Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MapBiomas Secondary Data
2.3. Carbon Biomass Estimation Using Google Earth Engine
2.4. Correlation and Statistic Classes
3. Results
3.1. Biomass Estimation
3.2. Correlation between Estimated AGB and Vegetation Indices
3.3. Minimum, Maximum, and Average Values for the Estimated AGB in Each LULC Class
4. Discussion
4.1. Biomass Estimation
4.2. Correlation Matrix
4.3. Statistics by Each LULC Class
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanime, N.; Kaushal, R.; Tewari, S.K.; Raverkar, K.P.; Chaturvedi, S.; Chaturvedi, O.P. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For. Trees Livelihoods 2013, 22, 38–50. [Google Scholar] [CrossRef]
- Scandellari, F.; Caruso, G.; Liguori, G.; Meggio, F.; Palese, A.M.; Zanotelli, D.; Celano, G.; Gucci, R.; Inglese, P.; Pitacco, A.; et al. A survey of carbon sequestration potential of orchards and vineyards in Italy. Eur. J. Hortic. Sci. 2016, 81, 106–114. [Google Scholar] [CrossRef]
- Sil, A.; Fonseca, F.; Gonçalves, J.; Honrado, J.; Marta-Pedroso, C.; Joaquim Alonso, J.; Ramos, M.; Azevedo, J.C. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 82–104. [Google Scholar] [CrossRef]
- Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-Campen, H.; Müller, C.; Reichstein, M.; et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Chang. Biol. 2007, 13, 679–706. [Google Scholar]
- Tonucci, R.G.; Nair, P.R.; Nair, V.D.; Garcia, R.; Bernardino, F.S. Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado. J. Environ. Qual. 2011, 40, 833–841. [Google Scholar]
- Amara, E.; Adhikari, H.; Mwamodenyi, J.M.; Pellikka, P.K.E.; Heiskanen, J. Contribution of Tree Size and Species on Aboveground Biomass across Land Cover Types in the Taita Hills, Southern Kenya. Forests 2023, 14, 642. [Google Scholar] [CrossRef]
- Althoff, T.D.; Menezes, R.S.C.; de Siqueira Pinto, A.; Pareyn, F.G.C.; de Carvalho, A.L.; Martins, J.C.R.; de Carvalho, E.X.; da Silva, A.S.A.; Dutra, E.D.; de Sá Barretto Sampaio, E.V. Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agric. Ecosyst. Environ. 2018, 254, 26–34. [Google Scholar] [CrossRef]
- Adelisardou, F.; Zhao, W.; Chow, R.; Mederly, P.; Minkina, T.; Schou, J.S. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 2022, 19, 5929–5944. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; dos Santos, C.A.C.; Santos, F.A.C.; de Oliveira, G.; Santos, C.A.G.; Bezerra, U.A.; de Cunha, J.E.B.L.; da Silva, R.M. Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing. Forests 2023, 14, 828. [Google Scholar] [CrossRef]
- do Nascimento, D.M. Development of a Plant Biomass Estimation System Using Remote Sensors for the Semiarid Region of Pernambucotra. Ph.D. Thesis, Federal University of Pernambuco, Recife, Brazil, 2019. [Google Scholar]
- GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update). World Meteorological Organisation (WMO), August 2010. Available online: https://library.wmo.int/doc_num.php?explnum_id=3851 (accessed on 17 June 2023).
- Duncanson, L.; Armston, J.; Disney, M.; Avitabile, V.; Barbier, N.; Calders, K.; Carter, S.; Chave, J.; Herold, M.; MacBean, N.; et al. Aboveground Woody Biomass Product Validation Good Practices Protocol Version 10. In Good Practices for Satellite Derived Land Product Validation; Duncanson, L., Disney, M., Armston, J., Nickeson, J., Minor, D., Camacho, F., Eds.; Land Product Validation Subgroup (WGCV/CEOS): Washington, DC, USA, 2021; p. 236. [Google Scholar] [CrossRef]
- Amara, E.; Adhikari, H.; Heiskanen, J.; Siljander, M.; Munyao, M.; Omondi, P.; Pellikka, P. Aboveground Biomass Distribution in a Multi-Use Savannah Landscape in Southeastern Kenya: Impact of Land Use and Fences. Land 2020, 9, 381. [Google Scholar] [CrossRef]
- Brazil. Annual Estimates of Greenhouse Gas Emissions in Brazil, 6th ed.; Ministério da Ciência, Tecnologia e Inovações: Brasília, Brasil, 2022; pp. 1–135. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/estimativas-anuais-de-emissoes-gee (accessed on 29 May 2023).
