Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
Global Transferability Framework
2.3. Multi-Criteria Decision Analysis
2.4. Solar Potential Suitability Index Calculation
2.5. Sensitivity Analysis
2.5.1. Univariate Sensitivity Analysis
2.5.2. Effective Weight Calculation
3. Results
3.1. Factors and Parameter Distribution
3.1.1. Photovoltaic Factors
3.1.2. Climatic Factors
3.1.3. Topographic Factors
3.1.4. Environmental Factors
3.1.5. Accessibility Factors
4. Discussion
4.1. Parameter Weights and Factor Category Distribution
4.2. Solar Potential Suitability Zones
4.3. Sensitivity Analysis
- Scenario 1: Photovoltaic Factor Emphasis (+50% weight adjustment)
- Scenario 2: Infrastructure Factor Emphasis (+50% weight adjustment)
- Scenario 3: Environmental Factor Emphasis (+50% weight adjustment)
- Scenario 4: Balanced Reduction (−25% across all parameters)
4.4. Implications for Urban Smart Planning
4.4.1. Integration with Urban Development Plans
4.4.2. Innovative Deployment Models for Coastal Urban Contexts
4.4.3. Policy Recommendations
- (1)
- Zoning Policy: Create solar overlay zones aligned with ‘Excellent’ and ‘Very High’ potential areas, with streamlined permitting for qualifying projects.
- (2)
- Dual-Use Incentives: Develop policies encouraging dual-use solar development in salt pan areas through tax benefits, accelerated permitting, or production incentives.
- (3)
- Infrastructure Coordination: Establish a framework aligning transmission enhancements with high-potential zones through public–private partnerships, sharing costs and benefits.
- (4)
- Climate Resilience: Require adaptation features in coastal solar developments, including elevated structures and flood-resistant design, enhancing local resilience.
- (5)
- Smart Grid Integration: Develop standards and incentives for advanced grid features, including storage and smart inverters, supporting broader smart city objectives.
4.4.4. Framework Adaptability and Extensions
- (1)
- Wind Energy Assessment: The five-factor structure can be modified by substituting photovoltaic parameters (GHI, diffuse radiation) with wind-specific criteria (wind speed, wind power density, turbulence intensity, wind direction consistency).
- (2)
- Hybrid Renewable Systems: The framework can simultaneously assess multiple renewable sources by incorporating both solar and wind parameters within the same multi-criteria structure.
- (3)
- Geographic Transferability: The methodology can be applied to inland regions by adjusting environmental constraints (removing coastal-specific factors) and modifying accessibility parameters based on local infrastructure conditions.
- (4)
- Technology-Specific Applications: Different solar technologies (crystalline silicon, thin-film, bifacial) can be assessed by adjusting efficiency parameters and environmental sensitivity factors.
4.4.5. Implementation Roadmap and Validation Framework
4.4.6. Coastal-Specific Design and Maintenance Considerations
4.5. Study Limitations
4.5.1. Scope of Sustainability Assessment
4.5.2. Temporal Analysis Constraints
4.5.3. Ground-Truth Validation
4.5.4. Regional Comparative Analysis
4.5.5. Scale and Resolution Limitations
4.5.6. Expert Panel Size Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, Q.; Viktor, P.J.; Al-Musawi, T.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Ugah, T.A.; Ndubuisi, O.G.; Ali, S.E.; Obiorah, C.A.R.; Nesiama, O.; Agbakhamen, C.O.; Okoro, O.P. Renewable Energy And Sustainable Development: Emerging Trends And Technologies. IPHO-J. Adv. Res. Sci. Eng. 2025, 3, 16–30. [Google Scholar]
- Ahmadizadeh, M.; Heidari, M.; Thangavel, S.; Naamani, E.A.; Khashehchi, M.; Verma, V.; Kumar, A. Technological Advancements in Sustainable and Renewable Solar Energy Systems. In Highly Efficient Thermal Renewable Energy Systems; CRC Press: Boca Raton, FL, USA, 2024; pp. 23–39. [Google Scholar]
