Using Multi-Attribute Decision Factors for a Modified All-or-Nothing Traffic Assignment
Abstract
:1. Introduction
2. Literature Review
3. Model Development
3.1. Approach
3.2. Components
Case | One-Way (Xsk = 1) | Bridge (Xsk = 2) | Weather (Xsk = 3) | Traversability | Impedance | ||
---|---|---|---|---|---|---|---|
AND (Xsk) | Absolute Traversability (Xs) | 1-AND (Xsk) | Absolute Impedance (Is) | ||||
Case 1 | 1 | 1 | 1 | 1 | Traversable | 0 | No Impedance |
Case 2 | 1 | 1 | 0 | 0 | Untraversable | 1 | Very High |
Case 3 | 1 | 0 | 1 | 0 | Untraversable | 1 | Very High |
Case 4 | 1 | 0 | 0 | 0 | Untraversable | 1 | Very High |
Case 5 | 0 | 1 | 1 | 0 | Untraversable | 1 | Very High |
Case 6 | 0 | 1 | 0 | 0 | Untraversable | 1 | Very High |
Case 7 | 0 | 0 | 1 | 0 | Untraversable | 1 | Very High |
Case 8 | 0 | 0 | 0 | 0 | Untraversable | 1 | Very High |
Case | One-Way (Rsk = 1) | Bridge (Rsk = 2) | Weather (Rsk = 3) | Traversability | Impedance | ||
---|---|---|---|---|---|---|---|
Relative Traversability P(Rs) | Relative Impedance (Is) | ||||||
Case 1 | 1 | 1 | 1 | 1 | Traversable | 0 | Very Low |
Case 2 | 1 | 1 | P(Rs,k=3) | P(Rs,k=3) | Most Likely | 1 − P(Rs,k=3) | Low |
Case 3 | 1 | P(Rs,k=2) | 1 | P(Rs,k=2) | Most Likely | 1 − P(Rs,k=2) | Low |
Case 4 | 1 | P(Rs,k=2) | P(Rs,k=3) | P(Rs,k=2) × P(Rs,k=3) | Likely | 1 − P(Rs,k=2) × P(Rs,k=3) | High |
Case 5 | P(Rs,k=1) | 1 | 1 | P(Rs,k=1) | Most Likely | 1 − P(Rs,k=1) | Low |
Case 6 | P(Rs,k=1) | 1 | P(Rs,k=3) | P(Rs,k=1) × P(Rs,k=3) | Likely | 1 − P(Rs,k=1) × P(Rs,k=3) | High |
Case 7 | P(Rs,k=1) | P(Rs,k=2) | 1 | P(Rs,k=1) × P(Rs,k=2) | Likely | 1 − P(Rs,k=1) × P(Rs,k=2) | High |
Case 8 | P(Rs,k=1) | P(Rs,k=2) | P(Rs,k=3) | P(Rs,k=1) × P(Rs,k=2) × P(Rs,k=3) | Rarely Likely | 1 − P(Rs,k=1) × P(Rs,k=2) × P(Rs,k=3) | Very High |
4. Case Study
4.1. System Optimum
4.2. Key Attributes
4.3. Scenario Analyses
- Scenario 1 (modified all-or-nothing (MAON) and trip set less than or equal to capacity): The first scenario shows capacity constraint with a MAON assignment for a trip set between origin and destination (Scenario 1 in Table 3). The number of trips was maximized at 900, a value lower than the average segment capacity specified, that is, 1060.
Table 3. Input information for Scenarios 1–5. Origin Destination Trips (Packet Size) Town FIPS Town FIPS Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Prairie Rose 64,320 Moorhead 43,864 900 1350 450 450 225 Prairie Rose 64,320 Moorhead 43,864 450 450 225 Prairie Rose 64,320 Moorhead 43,864 N/A 450 225 Prairie Rose 64,320 Moorhead 43,864 225 Prairie Rose 64,320 Moorhead 43,864 225 Prairie Rose 64,320 Moorhead 43,864 225 Prairie Rose 64,320 Fargo 25,700 900 1350 450 450 225 Prairie Rose 64,320 Fargo 25,700 450 450 225 Prairie Rose 64,320 Fargo 25,700 N/A 450 225 Prairie Rose 64,320 Fargo 25,700 225 Prairie Rose 64,320 Fargo 25,700 225 Prairie Rose 64,320 Fargo 25,700 225 Note: Place FIPS 64,320 is for Prairie Rose, ND, Place FIPS 43,864 for Moorhead, MN, and Place FIPS 25,700 for Fargo, ND. - Scenario 2 (MAON and trip set larger than capacity): The second scenario involves a number of trips exceeding segment capacity. This was to demonstrate the route selection process under a limited set capacity.
