CerMapp: A Cloud-Based Geospatial Prototype for National Wildlife Disease Surveillance
Abstract
1. Introduction
- Standardization: They enforce data integrity through structured digital forms with mandatory fields, dropdown menus, and data validation rules, ensuring consistency across different users and over time.
- Immediate Georeferencing: Automatic capture of GPS coordinates eliminates manual entry errors and provides the essential spatial component for all subsequent analyses.
- Operational Efficiency: Offline functionality allows for reliable use in remote areas with limited connectivity, with data syncing to central cloud-based geodatabases once a connection is restored. The integration of multimedia, such as photographs, further enriches the dataset.
- Interoperability: Data collected in standardized formats can be seamlessly integrated into cloud computing platforms (e.g., Google Earth Engine) and desktop GIS software, creating a streamlined pipeline from field observation to advanced spatial analysis and decision-support.
2. Materials and Methods
2.1. Building CerMapp: A Tool for Wildlife Health Data Collection
2.1.1. CerMapp Architecture
- Survey123 Web Designer or Connect: used to design the survey form, define logic rules (e.g., required fields, conditional visibility), and integrate geospatial capabilities.
- Survey123 Mobile App: used by field operators to collect data. The app supports offline use, media attachments (e.g., photos), and geolocation services.
- ArcGIS Online Platform: a cloud-based system where all survey submissions are aggregated. Submitted data are accessible in real time via dashboards, feature layers, or downloadable formats (CSV, shapefiles, GeoJSON, etc.).
2.1.2. Form Design
- Name: text input (mandatory) to record the operator’s first name.
- Surname: text input (mandatory) for the operator’s last name.
- Job/Role: text input (mandatory) to specify the professional title or role of the user.
- E-mail: text input (mandatory) with email validation to collect contact information.
- Affiliation: text input (mandatory) to specify the institution or organization (e.g., CFV, AUSL, IZS, RAVA).
- Date (dd-mm-yyyy): date selector (mandatory) allowing the user to define the date of the observation or intervention.
- Hour: optional time selector to specify the time of the event.
- Coordinates (WGS84): a geolocation field (mandatory), automatically retrieving the GNSS coordinates (in the WGS84 system) of the data entry point.
- Pictures: optional image field enabling users to upload photographic documentation of the event or observation.
- Other Info: an open text field for recording any additional observations or contextual information not captured by the previous fields.

2.1.3. User Access and Data Collection Procedure
2.1.4. Cybersecurity and Access Control
- Veterinarians registered with the Professional Order and employed by local health authorities (ASL) or experimental zooprophylactic institutes (IZS).
- Other healthcare or research personnel affiliated with recognized institutions, subject to formal requests and verification of their professional status.
- Members of the Forest Corps are also granted access upon validation.
2.2. Data Collection and Management
- Web-GIS applications for browser-based data visualization and interaction;
- Desktop GIS software (e.g., QGIS, SAGA GIS [97], ArcGIS Pro) for advanced geospatial analysis;
- Automated data pipelines (e.g., in Python vers 3.10 or R vers. 4.2.2) for data retrieval and processing.
- Retrieved data can be archived in a geodatabase for local storage, integration and analysis, and exported in standard formats (e.g., SHP, CSV) for versioning and sharing via platforms such as GitHub. Furthermore, the data can be made available for integration with remote sensing analyses using platforms like Google Earth Engine (GEE) [98,99] or Microsoft Planetary [59], enabling the combination of field observations with satellite and other Earth observation data for enhanced spatial analysis.
2.3. Adoption of CerMapp Data for Geospatial Analysis in Google Earth Engine
- connecting to ArcGIS Online via the Arcgis API for Python and querying the ArcGIS Survey123 item users with low ICT knowledge may find a simple user guide here (a) https://www.youtube.com/watch?v=-MB7IOKZrVk and (b) https://www.youtube.com/watch?v=YoyBCTZoPR0 (both accessed on 18 November 2025);
- exporting the survey’s hosted feature layer in CSV, shapefile, or file geodatabase format, along with any image attachments
2.4. CerMapp Prototypal Case. A Pilot Study: Anaplasma spp. Surveillance
2.5. Testing the Data Pipeline
3. Results
- -
- Data Collection & Submission: The user initially creates and submits a georeferenced record via the mobile application. This record contains essential metadata, including geographic coordinates, timestamp, and user-defined field observations, but it is inherently devoid of diagnostic laboratory data at this stage.