- Gan, K.E.; Taikan, O.; Gan, T.Y.; Weis, T.; Yamazaki, D.; Schüttrumpf, H. Enhancing Renewable Energy Systems, Contributing to Sustainable Development Goals of United Nation and Building Resilience Against Climate Change Impacts. Energy Technol. 2023, 11, 2300275. [Google Scholar] [CrossRef]
- Bórawski, P.; Holden, L.; Bełdycka-Bórawska, A. Perspectives of Photovoltaic Energy Market Development in the European Union. Energy 2023, 270, 126804. [Google Scholar] [CrossRef]
- Elkhatat, A.; Al-Muhtaseb, S. Climate Change and Energy Security: A Comparative Analysis of the Role of Energy Policies in Advancing Environmental Sustainability. Energies 2024, 17, 3179. [Google Scholar] [CrossRef]
- Govindarajan, L.; Bin Mohideen Batcha, M.F.; Bin Abdullah, M.K. Solar Energy Policies in Southeast Asia towards Low Carbon Emission: A Review. Heliyon 2023, 9, e14294. [Google Scholar] [CrossRef]
- Panagoda, L.P.S.S.; Sandeepa, R.A.H.T.; Perera, W.A.V.T.; Sandunika, D.M.I.; Siriwardhana, S.M.G.T.; Alwis, M.K.S.D.; Dilka, S.H.S. Advancements In Photovoltaic (Pv) Technology for Solar Energy Generation. J. Res. Technol. Eng. 2023, 4, 30–72. [Google Scholar]
- Hossain, M.S.; Wadi Al-Fatlawi, A.; Kumar, L.; Fang, Y.R.; Assad, M.E.H. Solar PV High-Penetration Scenario: An Overview of the Global PV Power Status and Future Growth. Energy Syst. 2024, 1–57. [Google Scholar] [CrossRef]
- Rauf, A.; Nureen, N.; Irfan, M.; Ali, M. The Current Developments and Future Prospects of Solar Photovoltaic Industry in an Emerging Economy of India. Environ. Sci. Pollut. Res. 2023, 30, 46270–46281. [Google Scholar] [CrossRef]
- Nagababu, G.; Bhatt, T.N.; Patil, P.; Puppala, H. Technical and Economic Analysis of Floating Solar Photovoltaic Systems in Coastal Regions of India: A Case Study of Gujarat and Tamil Nadu. J. Therm. Anal. Calorim. 2024, 149, 6897–6904. [Google Scholar] [CrossRef]
- Bastin, J.; Haribhaskaran, A.; Boopathi, K.; Krishnan, B.; Vinod Kumar, R.; Reddy Prasad, D.M. Wind Characteristics of Tamil Nadu Coast towards Development of Microgrid—A Case Study for Simulation of Small Scale Hybrid Wind and Solar Energy System. Ocean Eng. 2023, 277, 114282. [Google Scholar] [CrossRef]
- Vardhini, V.; Devi, K. Adapting Floating Solar Power Projects: A Study of Sustainability and Economic Viability in Tamil Nadu, India. In Proceedings of the 3rd International Conference on Reinventing Business Practices, Start-ups and Sustainability (ICRBSS 2023), Chennai, India, 2–3 November 2023; pp. 920–931. [Google Scholar] [CrossRef]
- Garrod, A.; Neda Hussain, S.; Ghosh, A.; Nahata, S.; Wynne, C.; Paver, S. An Assessment of Floating Photovoltaic Systems and Energy Storage Methods: A Comprehensive Review. Results Eng. 2024, 21, 101940. [Google Scholar] [CrossRef]
- Mughal, M.A.; Lindahl, P.; Zia, U.; Freeman, L. Empowering a Resilient Grid: Navigating the Environmental Challenges of Photovoltaic System Integration. Sustain. Power Grid Chall. Appl. Case Stud. 2025, 185–218. [Google Scholar] [CrossRef]
- Piri, S. Smart Infrastructure Integration for Enhanced Urban Resilience: A Transdisciplinary Approach. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- Singh, B.; Kaunert, C. Dynamic Landscape of Artificial General Intelligence (AGI) for Advancing Renewable Energy in Urban Environments: Synergies with SDG 11—Sustainable Cities and Communities Lensing Policy and Governance. In Artificial General Intelligence (AGI) Security. Advanced Technologies and Societal Change; Springer: Singapore, 2025; pp. 247–270. [Google Scholar] [CrossRef]