- Scenario 3 (multiple trip sets when trip set is less than or equal to capacity): The third scenario has half the number of trips as in Scenario 1. It is also worthwhile to note that congestion effect is not easily discernible from Scenario 1.
- Scenario 4 (congestion effect and multiple trip sets): In this scenario, newer routes were selected between Prairie Rose and Moorhead. Scenario 4 is an extension of Scenarios 2 and 3, that is, using half of the trip set size from Scenario 2 to demonstrate congestion effect. The number of trips in the trip set was fewer than that from Scenario 2, although the total number of trips remained the same. We can deduce that for the OD pair, a distinct route will be selected independent of previously selected routes because of congestion and capacity limits.
- Scenario 5 (multiple trip sets coupled with random order of the trip sets): Randomly sequenced OD pairs were used to remove any sequence bias (Table 3). A trip set was sub-divided into two trip sets from Scenario 4. Scenario 5 illustrates the effect of a smaller trip set size. Scenario 5 also shows the relationship between impedance and miles generated since the distance information was an integral component of impedance.
5. Results and Implications
5.1. Effects of Capacity
Scenario | ID | Origin | Destination | Trips | Impedance | Hour * | Miles ** |
---|---|---|---|---|---|---|---|
1 | 0 | Prairie Rose | Moorhead | 900 | 9.93 | 0.17 | 8.28 |
1 | Prairie Rose | Fargo | 160 | 6.24 | 0.14 | 5.39 | |
2 | Prairie Rose | Fargo | 740 | 6.40 | 0.16 | 5.10 | |
Average | 600 | 7.52 | 0.16 | 6.26 | |||
2 | 0 | Prairie Rose | Moorhead | 1060 | 9.93 | 0.17 | 8.28 |
1 | Prairie Rose | Moorhead | 290 | 10.92 | 0.25 | 8.35 | |
2 | Prairie Rose | Fargo | 770 | 6.76 | 0.16 | 5.18 | |
3 | Prairie Rose | Fargo | 290 | 9.21 | 0.20 | 7.57 | |
4 | Prairie Rose | Fargo | 210 | 9.72 | 0.19 | 7.51 | |
5 | Prairie Rose | Fargo | 80 | 10,006.69 | 0.15 | 6.27 | |
Average | 450 | 1675.54 | 0.187 | 7.19 | |||
3 | 0 | Prairie Rose | Moorhead | 450 | 9.93 | 0.17 | 8.28 |
1 | Prairie Rose | Moorhead | 450 | 10.35 | 0.19 | 8.38 | |
2 | Prairie Rose | Fargo | 450 | 6.31 | 0.16 | 5.06 | |
3 | Prairie Rose | Fargo | 160 | 6.72 | 0.14 | 5.41 | |
4 | Prairie Rose | Fargo | 290 | 7.00 | 0.17 | 5.43 | |
Average | 360 | 8.06 | 0.17 | 6.51 | |||
4 | 0 | Prairie Rose | Moorhead | 450 | 9.93 | 0.17 | 8.28 |
1 | Prairie Rose | Moorhead | 450 | 10.35 | 0.19 | 8.38 | |
2 | Prairie Rose | Moorhead | 160 | 10.75 | 0.22 | 7.98 | |
3 | Prairie Rose | Moorhead | 290 | 11.10 | 0.25 | 8.36 | |
4 | Prairie Rose | Fargo | 160 | 6.65 | 0.14 | 5.38 | |
5 | Prairie Rose | Fargo | 290 | 6.90 | 0.17 | 5.40 | |
6 | Prairie Rose | Fargo | 450 | 7.29 | 0.17 | 5.32 | |
7 | Prairie Rose | Fargo | 320 | 7.34 | 0.17 | 5.58 | |
8 | Prairie Rose | Fargo | 130 | 7.76 | 0.18 | 5.94 | |
Average | 300 | 8.67 | 0.18 | 6.74 | |||
5 | 0 | Prairie Rose | Moorhead | 225 | 9.93 | 0.17 | 8.28 |
1 | Prairie Rose | Fargo | 225 | 6.14 | 0.14 | 5.39 | |
2 | Prairie Rose | Moorhead | 225 | 10.34 | 0.23 | 8.00 | |
3 | Prairie Rose | Fargo | 225 | 6.50 | 0.13 | 5.39 | |
4 | Prairie Rose | Moorhead | 225 | 10.68 | 0.22 | 7.95 | |
5 | Prairie Rose | Fargo | 225 | 6.62 | 0.14 | 5.46 | |
6 | Prairie Rose | Moorhead | 225 | 10.99 | 0.23 | 8.11 | |
7 | Prairie Rose | Fargo | 160 | 6.81 | 0.16 | 5.11 | |
8 | Prairie Rose | Fargo | 65 | 7.10 | 0.15 | 5.49 | |
9 | Prairie Rose | Moorhead | 160 | 11.36 | 0.22 | 8.09 | |
10 | Prairie Rose | Moorhead | 65 | 11.53 | 0.19 | 8.98 | |
11 | Prairie Rose | Fargo | 30 | 7.29 | 0.15 | 5.44 | |
12 | Prairie Rose | Fargo | 195 | 7.42 | 0.16 | 5.19 | |