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, R., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Brazil Ministry of Agriculture, Livestock and Supply. Sectoral Plan for Mitigation and Adaptation to Climate Change for the Consolidation of a Low-Carbon Economy in Agriculture: ABC Plan (Low Carbon Emission Agriculture)/Ministry of Agriculture, Livestock and Supply, Ministry of Agrarian Development, coordination of Civil House of the Presidency of the Republic. Brasília: MAPA/ACS; 2012; p. 173. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/plano-abc/arquivo-publicacoes-plano-abc/download.pdf (accessed on 27 June 2023).
- Balbino, L.C.; Kichel, A.N.; Bungenstab, D.J.; de Almeida, R.G. Integration Systems: Concepts, Considerations, Contributions and Challenges. In ILPF: Innovation with Integration of Crops, Livestock and Forestry; Bungenstab, D.J., de Almeida, R.G., Laura, V.A., Balbino, L.C., Ferreira, A.D., Eds.; EMBRAPA: Brasília, Brazil, 2019; pp. 32–47. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Klink, C.A.; Moreira, A.G. Past and current human occupation, and land use. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna; Oliveira, P.S., Marquis, R.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 69–88. [Google Scholar]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar]
- Araújo, M.L.S.; Sano, E.E.; Bolfe, É.L.; Santos, J.R.N.; Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar]
- Câmara, G.; Soterroni, A.; Ramos, F.; Carvalho, A.; Pedro Andrade, R.; Souza, C.; Mosnier, A.; Mant, R.; Buurman, M.; Pena, M.; et al. Modelling Land Change in Brazil: 2000–2050; INPE: São José dos Campos, Brazil; IPEA: Brasília, Brazil; IIASA: Luxembourg; UNEP-WCMC: Cambridge, UK, 2015. [CrossRef]
- de Paula Sousa Júnior, V.; Sparacino, J.; de Espindola, G.M.; Sousa de Assis, R.J. Land-Use and Land-Cover Dynamics in the Brazilian Caatinga Dry Tropical Forest. Conservation 2022, 2, 739–752. [Google Scholar] [CrossRef]
- Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual variability of vegetation sensitivity to climate in China. J. Environ. Manag. 2022, 301, 113768. [Google Scholar] [CrossRef]
- Kogan, F.; Stark, R.; Gitelson, A.; Jargalsaikhan, L.; Dugrajav, C.; Tsooj, S. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. Int. J. Remote Sens. 2004, 25, 2889–2896. [Google Scholar] [CrossRef]
- Eisfelder, C.; Kuenzer, C.; Dech, S. A review on derivation of biomass information in semi-arid regions based on remote sensing data. Earth Resour. Environ. Remote Sens. GIS Appl. 2010, 7831, 176–183. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sullamenashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Accioly, L.J.O.; Costa, T.C.E.C.; Oliveira, M.A.J.; Silva, E.A.S.; Silva, J.A.S.; Silva, A.B.; Souza, A.R. Biomass in the Caatinga forests in the Seridó Oriental (RN) and Seridó Occidental (PB) microregions. In Proceedings of the 62nd Brazilian Meeting on Management and Conservation of Soil and Water, Rio de Janeiro, Brazil, 10–15 August 2008; Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/339785/1/trab5169251.pdf (accessed on 17 June 2023).