- Perera, P.K.M.; Karunarathna, K.B.S.; Hewawalpita, S.; Dassanayake, S.M. Illuminating Solar Potential: A Real-Time Deep Learning, IoT, and Image Processing Approach to Ground-Based Cloud Movement Forecasting for Enhanced Solar Energy Management. In Proceedings of the 2024 1st International Conference for Women in Computing, InCoWoCo 2024—Proceedings, Pune, India, 14–15 November 2024. [Google Scholar] [CrossRef]
- Gholami, H. A Holistic Multi-Criteria Assessment of Solar Energy Utilization on Urban Surfaces. Energies 2024, 17, 5328. [Google Scholar] [CrossRef]
- Al-Ali, S.; Olabi, A.G.; Mahmoud, M. Multi-Criteria Decision Making for Selecting the Location of a Solar Photovoltaic Park: A Case Study in UAE. Energies 2024, 17, 4235. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M.; Yang, Y.; Zhong, T.; Zhu, R.; Zhang, F.; Qian, Z.; Lü, G.; Yan, J. Quantifying the Photovoltaic Potential of Highways in China. Appl. Energy 2022, 324, 119600. [Google Scholar] [CrossRef]
- Tavakoli, M.; Motlagh, Z.K.; Dąbrowska, D.; Youssef, Y.M.; Đurin, B.; Saqr, A.M. Harnessing AHP and Fuzzy Scenarios for Resilient Flood Management in Arid Environments: Challenges and Pathways Toward Sustainability. Water 2025, 17, 1276. [Google Scholar] [CrossRef]
- Almasad, A.; Pavlak, G.; Alquthami, T.; Kumara, S. Site Suitability Analysis for Implementing Solar PV Power Plants Using GIS and Fuzzy MCDM Based Approach. Sol. Energy 2023, 249, 642–650. [Google Scholar] [CrossRef]
- Gacu, J.G.; Garcia, J.D.; Fetalvero, E.G.; Catajay-Mani, M.P.; Monjardin, C.E.F. Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration. Energies 2023, 16, 6724. [Google Scholar] [CrossRef]
- Jong, F.C.; Ahmed, M.M. Multi-Criteria Decision-Making Solutions for Optimal Solar Energy Sites Identification: A Systematic Review and Analysis. IEEE Access 2024, 12, 143458–143484. [Google Scholar] [CrossRef]
- Rekik, S.; El Alimi, S. Optimal Wind-Solar Site Selection Using a GIS-AHP Based Approach: A Case of Tunisia. Energy Convers. Manag. X 2023, 18, 100355. [Google Scholar] [CrossRef]
- Elboshy, B.; Alwetaishi, M.; Aly, R.M.H.; Zalhaf, A.S. A Suitability Mapping for the PV Solar Farms in Egypt Based on GIS-AHP to Optimize Multi-Criteria Feasibility. Ain Shams Eng. J. 2022, 13, 101618. [Google Scholar] [CrossRef]
- Settou, B.; Settou, N.; Gouareh, A.; Negrou, B.; Mokhtara, C.; Messaoudi, D. A High-Resolution Geographic Information System-Analytical Hierarchy Process-Based Method for Solar PV Power Plant Site Selection: A Case Study Algeria. Clean Technol. Environ. Policy 2021, 23, 219–234. [Google Scholar] [CrossRef]
- Behera, D.K.; Kumari, A.; Kumar, R.; Modi, M.; Singh, S.K. Assessment of Site Suitability of Wastelands for Solar Power Plants Installation in Rangareddy District, Telangana, India; Springer Climate: Cham, Switzerland, 2022; pp. 559–576. [Google Scholar] [CrossRef]
- Dughairi, A.; Shahrani, A.; Land Suitability, H.; Kolkata, M.; Veeman, D.; Z AL-bonsrulah, H.A.; Halder, B.; Banik, P.; Almohamad, H.; Abdullah Al Dughairi, A.; et al. Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India. Sustainability 2022, 14, 11276. [Google Scholar] [CrossRef]
- Rane, N.L.; Günen, M.A.; Mallick, S.K.; Rane, J.; Pande, C.B.; Giduturi, M.; Bhutto, J.K.; Yadav, K.K.; Tolche, A.D.; Alreshidi, M.A. GIS-Based Multi-Influencing Factor (MIF) Application for Optimal Site Selection of Solar Photovoltaic Power Plant in Nashik, India. Environ. Sci. Eur. 2024, 36, 5. [Google Scholar] [CrossRef]
- Vasudevan, V.; Gundabattini, E.; Gnanaraj, S.D. Geographical Information System (GIS)-Based Solar Photovoltaic Farm Site Suitability Using Multi-Criteria Approach (MCA) in Southern Tamilnadu, India. J. Inst. Eng. Ser. C 2024, 105, 81–99. [Google Scholar] [CrossRef]
