Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. SUHII Definition
2.3.2. Statistical Analysis
3. Results
3.1. SUHII Distribution
3.2. Temporal Trends in SUHII
3.3. Correlation Analysis of SUHII and Its Potential Drivers
3.4. Determination of the Dominant Factors Influencing SUHII
4. Discussion
4.1. Spatiotemporal Characteristics of SUHII
4.2. Effect of SUHII-Influencing Factors in Different Climate Zones
4.3. Implications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Ji, Q.; Bao, Y.; Wang, T.; Wu, J.; Chen, C. Study on the characteristics of urban heat island effect and its key influencing factors in Kunshan. Sci. Meteorol. Sin. 2023, 43, 155–166. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef] [PubMed]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time Evolution of the Surface Urban Heat Island. Earth’s Future 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- Matthews, T.; Ramsay, E.E.; Saeed, F.; Sherwood, S.; Jay, O.; Raymond, C.; Abram, N.; Lee, J.K.W.; Barley, S.; Perkins-Kirkpatrick, S.; et al. Humid Heat Exceeds Human Tolerance Limits and Causes Mass Mortality. Nat. Clim. 2025, 15, 4–6. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Clim. 2013, 52, 2051–2064. [Google Scholar] [CrossRef]
- Canton, J.; Dipankar, A. Climatological analysis of urban heat island effects in Swiss cities. Int. J. Clim. 2024, 44, 1549–1565. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Sci. Total Environ. 2017, 609, 742–754. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Parmeggiani, D.; Despini, F.; Costanzini, S.; Silvestri, M.; Rabuffi, F.; Teggi, S.; Ghermandi, G. Assessing Satellite Data’s Role in Substituting Ground Measurements for Urban Surfaces Characterization: A Step towards UHI Mitigation. Atmosphere 2024, 15, 551. [Google Scholar] [CrossRef]
- Nayak, S.; Vinod, A.; Prasad, A.K. Spatial Characteristics and Temporal Trend of Urban Heat Island Effect over Major Cities in India Using Long-Term Space-Based MODIS Land Surface Temperature Observations (2000–2023). Appl. Sci. 2023, 13, 13323. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Zhang, W.; Li, J.; Niu, Z. Interannual variations in surface urban heat island intensity and associated drivers in China. J. Environ. Manag. 2018, 222, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, P.; Bou-Zeid, E. Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos. 2016, 122, 168–178. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Marquès, E.; Masson, V.; Naveau, P.; Mestre, O.; Dubreuil, V.; Richard, Y. Urban Heat Island Estimation from Crowdsensing Thermometers Embedded in Personal Cars. Bull. Am. Meteorol. Soc. 2022, 103, E1098–E1113. [Google Scholar] [CrossRef]
- Tetali, S.; Baird, N.; Klima, K. A multicity analysis of daytime surface urban heat islands in India and the US. Sustain. Cities Soc. 2022, 77, 103568. [Google Scholar] [CrossRef]
- Di, J.; Su, T.; Lei, B.; Liu, X.; Meng, C.; Xu, L.; Wang, R. Analysis of urban heat island effect and influencing factors based on the “source-sink” landscape pattern: A case study of Hefei. China Environ. Sci. 2023, 43, 6039–6050. [Google Scholar] [CrossRef]
- Rini, E.F. Spatial Pattern of Urban Heat Island to Enhance Urban Cooling Ecosystem Services in the Post-Pandemic Era. IOP Conf. Ser. Earth Environ. Sci. 2023, 1264, 012044. [Google Scholar] [CrossRef]
- Qin, M.; Ouyang, H.; Jiang, H.; Luo, T.; Zhou, Y.; Liu, Y. Spatiotemporal evolution characteristics and driving factors of heat island effect based on territorial perspective: A case study of Beibu Gulf urban agglomeration, China. Ecol. Indic. 2024, 166, 112197. [Google Scholar] [CrossRef]
- Mehmood, M.S.; Rehman, A.; Sajjad, M.; Song, J.; Zafar, Z.; Shiyan, Z.; Yaochen, Q. Evaluating land use/cover change associations with urban surface temperature via machine learning and spatial modeling: Past trends and future simulations in Dera Ghazi Khan, Pakistan. Front. Ecol. Evol. 2023, 11, 1115074. [Google Scholar] [CrossRef]
