 7.**Construction modes of sampling voxel cell. (

**a**) A sampling voxel cell constructed by link mode; (

**b**) A sampling voxel cell constructed by expansion mode.

**Figure 10.**Visualization of a surface of radar data. (

**a**) Logical framework; (b) Set particles and assign values; (

**c**) Surface space visualization.

**Figure 13.**The spatial distribution of the raw radar data. (

**a**) A stereo view; (

**b**) A vertical view; (

**c**) A side view.

**Figure 14.**Visualization of raw radar data in irregular structure. (

**a**) Logical link mode; (

**b**) Visualization of raw radar data.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lu, M.; Chen, M.; Wang, X.; Min, J.; Liu, A.
A Spatial Lattice Model Applied for Meteorological Visualization and Analysis. *ISPRS Int. J. Geo-Inf.* **2017**, *6*, 77.
https://doi.org/10.3390/ijgi6030077

**AMA Style**

Lu M, Chen M, Wang X, Min J, Liu A.
A Spatial Lattice Model Applied for Meteorological Visualization and Analysis. *ISPRS International Journal of Geo-Information*. 2017; 6(3):77.
https://doi.org/10.3390/ijgi6030077

**Chicago/Turabian Style**

Lu, Mingyue, Min Chen, Xuan Wang, Jinzhong Min, and Aili Liu.
2017. "A Spatial Lattice Model Applied for Meteorological Visualization and Analysis" *ISPRS International Journal of Geo-Information* 6, no. 3: 77.
https://doi.org/10.3390/ijgi6030077