Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Research Methods
2.3.1. Land Surface Temperature (LST)
2.3.2. Spatial Pattern of UHI Intensity
R | UHI Grade | Meaning |
---|---|---|
<−0.1 | 1 | None |
−0.1 to −0.05 | 2 | Weak |
−0.05 to 0.00 | 3 | Moderate |
0.00 to 0.05 | 4 | Strong |
0.05 to 0.15 | 5 | Very strong |
>0.15 | 6 | Extremely strong |
2.3.3. Cooling Distance and Direction of Urban Green Space
2.3.4. Mitigating Effect of Green Space Spatial Distribution
Nearest Neighbor Index | Type |
---|---|
0–0.5 | Aggregated |
0.5–1.0 | More aggregated than random distribution |
1.0 | Random distribution |
1.0–1.5 | More scattered than random distribution |
>1.5 | Scattered |
3. Results
3.1. Spatiotemporal Variations of UHI Intensity
3.2. Urban Green Spaces Cooling Effects
3.2.1. Urban Green Spaces Cooling Distance
3.2.2. The Directivity of Urban Green Spaces Cooling Distance
Urban Green Space | Area (m2) | From the Green Space Border/m | From the Green Space Centroid/m | ||
---|---|---|---|---|---|
Maximum Cooling Distance | Minimum Cooling Distance | Maximum Cooling Distance | Minimum Cooling Distance | ||
Qingshan Park | 0.09 × 106 | 248 | 133 | 439 | 283 |
The People’s Park | 0.11 × 106 | 243 | 174 | 523 | 354 |
Jiuyuan Park | 0.12 × 106 | 254 | 138 | 484 | 298 |
Bayi Park | 0.23 × 106 | 269 | 185 | 499 | 405 |
Yiji Park | 0.46 × 106 | 306 | 195 | 922 | 353 |
Labor Park | 0.61 × 106 | 150 | 173 | 690 | 507 |
Arden Botanical Garden | 1.02 × 106 | 276 | 106 | 999 | 432 |
Baogang Park | 1.85 × 106 | 185 | 333 | 1015 | 754 |
Saihan Tara Ecological Park | 4.94 × 106 | 454 | 218 | 2575 | 994 |
3.3. Cooling Effect of Urban Green Space Distribution
4. Discussion
4.1. Relationship between the Urban Heat Island and Green Space
4.2. Implications for Urban Planning
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- UN. World Urbanization Prospects: The 2011 Revision Highlights; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Mackey, C.W.; Lee, X.; Smith, R.B. Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Build. Environ. 2012, 49, 348–358. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China‘s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. Roy. Meteor. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Smargiassi, A.; Goldberg, M.S.; Plante, C.; Fournier, M.; Baudouin, Y.; Kosatsky, T. Variation of daily warm season mortality as a function of micro-urban heat islands. J. Epidemiol. Community Health 2009, 63, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Stone, B.; Vargo, J.; Liu, P.; Habeeb, D.; DeLucia, A.; Trail, M.; Hu, Y.; Russell, A. Avoided heat-related mortality through climate adaptation strategies in three US cities. PLOS ONE 2014, 9, e100852. [Google Scholar]
- Liu, K.; Su, H.; Zhang, L.; Yang, H.; Zhang, R.; Li, X. Analysis of the urban heat island effect in Shijiazhuang, China using satellite and airborne data. Remote Sens. 2015, 7, 4804–4833. [Google Scholar] [CrossRef]
- Weaver, C.P.; Cooter, E.; Gilliam, R.; Gilliland, A.; Grambsch, A.; Grano, D.; Hemming, B.; Hunt, S.W.; Nolte, C.; Winner, D.A.; et al. A preliminary synthesis of modeled climate change impacts on us regional ozone concentrations. Bull. Am. Meteorol. Soc. 2009, 90, 1843–1863. [Google Scholar]
- Georgi, N.J.; Zafiriadis, K. The impact of park trees on microclimate in urban areas. Urban Ecosyst. 2006, 9, 195–209. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban. Plan 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Wang, Y.; Chen, L.; Yao, F.; Wu, P.; Wang, B.; Li, Y.; Zhou, T.; Zhang, T. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sens. 2015, 7, 10737–10762. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Myint, S.W.; Wentz, E.A.; Fan, C. Rooftop surface temperature analysis in an urban residential environment. Remote Sens. 2015, 7, 12135–12159. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban. Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Methuen& Co., Ltd.: London, UK; Methuen, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imuraa, H. Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote. Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban. Plan. 2014, 1225, 76–88. [Google Scholar] [CrossRef]
- Jenerette, D.; Jarlan, S.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Ren, Z.; He, X.; Zheng, H.; Zhang, D.; Yu, X.; Shen, G.; Guo, R. Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests 2013, 4, 868–886. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, H.; Li, P.; Yin, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar]
- Hamada, S.; Tanaka, T.; Ohta, T. Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas. Urban For. Urban Green. 2013, 12, 426–434. [Google Scholar] [CrossRef]
- Doick, K.J.; AndrewPeace; Hutchings, T.R. The role of one large green space in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Ohta, T. Seasonal variations in the cooling effect of urban green area on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Alcoforado, M.J.; Andrade, H.; Lopes, A.; Vasconcelos, J. Application of climatic guidelines to urban planning: The example of Lisbon (Portugal). Landsc. Urban. Plan. 2009, 90, 56–65. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Wu, H.; Ye, L.; Shi, W.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinform. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- Du, P.; Tan, K.; Xia, J.; Zhao, Y. Method and Practice of Urban Environmental Remote Sensing; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Oliver, M.A. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. 2014, 89, 59–66. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- Wang, W.; Deng, R. Alleviative effects of urban green space on urban heat island. Geospatial Inf. 2014, 12, 52–54. (In Chinese) [Google Scholar]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Tong, H.; Liu, H.; Li, Y.; Sang, J.; Hu, F. Acyuality of summer urban heat island and the impact of urban planning “wedge-shaped” greenland to reducing the intensity of urban heat island in Beijing. J. Appl. Meteorol. Sci. 2005, 16, 257–266. (In Chinese) [Google Scholar]
- Wong, J.K.W.; Lau, S.K. From the “urban heat island“ to the “green island“? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hongkong. Habitat Int. 2013, 39, 25–35. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, T.; Li, X.; Zhang, J.; Zhang, Y.; Tian, S. Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS Int. J. Geo-Inf. 2016, 5, 12. https://doi.org/10.3390/ijgi5020012
Bao T, Li X, Zhang J, Zhang Y, Tian S. Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS International Journal of Geo-Information. 2016; 5(2):12. https://doi.org/10.3390/ijgi5020012
Chicago/Turabian StyleBao, Tongliga, Xueming Li, Jing Zhang, Yingjia Zhang, and Shenzhen Tian. 2016. "Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China" ISPRS International Journal of Geo-Information 5, no. 2: 12. https://doi.org/10.3390/ijgi5020012