- Zou, Z.; Yan, C.; Yu, L.; Jiang, X.; Ding, J.; Qin, L.; Wang, B.; Qiu, G. Impacts of land use/ land cover types on interactions between urban heat island effects and heat waves. Build. Environ. 2021, 204, 108138. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Wang, S. Assessing the spatiotemporal variation in anthropogenic heat and its impact on the surface thermal environment over global land areas. Sustain. Cities Soc. 2020, 63, 102488. [Google Scholar] [CrossRef]
- Lu, Y. The Mechanism of Urban Form Affecting Heat Island Effect. In Urban Form and Urban Heat Island: Towards a Cool Built Environment; Lu, Y., Ed.; Springer Nature Singapore: Singapore, 2025; pp. 121–160. [Google Scholar]
- Aslani, A.; Sereshti, M.; Sharifi, A. Urban heat island mitigation in Tehran: District-based mapping and analysis of key drivers. Sustain. Cities Soc. 2025, 125, 106338. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Geng, X.; Yu, Z.; Fan, Z.; Wang, X. Natural-anthropogenic environment interactively causes the surface urban heat island intensity variations in global climate zones. Environ. Int. 2022, 170, 107574. [Google Scholar] [CrossRef]
- Lefevre, A.; Malet-Damour, B.; Bénard, F.; Boyer, H.; Rivière, G. Integrating urban heat island analysis for sustainable urban planning: Insights from Reunion Island. Build. Environ. 2025, 278, 112964. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, R. Impacts of regional climate on heat islands in China. Acta Ecol. Sin. 2021, 41, 4288–4299. [Google Scholar]
- Kim, H.; Gu, D.; Kim, H.Y. Effects of Urban Heat Island mitigation in various climate zones in the United States. Sustain. Cities Soc. 2018, 41, 841–852. [Google Scholar] [CrossRef]
- Mohammad, P.; Goswami, A. Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GISci. Remote Sens. 2021, 58, 955–981. [Google Scholar] [CrossRef]
- Fricke, C.; Pongrácz, R.; Gál, T.; Savić, S.; Unger, J. Using local climate zones to compare remotely sensed surface temperatures in temperate cities and hot desert cities. Morav. Geogr. Rep. 2020, 28, 48–60. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Gao, S. Uncertainty of city-based urban heat island intensity across 1112 global cities: Background reference and cloud coverage. Remote Sens. Environ. 2022, 271, 112898. [Google Scholar] [CrossRef]
- Zheng, J.; Yin, Y. A New Scheme for Climate Regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. [Google Scholar]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Liu, Y.; Niu, Z.; Wang, S.; Wang, L. Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Sci. Total Environ. 2021, 772, 145607. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, W.; Wang, J. Beyond intensity of urban heat island effect: A continental scale analysis on land surface temperature in major Chinese cities. Sci. Total Environ. 2021, 791, 148334. [Google Scholar] [CrossRef]
- Su, H.; Han, G.; Li, L.; Qin, H. The impact of macro-scale urban form on land surface temperature: An empirical study based on climate zone, urban size and industrial structure in China. Sustain. Cities Soc. 2021, 74, 103217. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, C.; Zhou, Y.; Li, X.; Shen, S.; Song, C. A global dataset of annual urban extents (1992–2020) from harmonized nighttime lights. Earth Syst. Sci. Data 2022, 14, 517–534. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst. Sci. Data 2022, 14, 3835–3873. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energ. Rev. 2021, 148, 1–18. [Google Scholar] [CrossRef]
- Nina, S.; Sven, L.; Ralf, S. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef]