- Ravichandran, N.; Paneerselvam, B.; Ravichandran, N. GIS-Based Potential Assessment of Floating Photovoltaic Systems in Reservoirs of Tamil Nadu in India. Clean Energy 2023, 7, 671–689. [Google Scholar] [CrossRef]
- Coruhlu, Y.E.; Solgun, N.; Baser, V.; Terzi, F. Revealing the Solar Energy Potential by Integration of GIS and AHP in Order to Compare Decisions of the Land Use on the Environmental Plans. Land Use Policy 2022, 113, 105899. [Google Scholar] [CrossRef]
- Khan, A.; Ali, Y.; Pamucar, D. Solar PV Power Plant Site Selection Using a GIS-Based Non-Linear Multi-Criteria Optimization Technique. Environ. Sci. Pollut. Res. 2023, 30, 57378–57397. [Google Scholar] [CrossRef]
- Hasti, F.; Mamkhezri, J.; McFerrin, R.; Pezhooli, N. Optimal Solar Photovoltaic Site Selection Using Geographic Information System–Based Modeling Techniques and Assessing Environmental and Economic Impacts: The Case of Kurdistan. Sol. Energy 2023, 262, 111807. [Google Scholar] [CrossRef]
- Ahadi, P.; Fakhrabadi, F.; Pourshaghaghy, A.; Kowsary, F. Optimal Site Selection for a Solar Power Plant in Iran via the Analytic Hierarchy Process (AHP). Renew. Energy 2023, 215, 118944. [Google Scholar] [CrossRef]
- Jesudhas, C.J.; Titus C, J.; Roy, T. Remote Sensing-Based Drought Hazard Monitoring and Assessment in a Coastal Plain: A Principal Component Approach. Environ. Res 2024, 243, 117757. [Google Scholar] [CrossRef]
- Shajahan, M.S.M.; Jamal, D.N.; Mathew, J.; Ali Akbar, A.A.; Sivakumar, A.; Shahul Hameed, M.S. Improvement in Efficiency of Thermal Power Plant Using Optimization and Robust Controller. Case Stud. Therm. Eng. 2022, 33, 101891. [Google Scholar] [CrossRef]
- Quansah, A.D.; Dogbey, F.; Asilevi, P.J.; Boakye, P.; Darkwah, L.; Oduro-Kwarteng, S.; Sokama-Neuyam, Y.A.; Mensah, P. Assessment of Solar Radiation Resource from the NASA-POWER Reanalysis Products for Tropical Climates in Ghana Towards Clean Energy Application. Sci. Rep. 2022, 12, 10684. [Google Scholar] [CrossRef]
- Moisa, M.B.; Karuppannan, S.; Wong, Y.J.; Khaddour, L.A. Urban agriculture land suitability assessment using AHP and geospatial analysis in Gondar Zuria, Ethiopia. DYSONA Appl. Sci. 2025, 6, 322–333. [Google Scholar] [CrossRef]
- Elkadeem, M.R.; Younes, A.; Mazzeo, D.; Jurasz, J.; Campana, P.E.; Sharshir, S.W.; Alaam, M.A. Geospatial-assisted Multi-Criterion Analysis of Solar and Wind Power Geographical-Technical-Economic Potential Assessment. Appl. Energy 2022, 322, 119532. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Yang, D.; Yahaya, I.I.; Pan, H. Assessment of Site Suitability for Centralized Photovoltaic Power Stations in Northwest China’s Six Provinces. J. Environ. Manag. 2024, 366, 121820. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, W.; Alam, F.; Bošnjakovi, M. Advance of Sustainable Energy Materials: Technology Trends for Silicon-Based Photovoltaic Cells. Sustainability 2024, 16, 7962. [Google Scholar] [CrossRef]
- Wadi, M.; Jouda, M.; Salemdeeb, M.; Husain, N. PV Systems Efficiency Evaluation Using Machine Learning Techniques. In Proceedings of the 8th International Artificial Intelligence and Data Processing Symposium, IDAP, Online, 21–22 September 2024. [Google Scholar] [CrossRef]
- Sun, C.; Zou, Y.; Qin, C.; Zhang, B.; Wu, X. Temperature Effect of Photovoltaic Cells: A Review. Adv. Compos. Hybrid Mater. 2022, 5, 2675–2699. [Google Scholar] [CrossRef]
- Sher, A.A.; Ahmad, N.; Sattar, M.; Ghafoor, U.; Shah, U.H. Effect of Various Dusts and Humidity on the Performance of Renewable Energy Modules. Energies 2023, 16, 4857. [Google Scholar] [CrossRef]
- Okeyo, V. Integrating GIS for Climate-Resilient Assessment of Optimal Locations for PV Solar Power Plants in Kajiado County, Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2023. [Google Scholar]