- -
- Laboratory Analysis: The physical sample linked to the geospatial record is transported to a designated laboratory for analysis. Following standardized protocols, the laboratory conducts the required diagnostic assays.
- -
- Data Integration by CeRMAS: Upon completion, the laboratory transmits the certified analytical results to CeRMAS. CeRMAS then performs a critical data fusion operation. Using a unique identifier (e.g., a sample barcode or record ID that links the sample to the original geospatial entry), the diagnostic results are programmatically merged with the existing geospatial record in the central database.
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CFV | Corpo Forestale della Valle d’Aosta |
| RAVA | Regione Autonoma Valle d’Aosta |
| IZS | Istituto Zooprofilattico Sperimentale |
| FAO | Food and Agriculture Organization of the United Nations |
| ESA | European Space Agency |
| WHO | World Health Organization |
| CeRMAS | Italian Reference Centre for Wildlife Diseases |
| WOAH | World Organization for Animal Health |
| LST | Land Surface Temperature |
| GEE | Google Earth Engine |
| SIMAN | Italian Animal Disease Information System |
| AUSL | Azienda Sanitaria Locale (acronym in Valle d’Aosta) |
| ASL | Azienda Sanitaria Locale (acronym in almost everywhere in Italy) |
| EO | Earth Observation Data |
Appendix A
References
- Contreras, A.; Cuevas, V.; Rivera, J.; Sánchez, A.; Acevedo, P.; Vicente, J. Integrating Geographic Information Systems into Veterinary Education According to the One Health Concept: An Interdisciplinary Approach. Front. Vet. Sci. 2025, 12, 1612524. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Mandola, M.L.; Robetto, S.; Nogarol, C.; Mondino, E.B.; Orusa, R. Grading Habitats for Ticks by Mapping a Suitability Index Based on Remotely Sensed Data and Meta® Population Dataset in Aosta Valley, NW Italy. Vet. Ital. 2024, 60, 1–23. [Google Scholar]
- Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Borgogno Mondino, E. Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens. 2020, 12, 3542. [Google Scholar] [CrossRef]
- Aini, S.; Sood, A.M.; Saaban, S. Analysing Elephant Habitat Parameters Using GIS, Remote Sensing and Analytic Hierarchy Process in Peninsular Malaysia. Pertanika J. Sci. Technol. 2015, 23, 37–50. [Google Scholar]
- Ajimati, M.O.; Carroll, N.; Maher, M. Adoption of Low-Code and No-Code Development: A Systematic Literature Review and Future Research Agenda. J. Syst. Softw. 2025, 222, 112300. [Google Scholar] [CrossRef]
- Allen, T.R.; Wong, D.W. Exploring GIS, Spatial Statistics and Remote Sensing for Risk Assessment of Vector-Borne Diseases: A West Nile Virus Example. Int. J. Risk Assess. Manag. 2006, 6, 253–275. [Google Scholar] [CrossRef]
- Goicolea, T.; Cisneros-Araújo, P.; Vega, C.A.; Sánchez-Vizcaíno, J.M.; Mateo-Sánchez, M.; Bosch, J. Landscape Connectivity for Predicting the Spread of ASF in the European Wild Boar Population. Sci. Rep. 2024, 14, 3414. [Google Scholar] [CrossRef]
- Tran, A.; Kassié, D.; Herbreteau, V. Applications of Remote Sensing to the Epidemiology of Infectious Diseases: Some Examples. In Land Surface Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2016; pp. 295–315. [Google Scholar]
- Brown, V.R.; Miller, R.S.; McKee, S.C.; Ernst, K.H.; Didero, N.M.; Maison, R.M.; Grady, M.J.; Shwiff, S.A. Risks of Introduction and Economic Consequences Associated with African Swine Fever, Classical Swine Fever and Foot-and-Mouth Disease: A Review of the Literature. Transbound. Emerg. Dis. 2021, 68, 1910–1965. [Google Scholar] [CrossRef]