- Castanho, A.D.A.; Coe, M.; Andrade, E.M.; Walker, W.; Baccini, A.; Campos, D.A.; Farina, M. A Close Look at Above Ground Biomass of a Large and Heterogeneous Seasonally Dry Tropical Forest—Caatinga in North East of Brazil. An. Acad. Bras. Ciênc. 2020, 92, 1. [Google Scholar] [CrossRef]
- Câmara, G.; Ramos, F.; Soterroni, A.; Cartaxo, R.; Andrade, P.; Buurman, M.; Affonso, A.; Espindo, G.; Carvalho, A.; Pena, M. Using Models to Inform Policies that Meet Multiple Objectives; Assessing the Contribution of Brazil’s Forest Code to Biodiversity Conservation; INPE: São José dos Campos, Brazil; IPEA: Rio de Janeiro, Brazil; IIASA: Laxenburg; UNEP-WCMC: Cambridge, UK, 2016. [CrossRef]
- Silva, J.M.C.; Barbosa, L.C.F.; Leal, I.R.; Tabarelli, M. The Caatinga: Understanding the Challenges. In Caatinga; Silva, J.M.C., Leal, I.R., Tabarelli, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Sparacino, J.; Argibay, D.S.; Espindola, G. Long-term (35 years) rainy and dry season characterization in semiarid Northeastern Brazil. Rev. Bras. De. Meteorol. 2021, 36, 377–391. [Google Scholar] [CrossRef]
- de Oliveira, A.P.C.; Bernard, E. The financial needs vs. the realities of in situ conservation: An analysis of federal funding for protected areas in Brazil’s Caatinga. Biotropica 2017, 49, 745–752. [Google Scholar] [CrossRef]
- de Espindola, G.M.; de Silva Figueredo, E.; Picanço Júnior, P.; dos Reis Filho, A.A. Cropland expansion as a driver of land-use change: The case of Cerrado-Caatinga transition zone in Brazil. Environ. Dev. Sustain. 2021, 23, 17146–17160. [Google Scholar] [CrossRef]
- Zomer, R.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed]
- Poudel, A.; Shrestha, H.L.; Bajracharya, R.M. Quantification of carbon stock under different land use regimes of Chitwan district, Nepal. Banko Janakari 2019, 29, 13–19. [Google Scholar] [CrossRef]
- Wang, G.; Liu, S.; Liu, T.; Fu, Z.; Yu, J.; Xue, B. Modelling aboveground biomass based on vegetation indexes: A modified approach for biomass estimation in semiarid grasslands. Int. J. Remote Sens. 2019, 40, 3835–3854. [Google Scholar] [CrossRef]
- Ren, H.; Feng, G. Are soil-adjusted vegetation indices better than soil-unadjusted vegetation indices for aboveground green biomass estimation in arid and semiarid grasslands? Grass Forage Sci. 2015, 70, 611–619. [Google Scholar] [CrossRef]
- Paloschi, R.A.; Ramos, D.M.; Ventura, D.J.; Souza, R.; Souza, E.; Morellato, L.P.C.; Nóbrega, R.L.B.; Coutinho, Í.A.C.; Verhoef, A.; Körting, T.S.; et al. Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements. Remote Sens. 2021, 13, 75. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 1987, 23, 213-IN8. [Google Scholar] [CrossRef]
- Velloso, A.; Sampaio, E.; Pareyn, F. Proposed ecoregions for the Caatinga Biome. Recife: Associação Plantas do Nordeste, Institute of Environmental Conservation. Nat. Conserv. Bras. 2002, 74, 7. [Google Scholar]
- IBGE. Demographic Census 2010. In Indicator Summary; IBGE: Rio de Janeiro, Brazil, 2013. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html?edicao=9673&t=downloads (accessed on 18 June 2023).
- De Albuquerque, U.P.; de Lima Araújo, E.; El-Deir, A.C.A.; de Lima, A.L.A.; Souto, A.; Bezerra, B.M.; Ferraz, E.M.N.; Maria Xavier Freire, E.; Sampaio, E.V.d.S.B.; Las-Casas, F.M.G. Caatinga revisited: Ecology and conservation of an important seasonal dry forest. Sci. World J. 2012, 205182. [Google Scholar] [CrossRef]
- Medeiros, R.; Andrade, J.; Ramos, D.; Moura, M.; Pérez-Marin, A.M.; dos Santos, C.A.C.; da Silva, B.B.; Cunha, J. Remote Sensing Phenology of the Brazilian Caatinga and Its Environmental Drivers. Remote Sens. 2022, 14, 2637. [Google Scholar] [CrossRef]
- MapBiomas Project—Collection [7.0] of the Annual Series of Land Cover and Land Use Maps in Brazil. Available online: https://code.earthengine.google.com/?scriptPath=users%2FMapBiomas%2Fuser-toolkit%3AMapBiomas-user-toolkit-download-lulc.js (accessed on 18 June 2023).
- IBGE. Produced Quantity and Production Value of Extractive Products, According to the Federation Unit, Its Mesoregions, Microregions and Municipalities: Table 3.18—Piauí; Brazilian Institute of Geography and Statistics (IBGE): Rio de Janeiro, Brazil, 2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados (accessed on 18 June 2023).
- IBGE. Municipal Agricultural Production: Planted Area, Harvested Area, Produced Quantity, Average Yield and Production Value of Products from Temporary Crops, According to the Federation Unit, Its Mesoregions, Microregions and Municipalities: Table 3.18—Piauí; Brazilian Institute of Geography and Statistics (IBGE): Rio de Janeiro, Brazil, 2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?=&t=resultados (accessed on 18 June 2023).
- IBGE. Municipal Livestock Research: Number of Herds, by Type of Herd, According to the Federation Unit, Its Mesoregions, Microregions and Municipalities (Table 2.18—Piauí); Brazilian Institute of Geography and Statistics (IBGE): Rio de Janeiro, Brazil, 2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9107-producao-da-pecuaria-municipal.html?=&t=resultados (accessed on 18 June 2023).