- Wang, F.; Gao, J. How a Photovoltaic Panel Impacts Rainfall-Runoff and Soil Erosion Processes on Slopes at the Plot Scale. J. Hydrol. 2023, 620, 129522. [Google Scholar] [CrossRef]
- Jbaihi, O.; Ouchani, F.-Z.; Merrouni, A.A.; Cherkaoui, M.; Ghennioui, A.; Maaroufi, M. An AHP-GIS Based Site Suitability Analysis for Integrating Large-Scale Hybrid CSP+PV Plants in Morocco: An Approach to Address the Intermittency of Solar Energy. J. Clean. Prod. 2022, 369, 133250. [Google Scholar] [CrossRef]
- Adeboboye, A.J.; Inaju, I.U.; Atoki, L.O.; Agada, A.S. Site Suitability Analysis for Solar Energy Farms in Enugu State, Using GIS and Remote Sensing. Int. J. Res. 2024, 11, 57–76. [Google Scholar] [CrossRef]
- Alhammad, A.; Sun, Q.; Tao, Y. Optimal Solar Plant Site Identification Using GIS and Remote Sensing: Framework and Case Study. Energies 2022, 15, 312. [Google Scholar] [CrossRef]
- Zerouali, B.; Bailek, N.; Qaysi, S.; Difi, S.; Alarifi, N.; Elbeltagi, A.; Santos, C.A.G.; He, K.; Youssef, Y.M. Hybrid Machine Learning Optimization for Solar Radiation Forecasting. Phys. Chem. Earth Parts A/B/C 2025, 140, 104052. [Google Scholar] [CrossRef]
- Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; Thomas, L., Ed.; SAATY McGraw-Hill: London, NY, USA, 1980. [Google Scholar]
- Yang, W.C.; Ri, J.B.; Yang, J.Y.; Kim, J.S. Materials Selection Criteria Weighting Method Using Analytic Hierarchy Process (AHP) with Simplest Questionnaire and Modifying Method of Inconsistent Pairwise Comparison Matrix. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 69–85. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Lööf, H.; Heshmati, A. On the Relationship between Innovation and Performance: A Sensitivity Analysis. Econ. Innov. New Technol. 2006, 15, 317–344. [Google Scholar] [CrossRef]
- Hansen, C.W.; Pohl, A.P.; Jordan, D. Uncertainty and Sensitivity Analysis for Photovoltaic System Modeling; Sandia National Laboratories: Livermore, CA, USA, 2013. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Shahbaz, K.; Xevi, E. A GIS-Based Sensitivity Analysis of Multi-Criteria Weights. In Proceedings of the 18 th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009. [Google Scholar]
- Wang, D. The Potential of Solar Photovoltaic Systems Integrated into Building Roofs with Open-Source GIS Techniques. The Case Study of Portland, Oregon. Master’s Thesis, Politecnico di Torino, Turin, Italy, 2024. [Google Scholar]
- Zhong, J.; Zhang, W.; Xie, L.; Zhao, O.; Wu, X.; Zeng, X.; Guo, J. Development and Challenges of Bifacial Photovoltaic Technology and Application in Buildings: A Review. Renew. Sustain. Energy Rev. 2023, 187, 113706. [Google Scholar] [CrossRef]
- Raza, M.A.; Yousif, M.; Hassan, M.; Numan, M.; Abbas Kazmi, S.A. Site Suitability for Solar and Wind Energy in Developing Countries Using Combination of GIS- AHP; a Case Study of Pakistan. Renew Energy 2023, 206, 180–191. [Google Scholar] [CrossRef]
- Nassar, A.K.; Al-Dulaimi, O.; Fakhruldeen, H.F.; Sapaev, I.B.; Jabbar, F.I.; Dawood, I.I.; Khalaf, D.H.; Algburi, S. Multi-criteria GIS-based approach for optimal site selection of solar and wind energy. Unconv. Resour. 2025, 7, 100192. [Google Scholar] [CrossRef]
- Iftakhar, N.; Islam, F.; Izhar Hussain, M.; Ahmad, M.N.; Lee, J.; Ur Rehman, N.; Qaysi, S.; Alarifi, N.; Youssef, Y.M. Revealing Land-Use Dynamics on Thermal Environment of Riverine Cities Under Climate Variability Using Remote Sensing and Geospatial Techniques. ISPRS Int. J. Geo-Inf. 2025, 14, 13. [Google Scholar] [CrossRef]
- Ajirotutu, R.O.; Adeyemi, A.B.; Ifechukwu, G.-O.; Iwuanyanwu, O.; Ohakawa, T.C.; Matthew, B.; Garba, P. Future Cities and Sustainable Development: Integrating Renewable Energy, Advanced Materials, and Civil Engineering for Urban Resilience. Magna Sci. Adv. Res. Rev. 2024, 12, 235–250. [Google Scholar] [CrossRef]