13 | Prairie Rose | Moorhead | 95 | 11.96 | 0.25 | 8.94 | |
14 | Prairie Rose | Moorhead | 30 | 12.10 | 0.24 | 8.46 | |
15 | Prairie Rose | Moorhead | 100 | 12.95 | 0.24 | 9.69 | |
16 | Prairie Rose | Fargo | 95 | 8.69 | 0.19 | 6.06 | |
17 | Prairie Rose | Fargo | 60 | 8.84 | 0.18 | 6.23 | |
18 | Prairie Rose | Fargo | 70 | 10.17 | 0.19 | 7.55 | |
Average | 142 | 9.34 | 0.19 | 7.04 |
5.2. Effects of Congestion
5.3. Effects of Packet Size
- Trip sequence and O-D information may have an impact on the route choice, which can further be constrained by capacity and other factors.
- A cost set is important for better simulation and design such as annual average daily traffic (AADT) data from highway performance management systems (HPMS) [5].
5.4. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wardrop, J.G. Some theoretical aspects of road traffic research. ICE Proc. Eng. Divisions 1952, 1, 325–362. [Google Scholar] [CrossRef]
- Daganzo, C.F.; Sheffi, Y. On stochastic models of traffic assignment. Transp. Sci. 1997, 11, 253–274. [Google Scholar] [CrossRef]
- Damberg, O.; Lundgren, J.T.; Patriksson, M. An algorithm for the stochastic user equilibrium problem. Transp. Res. Part B 1996, 30, 115–131. [Google Scholar] [CrossRef]
- Bell, M.G.H.; Shield, C. A stochastic user equilibrium path flow estimator. Transp. Res. Part C 1997, 5, 197–210. [Google Scholar] [CrossRef]
- Battelle. FAF3 Freight Traffic Analysis. Available online: http://faf.ornl.gov/fafweb/Data/Freight_Traffic_Analysis/faf_fta.pdf (accessed on 18 May 2015).
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Tolliver, D.; Dybing, A.; Lu, P.; Lee, E. Modeling investments in county roads and local roads to support agricultural logistics. J. Transp. Res. Forum 2011, 50, 101–115. [Google Scholar]
- Lee, E.; Oduor, P.G.; Farahmand, K.; Tolliver, D. Heuristic path-enumeration approach for container trip generation and assignment. J. Transp. Res. Forum 2011, 12, 7–21. [Google Scholar]
- Petersen, E.R. A primal-dual trip assignment algorithm. Manag. Sci. 1975, 22, 87–95. [Google Scholar] [CrossRef]
- Janic, M. Modeling the full costs of an intermodal and road freight transport network. Transp. Res. Part D 2007, 12, 33–44. [Google Scholar] [CrossRef]
- Keshkamat, S.S.; Looijen, J.M.; Zuidgeest, M.H.P. The formulation and evaluation of transport route planning alternative-s: A spatial decision support system for the Via Baltica Project, Poland. J. Transp. Geogr. 2009, 17, 54–64. [Google Scholar] [CrossRef]
- Geurs, K.T.; Wee, B.B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Woudsma, C.; Jensen, J.F.; Kanaroglou, P.; Maoh, H. Logistics land use and the city: A spatial-temporal modeling approach. Transp. Res. Part E 2008, 44, 277–297. [Google Scholar] [CrossRef]
- Shaw, S.L. What about “Time” in transportation geography? J. Transp. Geogr. 2006, 14, 237–240. [Google Scholar] [CrossRef]
- Miller, H.J. Measuring space-time accessibility benefits within transportation networks: Basic theory and computational procedures. Geogr. Anal. 1999, 31, 187–212. [Google Scholar] [CrossRef]
- Weber, J.; Kwan, M. Bringing time back in: A study on the influence of travel time variations and facility opening hours on individual accessibility. Prof. Geogr. 2002, 54, 226–240. [Google Scholar] [CrossRef]
- Nesterov, Y.; de Palma, A.D. Stationary dynamic solutions in congested transportation networks: Summary and perspectives. Netw. Spat. Econ. 2003, 3, 371–395. [Google Scholar] [CrossRef]
- Taylor, N.B. The CONTRAM dynamic trip assignment model. Netw. Spat. Econ. 2003, 3, 297–322. [Google Scholar] [CrossRef]