- Li, D.; Liao, W.; Rigden, A.; Liu, X.; Wang, D.; Malyshev, S.; Shevliakova, E. Urban heat island: Aerodynamics or imperviousness? Sci. Adv. 2019, 5, eaau4299. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Montaner-Fernández, D.; Morales-Salinas, L.; Rodriguez, J.S.; Cárdenas-Jirón, L.; Huete, A.; Fuentes-Jaque, G.; Pérez-Martínez, W.; Cabezas, J. Spatio-Temporal Variation of the Urban Heat Island in Santiago, Chile during Summers 2005–2017. Remote Sens. 2020, 12, 3345. [Google Scholar] [CrossRef]
- Li, X.; Asrar, G.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.C.d.C.T.; Dubreuil, V.; Amorim, A.T. Day and night surface and atmospheric heat islands in a continental and temperate tropical environment. Urban Clim. 2021, 38, 1–15. [Google Scholar] [CrossRef]
- Peng, S.; Feng, Z.; Liao, H.; Huang, B.; Peng, S.; Zhou, T. Spatial-temporal pattern of, and driving forces for, urban heat island in China. Ecol. Indic. 2019, 2019, 127–132. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, L.; Sone, Y.; Silber, S. Erratum to “Minimal ovarian stimulation (mini-IVF) for IVF utilizing vitrification and cryopreserved embryo transfer” [Reprod. Biomed. Online 21 (2010) 485–495]. Reprod. Biomed. Online 2011, 23, 396. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef]
- Monteiro, F.F.; Gonçalves, W.A.; Andrade, L.; Villavicencio, L.M.M.; dos Santos Silva, C.M. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. Urban Clim. 2021, 35, 100726. [Google Scholar] [CrossRef]
- Pakarnseree, R.; Chunkao, K.; Bualert, S. Physical characteristics of Bangkok and its urban heat island phenomenon. Build. Environ. 2018, 143, 561–569. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W. More urban greenspace, lower temperature? Moving beyond net change in greenspace. Agric. For. Meteorol. 2022, 322, 109021. [Google Scholar] [CrossRef]
- Kasimov, N.; Chalov, S.; Chubarova, N. Urban heat and pollution island in the Moscow megacity: Urban environmental compartments and their interactions. Urban Clim. 2024, 55, 101972. [Google Scholar] [CrossRef]
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A.N.V. Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. Int. J. Remote Sens. 2018, 39, 6692–6730. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; McAlpine, C.A. Large seasonal and diurnal anthropogenic heat flux across four Australian cities. J. South. Hemisph. Earth Syst. Sci. 2016, 31, 1990–2005. [Google Scholar]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Qian, Y. A scaling law for predicting urban trees canopy cooling efficiency. Proc. Natl. Acad. Sci. USA 2024, 121, e2401210121. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, J.; Chen, J.; Zhan, W.; Wang, C.; Ma, W.; Yao, X.; Zhou, S.; Zhu, K.; Sun, R. Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sens. Environ. 2024, 305, 114098. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Li, B.; Yu, X.; Shao, M.; Jin, X. Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation. Earth Syst. Sci. Data 2021, 13, 3995–4017. [Google Scholar] [CrossRef]
- Bai, K.; Li, K.; Ma, M.; Li, K.; Li, Z.; Guo, J.; Chang, N.B.; Tan, Z.; Han, D. LGHAP: The Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion. Earth Syst. Sci. Data 2022, 14, 907–927. [Google Scholar] [CrossRef]
- Xu, J.; Liang, S.; Jiang, B. A global long-term (1981–2019) daily land surface radiation budget product from AVHRR satellite data using a residual convolutional neural network. Earth Syst. Sci. Data 2022, 14, 2315–2341. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
Categories | Factors (Abbreviation) | Description |
---|---|---|
Biophysical characters | Enhanced Vegetation Index (EVI) | Extracts the vegetation information of specific cities |
Landscape Shape Index (LSI) | Illustrates the complexity of urban shapes | |
Percentage of Ecological Landscape (ECO) | / | |