- Attar, H.; Alahmer, A.; Borowski, G.; Alsaqoor, S. Comprehensive Review of Advancements, Challenges, Design, and Environmental Impact in Floating Photovoltaic Systems. Ecol. Eng. Environ. Technol. 2025, 26, 301–322. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, R.S.; Preziuso, D.C.; Arkema, K.K.; Ko, Y.; Pevzner, N.; Diamond, K.; Gore, S.; Morrice, K.; Henderson, C.D.; Powell, D.W. Renewable Energy Landscapes: Designing Place-Based Infrastructure for Scale; Pacific Northwest National Laboratory: Richland, WA, USA, 2022. [Google Scholar] [CrossRef]
Factor | Parameters | Data Source | Description | Justification | Literature |
---|---|---|---|---|---|
Photovoltaic | GHI | Global Solar Atlas 2.0 | Satellite-derived measurements of total solar radiation received on a horizontal surface | Essential for determining energy generation potential; provides the most comprehensive and consistent solar resource data globally validated in coastal environments | [23,41,42,43] |
Diffuse Radiation | Global Solar Atlas 2.0 | Solar radiation scattered by atmospheric particles and clouds | Critical for assessing actual PV performance in coastal areas that experience periodic cloud cover and higher aerosol concentrations from marine environment | [21,31,44] | |
Climate | Temperature | Nasa Power Data Access Viewer MERRA-2 | Daily and monthly average air temperature data derived from satellite observations and atmospheric models | Directly affects PV efficiency and system performance; NASA Power Data offers reliable long-term temperature records specifically validated for coastal regions. | [45,46] |
Relative Humidity | Nasa Power Data Access Viewer MERRA-2 | Atmospheric moisture content data from the Modern-Era Retrospective analysis for Research and Applications | Influences both PV panel degradation rates and solar radiation attenuation, particularly critical in coastal environments for corrosion assessment | [47,48] | |
Topographic | Slope | USGS SRTM DEM | Terrain gradient calculated from digital elevation model | Higher resolution data enables precise identification of areas with optimal gradient for construction and panel orientation; critical for coastal areas with varying topography | [22,28,49] |
Elevation | USGS SRTM DEM | Height above sea level derived from Shuttle Radar Topography Mission | Essential for flood risk assessment in coastal locations; SRTM provides consistent global coverage with adequate vertical accuracy for coastal vulnerability analysis | [22,28,38] | |
Environmental | Land Use Land Cover | Landsat-8-OLI/TIRS | Current land usage classification derived from multispectral satellite imagery | Landsat-8 provides up-to-date land cover information with sufficient detail to identify available land while avoiding environmentally sensitive areas; crucial for coastal zone management | [50,51] |
Proximity to Waterbodies | Open Street Map | Distance to lakes, rivers, coastal waters, and other water features | Community-verified data with regular updates; enables balancing water access needs for panel cleaning with environmental protection requirements in coastal ecosystems | [33,52] | |
Accessibility | Proximity to Transmission Line | GLOBIL-WWF-ArcGIS | Distance to existing electrical grid infrastructure | Combines global and regional transmission line datasets; critical for assessing grid connection feasibility and costs, particularly important in coastal areas with limited infrastructure | [42,53] |
Proximity to Road Network | Open Street Map | Distance to transportation network | Provides comprehensive and regularly updated road network data; essential for construction logistics and maintenance accessibility assessment in coastal environments | [23,53] |