- Faustini, G.; Soret, M.; Defossez, A.; Bosch, J.; Conte, A.; Tran, A. Habitat Suitability Mapping and Landscape Connectivity Analysis to Predict African Swine Fever Spread in Wild Boar Populations: A Focus on Northern Italy. PLoS ONE 2025, 20, e0317577. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Divari, S.; Lovisolo, S.; Zanet, S.; Orusa, R.; Borgogno-Mondino, E.; Bollo, E. Detection of Bartonella spp. in Foxes’ Populations in Piedmont and Aosta Valley (NW Italy) Coupling Geospatially-Based Techniques. Front. Vet. Sci. 2025, 11, 1388440. [Google Scholar] [CrossRef]
- Bosch-Camós, L.; López, E.; Rodriguez, F. African Swine Fever Vaccines: A Promising Work Still in Progress. Porc. Health Manag. 2020, 6, 17. [Google Scholar] [CrossRef]
- Imam, E.; Kushwaha, S. Habitat Suitability Modelling for Gaur (Bos gaurus) Using Multiple Logistic Regression, Remote Sensing and GIS. J. Appl. Anim. Res. 2013, 41, 189–199. [Google Scholar] [CrossRef]
- Bellini, S.; Scaburri, A.; Tironi, M.; Calò, S. Analysis of Risk Factors for African Swine Fever in Lombardy to Identify Pig Holdings and Areas Most at Risk of Introduction in Order to Plan Preventive Measures. Pathogens 2020, 9, 1077. [Google Scholar] [CrossRef]
- Orusa, T.; Viani, A.; d’Alessio, S.G.; Orusa, R.; Caminade, C. One Health Approaches and Modeling in Parasitology in the Climate Change Framework and Possible Supporting Tools Adopting GIS and Remote Sensing. Front. Parasitol. 2025, 4, 1560799. [Google Scholar] [CrossRef]
- Tran, A.; Gaidet, N.; L’Ambert, G.; Balenghien, T.; Balança, G.; Chevalier, V.; Soti, V.; Ivanes, C.; Etter, E.; Schaffner, F.; et al. The Use of Remote Sensing for the Ecological Description of Multi-Host Disease Systems: A Case Study on West Nile Virus in Southern France. Vet. Ital. 2007, 43, 687–697. [Google Scholar] [PubMed]
- Arámbulo, P.V., III; Astudillo, V. Perspectives on the Application of Remote Sensing and Geographic Information System to Disease Control and Health Management. Prev. Vet. Med. 1991, 11, 345–352. [Google Scholar] [CrossRef]
- Beck, L.R.; Lobitz, B.M.; Wood, B.L. Remote Sensing and Human Health: New Sensors and New Opportunities. Emerg. Infect. Dis. 2000, 6, 217. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.D.; McGwire, K.C.; Otteson, E.W.; DeBaca, R.S.; Kuhn, E.A.; Villard, P.; Brussard, P.F.; St Jeor, S.C. Remote Sensing and Geographic Information Systems: Charting Sin Nombre Virus Infections in Deer Mice. Emerg. Infect. Dis. 2000, 6, 248. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Carella, E.; Orusa, T.; Viani, A.; Meloni, D.; Borgogno-Mondino, E.; Orusa, R. An Integrated, Tentative Remote-Sensing Approach Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies. Animals 2022, 12, 1049. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Borgogno-Mondino, E.; Orusa, R. A One Health Google Earth Engine Web-GIS Application to Evaluate and Monitor Water Quality Worldwide. Euro-Mediterr. J. Environ. Integr. 2024, 9, 1873–1886. [Google Scholar] [CrossRef]
- Latini, G.; Bagliani, M.; Orusa, T. Lessico e Nuvole: Le Parole Del Cambiamento Climatico; Youcanprint: Sydney, Australia, 2021. [Google Scholar]
- Meretsky, V.J.; Fischman, R.L.; Karr, J.R.; Ashe, D.M.; Scott, M.J.; Noss, R.F.; Schroeder, R.L. New Directions in Conservation for the National Wildlife Refuge System. BioScience 2006, 56, 135–143. [Google Scholar] [CrossRef]
- Pant, H.; Verma, J.; Richhariya, S. Wildlife Conservation and Management Using GIS and Remote Sensing. In Geospatial Technology and Its Applications in Resource Management; Springer: Berlin/Heidelberg, Germany, 2022; pp. 279–286. [Google Scholar]
- Di Lorenzo, A.; Zenobio, V.; Cioci, D.; Dall’Acqua, F.; Tora, S.; Iannetti, S.; Rulli, M.; Di Sabatino, D. A Web-Based Geographic Information System Monitoring Wildlife Diseases in Abruzzo and Molise Regions, Southern Italy. BMC Vet. Res. 2023, 19, 183. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, J.; Ottichilo, W.K.; Toxopeus, A.G.; Prins, H.H. Application of Remote Sensing and Geographic Information Systems in Wildlife Mapping and Modelling. Environ. Model. GIS Remote Sens. 2002, 4, 125–131. [Google Scholar]