- MapBiomas. Annual Report on Defirestation in Brazil (RAD-2022). São Paulo, Brazil. 2023, p. 125. Available online: https://storage.googleapis.com/alerta-public/dashboard/rad/2022/RAD_2022.pdf (accessed on 18 June 2023).
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Comparison of narrow-band and broad-band vegetation indexes for canopy chlorophyll density estimation in sugar beet. In Precision Agriculture ‘07; Precision agriculture; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 189–196. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of graz-ing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS 3.28 Geographic Information System API Documentation. Open Source Geospatial Foundation Project. Electronic Document. 2023. Available online: https://docs.qgis.org/3.28/en/docs/user_manual/index.html (accessed on 27 June 2023).
- Fang, L.; He, N.; Li, S.; Plaza, A.J.; Plaza, J. A New Spatial–Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3534–3546. [Google Scholar] [CrossRef]
- Dieleman, W.I.; Vicca, S.; Dijkstra, F.A.; Hagedorn, F.; Hovenden, M.J.; Larsen, K.S.; Morgan, J.A.; Volder, A.; Beier, C.; Dukes, J.S.; et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Chang. Biol. 2012, 18, 2681–2693. [Google Scholar] [CrossRef] [PubMed]
- Garten, C.T., Jr.; Wullschleger, S.D.; Classen, A.T. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 2011, 35, 214–226. [Google Scholar] [CrossRef]
- Chen, Q.; Laurin, G.V.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160, 134–143. [Google Scholar] [CrossRef]
- Montesano, P.M.; Rosette, J.; Sun, G.; North, P.; Nelson, R.F.; Dubayah, R.O.; Ranson, K.J.; Kharuk, V. The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens. Environment 2015, 158, 95–109. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Gao, S. Uncertainty of city-based urban heat island intensity across 1112 global cities: Background reference and cloud coverage. Remote Sens. Environ. 2022, 271, 112898. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhang, J.; Wang, Y.; Ma, R.; Liu, B.; Jiang, M. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycles 2022, 36, e2022GB007396. [Google Scholar] [CrossRef]
- de Araújo Filho, J.A. Manipulation of the Woody Vegetation of the Caatinga for Pastoral Purposes; Embrapa Caprinos e Ovinos-Circular Technique (INFOTECA-E) Sobral: Ceará, Brazil, 1992; pp. 1–18. [Google Scholar]
- de Sousa, M.S.R. Development, Traditional Knowledge and Human Rights: Traditional Populations and Quilombolas in the State of Piauí and the Defense of the Socio-Environmental Environment; EDUFPI: Teresina, Brazil, 2015; pp. 1–168. [Google Scholar]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [CrossRef]
- Lumbierres, M.; Méndez, P.F.; Bustamante, J.; Soriguer, R.; Santamaría, L. Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology. Remote Sens. 2017, 9, 392. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, F.; Dong, S.; Zhao, H.; Hou, X.; Wu, X. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI. Sci. Rep. 2017, 7, 4182. [Google Scholar] [CrossRef]
- Rahman, A.F.; Gamon, J.A.; Fuentes, D.A.; Roberts, D.; Prentiss, D.; Qiu, H. Modeling CO2 flux of boreal forests using narrow-band indices from AVIRIS imagery. In AVIRIS Workshop; NASA: Washington, DC, USA; EUA: Geneva, Switzerland, 2020. [Google Scholar]
- da Silva, J.G.M.; Quintanilha, J.A.; Grohmann, C.H.; da Costa, D.R.; da Silva, J.M.S.; da Costa, J.D.M. Plant biomass distribution and carbon sequestration in the Pirajibu River sub-basin in the municipality of Sorocaba/SP. Rev. Bras. De. Geogr. Física 2023, 16, 1647–1656. Available online: https://periodicos.ufpe.br/revistas/rbgfe/issue/view/3502 (accessed on 27 June 2023). [CrossRef]
- Amaral, L.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinove, L. Comparison of crop canopy reflectance sensors used to identify sugar canesugar cane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