Criteria | GHI | DR | TE | RH | SL | EL | LC | PWB | PTL | PRN | Weighted Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
GHI | 1.00 | 0.50 | 2.00 | 0.33 | 3.00 | 2.00 | 5.00 | 2.00 | 0.25 | 3.00 | 1.90 |
DR | 2.00 | 1.00 | 0.33 | 0.10 | 2.00 | 5.00 | 0.33 | 0.20 | 0.33 | 1.00 | 1.22 |
TE | 1.00 | 0.33 | 1.00 | 0.20 | 0.33 | 2.00 | 2.00 | 3.00 | 0.50 | 2.00 | 1.23 |
RH | 3.00 | 0.20 | 0.50 | 1.00 | 0.50 | 2.00 | 1.00 | 3.00 | 0.25 | 0.33 | 1.17 |
SL | 1.00 | 0.33 | 0.33 | 2.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.20 | 3.00 | 1.18 |
EL | 2.00 | 0.50 | 0.25 | 0.33 | 0.33 | 1.00 | 1.00 | 0.50 | 3.00 | 0.50 | 0.94 |
LC | 3.00 | 0.33 | 0.20 | 0.50 | 0.25 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.86 |
PWB | 2.00 | 0.20 | 0.25 | 0.50 | 0.33 | 1.00 | 1.00 | 1.00 | 0.25 | 0.50 | 0.70 |
PTL | 1.00 | 2.00 | 0.50 | 0.50 | 2.00 | 0.20 | 0.25 | 0.33 | 1.00 | 0.33 | 0.81 |
PRN | 2.00 | 0.25 | 0.25 | 3.00 | 0.50 | 0.33 | 0.20 | 0.50 | 0.25 | 1.00 | 0.82 |
Criteria | GHI | DR | TE | RH | SL | EL | LC | PWB | PTL | PRN | Eigen Vector |
---|---|---|---|---|---|---|---|---|---|---|---|
GHI | 0.06 | 0.09 | 0.36 | 0.04 | 0.29 | 0.13 | 0.39 | 0.15 | 0.04 | 0.25 | 0.18 |
DR | 0.11 | 0.18 | 0.06 | 0.01 | 0.20 | 0.32 | 0.03 | 0.01 | 0.05 | 0.08 | 0.10 |
TE | 0.06 | 0.06 | 0.18 | 0.02 | 0.03 | 0.13 | 0.16 | 0.22 | 0.07 | 0.17 | 0.11 |
RH | 0.17 | 0.04 | 0.09 | 0.12 | 0.05 | 0.13 | 0.08 | 0.22 | 0.04 | 0.03 | 0.09 |
SL | 0.06 | 0.06 | 0.06 | 0.24 | 0.10 | 0.06 | 0.08 | 0.15 | 0.03 | 0.25 | 0.11 |
EL | 0.11 | 0.09 | 0.04 | 0.04 | 0.03 | 0.06 | 0.08 | 0.04 | 0.43 | 0.04 | 0.10 |
LC | 0.17 | 0.06 | 0.04 | 0.06 | 0.02 | 0.06 | 0.08 | 0.07 | 0.14 | 0.03 | 0.07 |
PWB | 0.11 | 0.04 | 0.04 | 0.06 | 0.03 | 0.06 | 0.08 | 0.07 | 0.04 | 0.04 | 0.06 |
PTL | 0.06 | 0.35 | 0.09 | 0.06 | 0.20 | 0.01 | 0.02 | 0.02 | 0.14 | 0.03 | 0.10 |
PRN | 0.11 | 0.04 | 0.04 | 0.35 | 0.05 | 0.02 | 0.02 | 0.04 | 0.04 | 0.08 | 0.08 |
Parameter | Class | Range | Area (sq.km.) | Percent (%) | Rating | Solar Potential | Weightage |
---|---|---|---|---|---|---|---|
Global Horizontal Irradiance (GHI) (kWh/m2/year) | Baseline | 2030–2043 | 5.47 | 4.02 | 1 | Low Potential | 18 |
Favourable | 2044–2057 | 9.78 | 7.18 | 2 | Moderate Potential | ||
Excellent | 2058–2070 | 18.63 | 13.69 | 3 | Good Potential | ||
Premium | 2071–2083 | 54.59 | 40.09 | 4 | Very High Potential | ||
Optimal | 2084–2097 | 47.68 | 35.02 | 5 | Excellent Potential | ||
Diffuse Radiation (kWh/m2/year) | Moderately Diffuse | 916–921 | 39.44 | 28.97 | 1 | Low Potential | 10 |
Intermediately Diffuse | 922–927 | 49.3 | 36.21 | 2 | Moderate Potential | ||
Considerably Diffuse | 928–932 | 23.47 | 17.24 | 3 | Good Potential | ||
Highly Diffuse | 933–937 | 18.36 | 13.49 | 4 | Very High Potential | ||
Predominantly Diffuse | 938–941 | 5.58 | 4.1 | 5 | Excellent Potential | ||
Temperature (°C) | Optimal | 27.48–27.65 | 1.63 | 1.2 | 5 | Excellent Potential | 11 |
Efficient | 27.66–27.82 | 7.82 | 5.75 | 4 | Very High Potential | ||
Moderate | 27.83–27.99 | 101.15 | 74.35 | 3 | Good Potential | ||
Challenged | 28.00–28.15 | 22.6 | 16.62 | 2 | Moderate Potential | ||
Critical | 28.16–28.32 | 2.84 | 2.08 | 1 | Low Potential | ||
Relative Humidity (%) | Standard | 72.81–73.57 | 4.03 | 2.96 | 5 | Excellent Potential | 9 |
Moderate | 73.58–74.34 | 59 | 43.37 | 4 | Very High Potential | ||
Considerable | 74.35–75.11 | 33.98 | 24.98 | 3 | Good Potential | ||
Saturated | 75.12–75.88 | 16.41 | 12.06 | 2 | Moderate Potential | ||
Extreme | 75.89–76.62 | 22.61 | 16.62 | 1 | Low Potential | ||
Slope (%) | Flat | 0–3 | 72.9 | 53.55 | 5 | Excellent Potential | 11 |