- Orusa, T.; Viani, A.; Borgogno-Mondino, E. IRIDE, the Euro-Italian Earth Observation Program: Overview, Current Progress, Global Expectations, and Recommendations. Environ. Sci. Proc. 2024, 29, 74. [Google Scholar]
- Cromley, E.K. GIS and Disease. Annu. Rev. Public Health 2003, 24, 7–24. [Google Scholar] [CrossRef]
- D’Erchia, F. Geographic Information Systems and Remote Sensing Applications for Ecosystem Management; National Biological Survey, Environmental Management Technical Center: Onalaska, WI, USA, 1995. [Google Scholar]
- Debinski, D.M.; Kindscher, K.; Jakubauskas, M.E. A Remote Sensing and GIS-Based Model of Habitats and Biodiversity in the Greater Yellowstone Ecosystem. Int. J. Remote Sens. 1999, 20, 3281–3291. [Google Scholar] [CrossRef]
- Di Lorenzo, A.; Mangone, I.; Colangeli, P.; Cioci, D.; Curini, V.; Vincifori, G.; Mercante, M.T.; Di Pasquale, A.; Radomski, N.; Iannetti, S. One Health System Supporting Surveillance during COVID-19 Epidemic in Abruzzo Region, Southern Italy. One Health 2023, 16, 100471. [Google Scholar] [CrossRef]
- Dlamini, S.N.; Beloconi, A.; Mabaso, S.; Vounatsou, P.; Impouma, B.; Fall, I.S. Review of Remotely Sensed Data Products for Disease Mapping and Epidemiology. Remote Sens. Appl. Soc. Environ. 2019, 14, 108–118. [Google Scholar] [CrossRef]
- Durr, P.A.; Gatrell, A.C. GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford, UK, 2004. [Google Scholar]
- Durr, P.A.; Gatrell, A.C. The Tools of Spatial Epidemiology: GIS, Spatial Analysis and Remote Sensing. In GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford, UK, 2004; pp. 1–33. [Google Scholar]
- Arias, M.; De la Torre, A.; Dixon, L.; Gallardo, C.; Jori, F.; Laddomada, A.; Martins, C.; Parkhouse, R.M.; Revilla, Y.; Rodriguez, F.; et al. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines 2017, 5, 35. [Google Scholar] [CrossRef]
- Bergmann, H.; Schulz, K.; Conraths, F.J.; Sauter-Louis, C. A Review of Environmental Risk Factors for African Swine Fever in European Wild Boar. Animals 2021, 11, 2692. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Borgogno-Mondino, E.; Orusa, R. Snow Metrics as Proxy to Assess Sarcoptic Mange in Wild Boar: Preliminary Results in Aosta Valley (Italy). Life 2023, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, S.H.; Mannelli, A.; Kitron, U.; Bellini, S. An Analysis of the Social, Cultural, and Ecological Factors That Affect the Implementation of Biosecurity Measures on Smallholder Commercial Swine Farms in Italy in the Context of an Emerging African Swine Fever Outbreak. Prev. Vet. Med. 2024, 229, 106238. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, G.; Biesemans, J.; de Deken, R. The Use of GIS in Veterinary Parasitology. In GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford, UK, 2004; pp. 145–176. [Google Scholar]
- Hone, J.; Drake, V.A.; Krebs, C.J. Evaluating Wildlife Management by Using Principles of Applied Ecology: Case Studies and Implications. Wildl. Res. 2018, 45, 436–445. [Google Scholar] [CrossRef]
- Pavone, S.; Bellini, S.; Iscaro, C.; Farioli, M.; Chiari, M.; Lavazza, A.; Ruocco, L.; Lelli, D.; Pintus, G.; Prati, P.; et al. Strategic Challenges to the Eradication of African Swine Fever Genotype II in Domestic Pigs in North Italy. Animals 2024, 14, 1295. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Ostfeld, R.S.; Peterson, A.T.; Poulin, R.; de la Fuente, J. Effects of Environmental Change on Zoonotic Disease Risk: An Ecological Primer. Trends Parasitol. 2014, 30, 205–214. [Google Scholar] [CrossRef]