Vegetation Index (VI) | Equation |
---|---|
MSAVI Modified Soil Adjusted Vegetation Index | |
CVI Chlorophyll Vegetation Index | |
GLI Green Leaf Index | |
TVI Triangular Vegetation Index | 0.5 [120 (Nir − Green) − 2.5 (Red − Green)] |
Class/Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
Forest Plantation | 17.125 | 19.163 | 16.475 | 19.397 | 14.481 | 16.731 | 6.160 | 3.549 | 12.814 | 8.763 |
Pasture | 0.491 | 0.072 | 0.001 | 0.059 | 0.007 | 0.109 | 0.131 | 0.235 | 0.015 | 0.581 |
Sugarcane | 10.304 | 11.002 | 11.802 | 9.538 | 10.332 | 11.884 | 10.126 | 11.700 | 11.430 | 10.770 |
Mosaic of Uses | 0.006 | 1.054 | 5.270 | 5.828 | 3.522 | 1.354 | 4.714 | 4.478 | 1.885 | 0.679 |
Soybean | 8.731 | 7.168 | 4.663 | 6.384 | 3.973 | 6.510 | 4.130 | 5.070 | 6.877 | 4.456 |
Other Temporary Crops | 4.428 | 4.842 | 7.678 | 6.384 | 5.066 | 6.485 | 5.330 | 6.500 | 5.361 | 8.337 |
Class/Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
Forest Plantation | 80.870 | 90.266 | 80.605 | 88.880 | 80.502 | 93.857 | 103.387 | 105.585 | 111.828 | 101.552 |
Pasture | 418.621 | 123.609 | 107.757 | 108.187 | 115.871 | 109.411 | 217.967 | 130.737 | 197.711 | 122.180 |
Sugarcane | 62.986 | 72.913 | 53.972 | 73.188 | 69.977 | 70.006 | 101.807 | 74.485 | 79.028 | 67.918 |
Mosaic of Uses | 79.647 | 96.987 | 72.967 | 123.175 | 91.711 | 79.508 | 88.819 | 85.507 | 104.905 | 84.941 |
Soybean | 88.692 | 85.940 | 121.060 | 89.856 | 115.517 | 103.836 | 126.882 | 113.292 | 114.313 | 87.608 |
Other Temporary Crops | 77.229 | 87.137 | 119.012 | 109.988 | 95.616 | 83.531 | 95.094 | 90.283 | 96.127 | 76.388 |
Class/Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
Forest Plantation | 42.151 | 49.204 | 42.875 | 42.786 | 37.777 | 56.265 | 46.375 | 56.197 | 44.070 | 43.425 |
Pasture | 22.563 | 25.353 | 19.220 | 23.078 | 22.672 | 23.421 | 20.956 | 25.440 | 25.088 | 22.855 |
Sugar Cane | 26.268 | 24.631 | 20.342 | 31.470 | 26.333 | 33.537 | 25.143 | 33.347 | 35.475 | 38.189 |
Mosaic of Uses | 24.196 | 25.087 | 22.144 | 23.699 | 23.642 | 23.671 | 23.168 | 23.900 | 24.881 | 22.936 |
Soybean | 30.173 | 30.240 | 27.573 | 27.838 | 25.882 | 26.552 | 25.823 | 26.535 | 26.059 | 24.629 |
Other Temporary Crops | 23.889 | 28.120 | 21.603 | 22.870 | 24.612 | 26.225 | 29.245 | 34.113 | 32.955 | 30.903 |
Forest Formation/Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
Minimum | 1.234 | 0.143 | 0.725 | 0.375 | 0.308 | 0.527 | 0.451 | 0.874 | 0.301 | 0.634 |
Maximum | 137.085 | 127.000 | 121.100 | 122.795 | 116.780 | 114.881 | 276.963 | 169.960 | 203.311 | 123.300 |
Average | 50.568 | 60.836 | 41.520 | 52.570 | 53.630 | 59.149 | 56.893 | 64.472 | 63.975 | 60.771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa Júnior, V.d.P.; Sparacino, J.; Espindola, G.M.d.; Assis, R.J.S.d. Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS Int. J. Geo-Inf. 2023, 12, 354. https://doi.org/10.3390/ijgi12090354
Sousa Júnior VdP, Sparacino J, Espindola GMd, Assis RJSd. Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS International Journal of Geo-Information. 2023; 12(9):354. https://doi.org/10.3390/ijgi12090354
Chicago/Turabian StyleSousa Júnior, Vicente de Paula, Javier Sparacino, Giovana Mira de Espindola, and Raimundo Jucier Sousa de Assis. 2023. "Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest" ISPRS International Journal of Geo-Information 12, no. 9: 354. https://doi.org/10.3390/ijgi12090354
APA StyleSousa Júnior, V. d. P., Sparacino, J., Espindola, G. M. d., & Assis, R. J. S. d. (2023). Carbon Biomass Estimation Using Vegetation Indices in Agriculture–Pasture Mosaics in the Brazilian Caatinga Dry Tropical Forest. ISPRS International Journal of Geo-Information, 12(9), 354. https://doi.org/10.3390/ijgi12090354