Percentage of Water Area (WAT) | / | |
Percentage of Forest Area (FOR) | Reflects the biophysical characteristics of the city | |
City area (City) | Major urban built-up areas | |
Evapotranspiration (EVA) | Consumption of latent heat fluxes, including soil evaporation and vegetation transpiration | |
Percentage of Impervious Surface (IMP) | / | |
Percentage of Cropland (CRO) Percentage of Ecological proportion and Cropland (ECR) | / / | |
Natural factors | Aerosol Optical Depth (AOD) | Longwave radiative forcing due to AOD strengthen the UHI |
Elevation (DEM) | / | |
Net Radiation (NR) | Characterizes the surface radiation budget | |
Precipitation (PRE) | / | |
Social– economic factors | Gross Domestic Product (GDP) | / |
Population density (POP) | / | |
Nighttime Light (NL) | / |
Climate Zone | Factors | Unstandardized Coefficients | Standardized Coefficients | t | p-Value | Relative Contribution (%) | Regression Model | R2 | Adjusted R2 | F (p < 0.01) | DW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||||
MTZ | (Constant) | −2.125 | 0.329 | / | −6.450 | 0.000 | / | UHI = 0.001 EVI + 0.002 City − 2.125 | 0.391 | 0.382 | 15.428 | 1.976 |
EVI | 0.001 | 0.000 | 0.554 | 10.066 | 0.000 | 48.780 | ||||||
POP | 0.000 | 0.000 | 0.372 | 6.761 | 0.000 | 32.680 | ||||||
City | 0.002 | 0.000 | 0.210 | 3.928 | 0.000 | 18.540 | ||||||
STZ | (Constant) | 2.790 | 0.797 | / | 3.501 | 0.001 | / | UHI = 1.007 AOD + 0.038 NL − 0.113 NR + 0.033 EVA + 8.982 WAT + 2.790 | 0.369 | 0.353 | 4.090 | 1.880 |
AOD | 1.007 | 0.139 | 0.429 | 7.233 | 0.000 | 26.600 | ||||||
NL | 0.038 | 0.007 | 0.273 | 5.105 | 0.000 | 16.920 | ||||||
GDP | 0.000 | 0.000 | 0.193 | 3.596 | 0.000 | 11.960 | ||||||
PRE | 0.000 | 0.000 | 0.218 | 3.348 | 0.001 | 13.510 | ||||||
Others | / | / | / | / | <0.05 | 30.990 | ||||||
NSZ | (Constant) | 1.777 | 0.113 | / | 15.690 | 0.000 | / | UHI = 0.047 NL + 1.777 | 0.271 | 0.261 | 4.464 | 2.131 |
NL | 0.047 | 0.010 | 0.401 | 4.693 | 0.000 | 68.890 | ||||||
GDP | 0.000 | 0.000 | 0.181 | 2.113 | 0.036 | 31.110 | ||||||
MSZ | (Constant) | 2.484 | 0.247 | / | 10.040 | 0.000 | / | UHI = 12.331 FOR + 0.002 City − 1.883 ECR − 0.241 LSI + 0.081 EVA + 2.484 | 0.408 | 0.390 | 5.462 | 2.206 |
GDP | 0.000 | 0.000 | 0.248 | 3.497 | 0.001 | 15.550 | ||||||
FOR | 12.331 | 2.199 | 0.351 | 5.608 | 0.000 | 22.000 | ||||||
City | 0.002 | 0.000 | 0.414 | 4.758 | 0.000 | 25.960 | ||||||
ECR | −1.883 | 0.511 | −0.232 | −3.686 | 0.000 | 14.540 | ||||||
Others | / | / | / | / | <0.05 | 21.950 | ||||||
SSZ | (Constant) | 2.862 | 0.862 | / | 3.322 | 0.001 | / | UHI = 0.079 NL − 0.059 EVA + 0.001 EVL − 1.901 IMP − 2.985 AOD + 2.862 | 0.572 | 0.543 | 8.164 | 1.697 |
NL | 0.079 | 0.011 | 0.522 | 7.234 | 0.000 | 26.550 | ||||||
EVA | −0.059 | 0.009 | −0.490 | −6.393 | 0.000 | 24.920 | ||||||
EVL | 0.001 | 0.000 | 0.279 | 3.906 | 0.000 | 14.190 | ||||||
IMP | −1.901 | 0.632 | −0.238 | −3.008 | 0.003 | 12.110 | ||||||
Others | / | / | / | / | <0.05 | 22.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Zheng, D.; Shen, Q.; Jia, F. Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones. ISPRS Int. J. Geo-Inf. 2025, 14, 239. https://doi.org/10.3390/ijgi14070239
Zheng M, Zheng D, Shen Q, Jia F. Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones. ISPRS International Journal of Geo-Information. 2025; 14(7):239. https://doi.org/10.3390/ijgi14070239
Chicago/Turabian StyleZheng, Minxue, Dianwei Zheng, Qiu Shen, and Feng Jia. 2025. "Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones" ISPRS International Journal of Geo-Information 14, no. 7: 239. https://doi.org/10.3390/ijgi14070239
APA StyleZheng, M., Zheng, D., Shen, Q., & Jia, F. (2025). Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones. ISPRS International Journal of Geo-Information, 14(7), 239. https://doi.org/10.3390/ijgi14070239