- Pfeiffer, D.; Morris, R.; Sanson, R. Application of GIS in Animal Disease Control-Possibilities and Limits. In Proceedings of the WHO Consultation on Development and Application of Geographical Methods in the Epidemiology of Zoonoses, Wusterhausen, Germany, 30 May–2 June 1994; Volume 30. [Google Scholar]
- White, R.J.; Razgour, O. Emerging Zoonotic Diseases Originating in Mammals: A Systematic Review of Effects of Anthropogenic Land-Use Change. Mammal Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef]
- Savini, L.; Weiss, C.; Colangeli, P.; Conte, A.; Ippoliti, C.; Lelli, R.; Santucci, U. A Web-Based Geographic Information System for the Management of Animal Disease Epidemics. Vet. Ital. 2007, 43, 761–772. [Google Scholar]
- Jebara, K.B. The Role of Geographic Information System (GIS) in the Control and Prevention of Animal Diseases. In Proceedings of the World Organisation for Animal Health, Paris, France, 20–23 May 2007; Volume 1, pp. 175–183. [Google Scholar]
- Kazmi, S.J.H.; Usery, E.L. Application of Remote Sensing and GIS for the Monitoring of Diseases: A Unique Research Agenda for Geographers. Remote Sens. Rev. 2001, 20, 45–70. [Google Scholar] [CrossRef]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the Mechanisms and Drivers of Antimicrobial Resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Mandola, M.L.; Robetto, S.; Belvedere, M.; Renna, G.; Scala, S.; Borgogno-Mondino, E.; Orusa, R. R05. 4 Tick’s Suitability Habitat Maps and Tick-Host Relationships in Wildlife. A One Health Approach Based on Multitemporal Remote Sensed Data, Entropy and Meta® Population Dataset in Aosta Valley, NW Italy. In Proceedings of the GeoVet 2023 International Conference, Teramo, Italy, 19–21 September 2023. [Google Scholar]
- Coelho, I.M.P.; Paiva, M.T.; da Costa, A.J.A.; Nicolino, R.R. African Swine Fever: Spread and Seasonal Patterns Worldwide. Prev. Vet. Med. 2025, 235, 106401. [Google Scholar] [CrossRef]
- Orusa, T.; Farbo, A.; De Petris, S.; Sarvia, F.; Cammareri, D.; Borgogno-Mondino, E. Characterization of Alpine Pastures Using Multitemporal Earth Observation Data within the Climate Change Framework. In Earth Observation: Current Challenges and Opportunities for Environmental Monitoring; Associazione Italiana di Telerilevamento (AIT): Florence, Italy, 2024; Volume 3, pp. 110–114. [Google Scholar]
- Coradduzza, E.; Loi, F.; Porcu, F.; Mandas, D.; Secci, F.; Pisanu, M.E.; Pasini, C.; Zuddas, C.; Cherchi, M.; Denurra, D.; et al. Passive Surveillance as a Key Tool for African Swine Fever Eradication in Wild Boar: A Protocol to Find Carcasses Tested and Validated in the Mediterranean Island of Sardinia. Viruses 2024, 16, 136. [Google Scholar] [CrossRef]
- Orusa, T.; Cammareri, D.; Freppaz, D.; Vuillermoz, P.; Borgogno Mondino, E. Sen4MUN: A Prototypal Service for the Distribution of Contributions to the European Municipalities from Copernicus Satellite Imagery. A Case in Aosta Valley (NW Italy). In Proceedings of the Italian Conference on Geomatics and Geospatial Technologies, Virtual, 18–20 December 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 109–125. [Google Scholar]
- Lukacz, P.M. Imaginaries of Democratization and the Value of Open Environmental Data: Analysis of Microsoft’s Planetary Computer. Big Data Soc. 2024, 11, 20539517241242448. [Google Scholar] [CrossRef]
- McDermid, G.; Hall, R.; Sanchez-Azofeifa, G.; Franklin, S.; Stenhouse, G.; Kobliuk, T.; LeDrew, E. Remote Sensing and Forest Inventory for Wildlife Habitat Assessment. For. Ecol. Manag. 2009, 257, 2262–2269. [Google Scholar] [CrossRef]
- McKenzie, J.S. The Use of GIS in the Management of Wildlife Diseases. In GIS and Spatial Analysis in Veterinary Science; CABI Publishing: Wallingford, UK, 2004; pp. 249–283. [Google Scholar]
- McKenzie, J.; Morris, R.; Pfeiffer, D.; Dymond, J. Application of Remote Sensing to Enhance the Control of Wildlife-Associated Mycobacterium Bovis Infection. Photogramm. Eng. Remote Sens. 2002, 68, 153–159. [Google Scholar]