Gentle | 3–8 | 58.5 | 42.97 | 4 | Very High Potential | ||
Moderate | 8–15 | 4.47 | 3.28 | 3 | Good Potential | ||
Steep | 15–25 | 0.26 | 0.19 | 2 | Moderate Potential | ||
Very Steep | >25 | 0.01 | 0.01 | 1 | Low Potential | ||
Elevation (m) | Subsea Zone | −13–−4.3 | 0.1 | 0.07 | 5 | Excellent Potential | 10 |
Coastal Zone | −4.2–4.6 | 50.15 | 36.83 | 4 | Very High Potential | ||
Lowland Zone | 4.7–13.4 | 71.18 | 52.28 | 3 | Good Potential | ||
Midland Zone | 13.5–22.2 | 14.41 | 10.58 | 2 | Moderate Potential | ||
Upland Zone | 22.2–31 | 0.32 | 0.23 | 1 | Low Potential | ||
Land Use Land Cover | Salt Pan | 1 | 23.28 | 17.1 | 5 | Excellent Potential | 7 |
Cultivated Land | 2 | 28.74 | 21.11 | 2 | Moderate Potential | ||
Barren Land | 3 | 35.83 | 26.32 | 4 | Very High Potential | ||
Urban Area | 4 | 21.68 | 15.93 | 1 | Low Potential | ||
Tree/Shrub | 5 | 22.15 | 16.27 | 3 | Good Potential | ||
Waterbodies | 6 | 4.47 | 3.28 | 1 | Low Potential | ||
Proximity to Waterbodies (m) | Immediate Proximity | 0–1423 | 70.77 | 51.98 | 5 | Excellent Potential | 6 |
Near Proximity | 1423–2846 | 42.46 | 31.18 | 4 | Very High Potential | ||
Moderate Distant | 2847–4269 | 21.15 | 15.54 | 3 | Good Potential | ||
Distant | 4270–5692 | 1.42 | 1.04 | 2 | Moderate Potential | ||
Remote | 5693–7115 | 0.36 | 0.26 | 1 | Low Potential | ||
Proximity to Transmission Line (m) | Immediate access | 0–865 | 102.76 | 75.47 | 5 | Excellent Potential | 10 |
Near Access | 866–1730 | 21.38 | 15.71 | 4 | Very High Potential | ||
Moderate Access | 1731–2595 | 8.19 | 6.02 | 3 | Good Potential | ||
Limited Access | 2596–3460 | 2.91 | 2.14 | 2 | Moderate Potential | ||
Remote Access | 3461–4326 | 0.9 | 0.66 | 1 | Low Potential | ||
Proximity to Road Network | Direct access | 0–432 | 129.39 | 95.04 | 5 | Excellent Potential | 8 |
Near Access | 433–865 | 4.24 | 3.11 | 4 | Very High Potential | ||
Moderate Access | 866–1298 | 1.63 | 1.2 | 3 | Good Potential | ||
Limited Access | 1299–1731 | 0.73 | 0.54 | 2 | Moderate Potential | ||
Remote Access | 1732–2165 | 0.16 | 0.12 | 1 | Low Potential |
Class | Area | Percentage |
---|---|---|
Low Potential | 9.74 | 7.16 |
Moderate Potential | 44.13 | 32.41 |
Good Potential | 30.34 | 22.29 |
Very High Potential | 38.33 | 28.15 |
Excellent Potential | 13.61 | 9.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grace, C.A.Z.; Soundranayagam, J.P.; Promilton, A.J.A.A.; Karuppannan, S.; Alkhuraiji, W.S.; Pitchaimani, V.S.; Nahas, F.; Youssef, Y.M. Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India. ISPRS Int. J. Geo-Inf. 2025, 14, 377. https://doi.org/10.3390/ijgi14100377
Grace CAZ, Soundranayagam JP, Promilton AJAA, Karuppannan S, Alkhuraiji WS, Pitchaimani VS, Nahas F, Youssef YM. Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India. ISPRS International Journal of Geo-Information. 2025; 14(10):377. https://doi.org/10.3390/ijgi14100377
Chicago/Turabian StyleGrace, Constan Antony Zacharias, John Prince Soundranayagam, Antony Johnson Antony Alosanai Promilton, Shankar Karuppannan, Wafa Saleh Alkhuraiji, Viswasam Stephen Pitchaimani, Faten Nahas, and Yousef M. Youssef. 2025. "Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India" ISPRS International Journal of Geo-Information 14, no. 10: 377. https://doi.org/10.3390/ijgi14100377
APA StyleGrace, C. A. Z., Soundranayagam, J. P., Promilton, A. J. A. A., Karuppannan, S., Alkhuraiji, W. S., Pitchaimani, V. S., Nahas, F., & Youssef, Y. M. (2025). Integrating Remote Sensing and Geospatial-Based Comprehensive Multi-Criteria Decision Analysis Approach for Sustainable Coastal Solar Site Selection in Southern India. ISPRS International Journal of Geo-Information, 14(10), 377. https://doi.org/10.3390/ijgi14100377