- Lee, E.; Oduor, P.G.; Farahmand, K. Simplistic geospatial techniques in analyzing transportation dynamics for origin-destination container movement routes in the United States. J. Transp. Syst. Eng. Inf. Technol. 2012, 12, 79–90. [Google Scholar]
- Peeta, S.; Ziliaskopoulos, A.K. Foundations of dynamic trip assignment: The past, the present and the future. Netw. Spat. Econ. 2001, 1, 233–265. [Google Scholar] [CrossRef]
- Carey, M. Nonconvexity of the dynamic trip assignment problem. Transp. Res. Part B 1992, 26, 127–133. [Google Scholar] [CrossRef]
- Kwan, M.P.; Ransberger, D.M. LiDAR assisted emergency response: Detection of transport network obstructions caused by major disasters. Comput. Environ. Urban Syst. 2010, 34, 179–188. [Google Scholar] [CrossRef]
- Grossardt, T.; Bailey, K.; Barumm, J. Analytic minimum impedance surface: Geographic information system-based corridor planning methodology. Transp. Res. Rec. 2001. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chang, H.L.; Tzeng, G.H. Using a weight-assessing model to identify route choice criteria and information effects. Transp. Res. Part A 2001, 35, 197–224. [Google Scholar]
- Cascetta, E. Transportation System Analysis: Models and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Gutiérrez, J.; Urbano, P. Accessibility in the European Union: The impact of the trans-European road network. J. Transp. Geogr. 1996, 4, 15–25. [Google Scholar] [CrossRef]
- Arnold, P.; Peeters, D.; Thomas, I. Modeling a rail/road intermodal transportation system. Transp. Res. Part E 1994, 40, 255–270. [Google Scholar] [CrossRef]
- Handy, S.L. Regional versus Local Accessibility: Implications for Nonwork Travel. Available online: http://www.uctc.net/papers/234.pdf (accessed on 19 May 2015).
- Transportation Research Board. Highway Capacity Manual; National Research Council: Washington, DC, USA, 2000. [Google Scholar]
- Moseley, M.J. Accessibility: The Rural Challenge; Methuen and Company Limited: London, UK, 1979. [Google Scholar]
- Stanilov, K. Accessibility and land use: The case of suburban Seattle, 1960–1990. Reg. Stud. 2003, 37, 783–794. [Google Scholar] [CrossRef]
- Reddy, H.K.; Chakroborty, P. A Fuzzy inference based assignment algorithm to estimate O-D matrix from link volume counts. Comput. Environ. Urban Syst. 1998, 22, 409–423. [Google Scholar] [CrossRef]
- Oak Ridge National Laboratory. Railroad Network. Available online: http://cta.ornl.gov/transnet/RailRoads.html (accessed on 18 May 2015).
- Gentile, G.; Papola, A. An alternative approach to route choice simulation: The sequential models. In Proceeding of the European Transport Conference, Strasbourg, France, 18–20 September 2006.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Oduor, P.G. Using Multi-Attribute Decision Factors for a Modified All-or-Nothing Traffic Assignment. ISPRS Int. J. Geo-Inf. 2015, 4, 883-899. https://doi.org/10.3390/ijgi4020883
Lee E, Oduor PG. Using Multi-Attribute Decision Factors for a Modified All-or-Nothing Traffic Assignment. ISPRS International Journal of Geo-Information. 2015; 4(2):883-899. https://doi.org/10.3390/ijgi4020883
Chicago/Turabian StyleLee, EunSu, and Peter G. Oduor. 2015. "Using Multi-Attribute Decision Factors for a Modified All-or-Nothing Traffic Assignment" ISPRS International Journal of Geo-Information 4, no. 2: 883-899. https://doi.org/10.3390/ijgi4020883
APA StyleLee, E., & Oduor, P. G. (2015). Using Multi-Attribute Decision Factors for a Modified All-or-Nothing Traffic Assignment. ISPRS International Journal of Geo-Information, 4(2), 883-899. https://doi.org/10.3390/ijgi4020883