- Hughes, A.C. Wildlife Trade. Curr. Biol. 2021, 31, R1218–R1224. [Google Scholar] [CrossRef]
- Bajjali, W. Arcgis Pro and Arcgis Online: Applications in Water and Environmental Sciences; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Baron, K.; Aldstadt, J. An ArcGIS Application of Spatial Statistics to Precipitation Modeling. J. Hydrol. Eng. 2002, 1–11. [Google Scholar]
- Viani, A.; Orusa, T.; Divari, S.; Lovisolo, S.; Zanet, S.; Borgogno-Mondino, E.; Orusa, R.; Bollo, E. Bartonella spp. Distribution Assessment in Foxes Coupling Geospatially-Based Techniques. In Earth Observation: Current Challenges and Opportunities for Environmental Monitoring; Associazione Italiana di Telerilevamento (AIT): Florence, Italy, 2024; Volume 3, pp. 50–55. [Google Scholar]
- Kennedy, M. Introducing Geographic Information Systems with ARCGIS: A Workbook Approach to Learning GIS; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lindsay, I.; Kong, N.N. Using the ArcGIS Collector Mobile App for Settlement Survey Data Collection in Armenia. Adv. Archaeol. Pract. 2020, 8, 322–336. [Google Scholar] [CrossRef]
- Lu, H.; Nihong, W.; Chang, W.; Yujia, C. The Research on the WebGIS Application Based on the J2EE Framework and ArcGIS Server. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 3, pp. 942–945. [Google Scholar]
- Orusa, T.; Cammareri, D.; Borgogno Mondino, E. A Scalable Earth Observation Service to Map Land Cover in Geomorphological Complex Areas beyond the Dynamic World: An Application in Aosta Valley (NW Italy). Appl. Sci. 2022, 13, 390. [Google Scholar] [CrossRef]
- Pucha-Cofrep, F.; Fries, A.; Cánovas-García, F.; Oñate-Valdivieso, F.; González-Jaramillo, V.; Pucha-Cofrep, D. Fundamentals of GIS: Applications with ArcGIS; Cofrep, F.P., Ed.; Scribd: San Francisco, CA, USA, 2018. [Google Scholar]
- Rubalcava, R. ArcGIS Web Development; Simon and Schuster: New York, NY, USA, 2014. [Google Scholar]
- Scott, L.M.; Janikas, M.V. Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 27–41. [Google Scholar]
- Soward, E.; Li, J. ArcGIS Urban: An Application for Plan Assessment. Comput. Urban Sci. 2021, 1, 15. [Google Scholar] [CrossRef]
- Walshe, N. Using ArcGIS Online Story Maps. Teach. Geogr. 2016, 41, 115–117. [Google Scholar]
- Wu, L.; Li, L.; Liu, H.; Cheng, X.; Zhu, T. Application of ArcGIS in Geography Teaching of Secondary School: A Case Study in the Practice of Map Teaching. Wirel. Pers. Commun. 2018, 102, 2543–2553. [Google Scholar] [CrossRef]
- Zhang, H.; Aguinaldo, J.; Hearn, P.P. Converting an ArcGIS Desktop Application to ArcGIS Server Web Application. In Proceedings of the 2006 ESRI Federal User Conference, Washington, DC, USA, 31 January–2 February 2006. [Google Scholar]
- Zuo, R.; Wang, J. ArcFractal: An ArcGIS Add-in for Processing Geoscience Data Using Fractal/Multifractal Models. Nat. Resour. Res. 2020, 29, 3–12. [Google Scholar] [CrossRef]
- Nizamani, M.M.; Zhang, Q.; Muhae-Ud-Din, G.; Awais, M.; Qayyum, M.; Farhan, M.; Jabran, M.; Wang, Y. Application of GIS and Remote-Sensing Technology in Ecosystem Services and Biodiversity Conservation. In Deep Learning for Multimedia Processing Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 284–321. [Google Scholar]
- Norman, S.A. Spatial Epidemiology and GIS in Marine Mammal Conservation Medicine and Disease Research. EcoHealth 2008, 5, 257–267. [Google Scholar] [CrossRef]
- O’Neil, T.A.; Bettinger, P.; Marcot, B.G.; Luscombe, B.W.; Koeln, G.T.; Bruner, H.J.; Barrett, C.; Pollock, J.A.; Bernatas, S. Application of Spatial Technologies in Wildlife Biology; The Wildlife Society: Bethesda, MD, USA, 2005; pp. 418–447. [Google Scholar]
- Olson, D.D.; Bissonette, J.A.; Cramer, P.C.; Green, A.D.; Davis, S.T.; Jackson, P.J.; Coster, D.C. Monitoring Wildlife-Vehicle Collisions in the Information Age: How Smartphones Can Improve Data Collection. PLoS ONE 2014, 9, e98613. [Google Scholar] [CrossRef]
- Ozdenerol, E. GIS and Remote Sensing Use in the Exploration of Lyme Disease Epidemiology. Int. J. Environ. Res. Public Health 2015, 12, 15182–15203. [Google Scholar] [CrossRef]
- Palmer, D.; Dann, S.L. Using Implementation and Program Theory to Examine Communication Strategies in National Wildlife Federation’s Backyard Wildlife Habitat Program. Appl. Environ. Educ. Commun. 2004, 3, 219–238. [Google Scholar] [CrossRef]
- Parida, P.; Sahoo, A.; Mohanty, B. GIS Applications in Fish Disease Mapping and Forecasting. Adv. Fish Res. 2019, 7, 355–369. [Google Scholar]
- Price, M. ArcGIS Pro; McGraw-Hill: Columbus, OH, USA, 2020. [Google Scholar]
- Rinaldi, L.; Musella, V.; Biggeri, A.; Cringoli, G. New Insights into the Application of Geographical Information Systems and Remote Sensing in Veterinary Parasitology. Geospat. Health 2006, 1, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Biggeri, A.; Cringoli, G. Geographical Information Systems and Remote Sensing in Veterinary Disease Mapping. CABI Rev. 2006, 1, 16. [Google Scholar] [CrossRef]
- Rogers, D.J.; Randolph, S.E. Studying the Global Distribution of Infectious Diseases Using GIS and RS. Nat. Rev. Microbiol. 2003, 1, 231–237. [Google Scholar] [CrossRef]
- Scott, J.M.; Csuti, B.; Davis, F. Gap Analysis: An Application of Geographic Information Systems for Wildlife Species 1. In Challenges in the Conservation of Biological Resources; Routledge: Oxfordshire, UK, 2019; pp. 167–180. [Google Scholar]
- Siddiqui, M.; Digraskar, S.; Shaikh, S.; Sakhare, M.; Ajabe, J. Application of GIS in Animal Disease Monitoring and Surveillance. Int. J. Chem. Stud. 2018, 6, 2886–2888. [Google Scholar]
- Tadesse, B.; Amare, A. Application of Geographical Information System in Animal Disease Surveillance and Control: A Review. Ethiop. Vet. J. 2021, 25, 128–143. [Google Scholar] [CrossRef]
- Wallace, J.R.; Ross, J.C. The Application of Forensic Science to Wildlife Evidence. In Wildlife Forensics: Methods Applications; Wiley Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Wegmann, M.; Leutner, B.; Dech, S. Remote Sensing and GIS for Ecologists: Using Open Source Software; Pelagic Publishing Ltd.: London, UK, 2016. [Google Scholar]
- Yang, G.-J.; Vounatsou, P.; Xiao-Nong, Z.; Utzinger, J.; Tanner, M. A Review of Geographic Information System and Remote Sensing with Applications to the Epidemiology and Control of Schistosomiasis in China. Acta Trop. 2005, 96, 117–129. [Google Scholar] [CrossRef]
- Hennig, S.; Vogler, R.; Pánek, J. Survey123 for ArcGIS Online. In Evaluating Participatory Mapping Software; Springer: Berlin/Heidelberg, Germany, 2023; pp. 167–188. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Gorelick, N. Google Earth Engine. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 May 2013; American Geophysical Union Vienna: Vienna, Austria; Volume 15, p. 11997. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Atif, F.A. Anaplasma Marginale and Anaplasma Phagocytophilum: Rickettsiales Pathogens of Veterinary and Public Health Significance. Parasitol. Res. 2015, 114, 3941–3957. [Google Scholar] [CrossRef] [PubMed]
- De Petris, S.; Orusa, T.; Viani, A.; Feliziani, F.; Sordilli, M.; Troisi, S.; Zoppi, S.; Ragionieri, M.; Orusa, R.; Borgogno-Mondino, E. Spatio-Temporal Pattern Analysis of African Swine Fever Spreading in Northwestern Italy—The Role of Habitat Interfaces. Animals 2025, 15, 2886. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Orusa, T.; Viani, A.; Moyo, B.; Cammareri, D.; Borgogno-Mondino, E. Risk Assessment of Rising Temperatures Using Landsat 4–9 LST Time Series and Meta® Population Dataset: An Application in Aosta Valley, NW Italy. Remote Sens. 2023, 15, 2348. [Google Scholar] [CrossRef]
- Biu, P.W.; Nwasike, C.N.; Tula, O.A.; Ezeigweneme, C.A.; Gidiagba, J.O. A Review of GIS Applications in Public Health Surveillance. World J. Adv. Res. Rev. 2024, 21, 030–039. [Google Scholar] [CrossRef]
- Adnan, M.; Singleton, A.; Longley, P. Developing Efficient Web-Based GIS Applications; Centre for Advanced Spatial Analysis (UCL): London, UK, 2010. [Google Scholar]
- Alesheikh, A.A.; Helali, H.; Behroz, H. Web GIS: Technologies and Its Applications. In Proceedings of the Symposium on Geospatial Theory, Processing and Applications, Ottawa, ON, Canada, 9–12 July 2002; ISPRS: Hannover, Germany, 2002; Volume 15, pp. 1–9. [Google Scholar]
- Fu, P.; Sun, J. Web GIS: Principles and Applications; ESRI Press: Redlands, CA, USA, 2010. [Google Scholar]
- Haklay, M.E. Virtual Reality and GIS: Applications, Trends and Directions. In Virtual Reality in Geography; CRC Press: Boca Raton, FL, USA, 2001; pp. 59–69. [Google Scholar]
- Khan, S.; Mohiuddin, K. Evaluating the Parameters of ArcGIS and QGIS for GIS Applications. Int. J. Adv. Res. Sci. Eng. 2018, 7, 582–594. [Google Scholar]
- Langran, G. A Review of Temporal Database Research and Its Use in GIS Applications. Int. J. Geogr. Inf. Syst. 1989, 3, 215–232. [Google Scholar] [CrossRef]
- Rigaux, P.; Scholl, M.; Voisard, A. Spatial Databases: With Application to GIS; Morgan Kaufmann: Burlington, MA, USA, 2002. [Google Scholar]
- Nowak, M.M.; Dziób, K.; Ludwisiak, Ł.; Chmiel, J. Mobile GIS Applications for Environmental Field Surveys: A State of the Art. Glob. Ecol. Conserv. 2020, 23, e01089. [Google Scholar] [CrossRef]
- Shamsi, U.M. GIS Applications for Water, Wastewater, and Stormwater Systems; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS Application for Assessing, Mapping, and Quantifying the Social Values of Ecosystem Services. Appl. Geogr. 2011, 31, 748–760. [Google Scholar] [CrossRef]
- Skarlatidou, A.; Haklay, M.; Cheng, T. Trust in Web GIS: The Role of the Trustee Attributes in the Design of Trustworthy Web GIS Applications. Int. J. Geogr. Inf. Sci. 2011, 25, 1913–1930. [Google Scholar] [CrossRef]
- Tasoulas, E.; Varras, G.; Tsirogiannis, I.; Myriounis, C. Development of a GIS Application for Urban Forestry Management Planning. Procedia Technol. 2013, 8, 70–80. [Google Scholar] [CrossRef]
- Ye, H.; Brown, M.; Harding, J. GIS for All: Exploring the Barriers and Opportunities for Underexploited GIS Applications. OSGeo J. 2018, 13, 19–28. [Google Scholar]
- Zhu, X. GIS for Environmental Applications: A Practical Approach; Routledge: Oxfordshire, UK, 2016. [Google Scholar]







| ID Cluster | Mean LST Anomalies (°C) |
|---|---|
| 1 | 3.78 |
| 2 | 6.07 |
| 3 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orusa, T.; Viani, A.; Di Lorenzo, A.; Orusa, R. CerMapp: A Cloud-Based Geospatial Prototype for National Wildlife Disease Surveillance. ISPRS Int. J. Geo-Inf. 2025, 14, 453. https://doi.org/10.3390/ijgi14110453
Orusa T, Viani A, Di Lorenzo A, Orusa R. CerMapp: A Cloud-Based Geospatial Prototype for National Wildlife Disease Surveillance. ISPRS International Journal of Geo-Information. 2025; 14(11):453. https://doi.org/10.3390/ijgi14110453
Chicago/Turabian StyleOrusa, Tommaso, Annalisa Viani, Alessio Di Lorenzo, and Riccardo Orusa. 2025. "CerMapp: A Cloud-Based Geospatial Prototype for National Wildlife Disease Surveillance" ISPRS International Journal of Geo-Information 14, no. 11: 453. https://doi.org/10.3390/ijgi14110453
APA StyleOrusa, T., Viani, A., Di Lorenzo, A., & Orusa, R. (2025). CerMapp: A Cloud-Based Geospatial Prototype for National Wildlife Disease Surveillance. ISPRS International Journal of Geo-Information, 14(11), 453. https://doi.org/10.3390/ijgi14110453

