Interactive Thematic Map as a Means of Documenting and Visualizing Information about Cultural Heritage Objects
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Obtaining Information about Cultural Heritage Objects
3.2. Visualization of Information about Cultural Heritage Objects—Map
3.3. Visualization of Information about Cultural Heritage Objects—3D Model
- Container–specifies the target in which the model is displayed. When creating a variable, we must assign it a virtual location, which can be, for example, a <div> tag with the class = scene. We assign it to a variable as follows (Figure 5):
- Scene–allows specifying what and where to render from Three.js. Here you place objects, lights, and cameras. The scene is declared in the code as follows (Figure 6).
- Camera–allows setting the projection in which the model will be seen. Three.js distinguishes between two types of projections, perspective and orthographic. In this methodological approach, the authors chose PerspectiveCamera because it mimics the way the human eye sees. The code implementation looks like this (Figure 7).
- Renderer–allows using WebGL to render a scene with a 3D model. The code implementation looks like this (Figure 8).
3.4. Documentation of Information about Cultural Heritage Objects
4. Results
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eker, R.; Elvanoglu, N.; Ucar, Z.; Bilici, E.; Aydın, A. 3D modelling of a historic windmill: Ppk-aided terrestrial photogrammetry vs. smartphone app. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 787–792. [Google Scholar] [CrossRef]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Seguí, A.E.; Haddad, N.; Akasheh, T. Integration of Laser Scanning and Imagery for Photorealistic 3D Architectural Documentation. In Laser Scanning, Theory and Applications; Wang, C.-C., Ed.; InTech: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, P. Geodesy and photogrammetry in archaeology. Advanced documentation methods used by the Kuwaiti-Polish Archaeological Expedition. In Stories Told Around the Fountain. Papers Offered to Piotr Bieliński on His 70th Birthday; Pieńkowska, A.A., Szeląg, D., Zych, I., Eds.; Wydawnictwo Uniwersytetu Warszawskiego: Warsaw, Poland, 2019; pp. 759–776. [Google Scholar] [CrossRef]
- Bedford, J.; Pearson, T.; Thomason, B. Traversing the Past: The Total Station Theodolite in Archaeological Landscape Survey; Heritage England: Swindon, UK, 2016. [Google Scholar]
- Bradley, M. Archaeological survey in a digital world. In Digital Archaeology: Bridging Method and Theory; Evans, T.L., Daly, P.T., Eds.; Routledge: London, UK, 2006; pp. 29–42. [Google Scholar]
- Blanco-Pons, S.; Carrión-Ruiz, B.; Lerma, J.L.; Villaverde, V. Design and implementation of an augmented reality application for rock art visualization in Cova dels Cavalls (Spain). J. Cult. Herit. 2019, 39, 177–185. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal monitoring of the morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef] [Green Version]
- Wężyk, P. Teledetekcja i fotogrametria obszarów leśnych. In Geomatyka w Lasach Państwowych Część I. Podstawy; Centrum Informacyjne Lasów Państwowych: Warsaw, Poland, 2010; pp. 277–357. [Google Scholar]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Smaczyński, M.; Medyńska-Gulij, B. Low aerial imagery–an assessment of georeferencing errors and the potential for use in environmental inventory. Geod. Cartogr. 2017, 66, 89–104. [Google Scholar] [CrossRef]
- Eugster, H.; Nebiker, S. Uav-based augmented monitoring—Realtime georeferencing and integration of video imagery with virtual globes. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1229–1236. Available online: https://www.isprs.org/proceedings/XXXVII/congress/1_pdf/209.pdf (accessed on 19 April 2023).
- Wang, J.; Garratt, M.; Lambert, A.; Wang, J.J.; Han, S.; Sinclair, D. Integration of Gps/Ins/vision sensors to navigate un-manned aerial vehicles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 963–969. Available online: https://www.isprs.org/proceedings/XXXVII/congress/1_pdf/166.pdf (accessed on 19 April 2023).
- Barazzetti, L.; Remondino, F.; Scaioni, M.; Brumana, R. Fully automatic UAV image-based sensor orientation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 6. Available online: https://www.isprs.org/proceedings/XXXVIII/part1/12/12_02_Paper_75.pdf (accessed on 19 April 2023).
- Anai, T.; Sasaki, T.; Osaragi, K.; Yamada, M.; Otomo, F.; Otani, H. Automatic exterior orientation procedure for low-cost uav photogrammetry using video image tracking technique and Gps information. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, XXXIX-B7, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Lemmens, M. Airborne Lidar Sensors. GIM International. 2007. Available online: https://community.esri.com/ccqpr47374/attachments/ccqpr47374/gis-blog/507/1/LiDAR-Sensors.pdf (accessed on 19 April 2023).
- Haddad, N.; Akasheh, T. Documentation of Archaeological Sites and Monuments: Ancient Theatres in Jerash. In Proceedings of the CIPA 2005 XX International Symposium, Torino, Italy, 26 September–1 October 2005; Available online: https://www.cipaheritagedocumentation.org/wp-content/uploads/2018/12/Haddad-Akasheh-Documentation-of-archaeological-sites-and-monuments_ancient-theatres-in-Jerash.pdf (accessed on 19 April 2023).
- Haddad, N. Towards Creating a Dialogue between the Specialized Technician and non Technician Users of the 3D Laser Scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, XXXVI, 350–355. Available online: https://www.isprs.org/proceedings/xxxvi/5-c53/papers/FP069.pdf (accessed on 19 April 2023).
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multiimage 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Themistocleous, K. Model reconstruction for 3d vizualization of cultural heritage sites using open data from social media: The case study of Soli, Cyprus. J. Archaeol. Sci. Rep. 2016, 14, 774–781. [Google Scholar] [CrossRef]
- Smaczyński, M.; Horbiński, T. Creating a 3D Model of the Existing Historical Topographic Object Based on Low-Level Aerial Imagery. KN J. Cartogr. Geogr. Inf. 2021, 71, 33–43. [Google Scholar] [CrossRef]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
- Diara, F. HBIM Open Source: A Review. ISPRS Int. J. Geo-Inf. 2022, 11, 472. [Google Scholar] [CrossRef]
- Jordan-Palomar, I.; Tzortzopoulos, P.; García-Valldecabres, J.; Pellicer, E. Protocol to Manage Heritage-Building Interventions Using Heritage Building Information Modelling (HBIM). Sustainability 2018, 10, 908. [Google Scholar] [CrossRef] [Green Version]
- Garagnani, S.; Gaucci, A.; Govi, E. ArchaeoBIM: Dallo scavo al Building Information Modeling di una struttura sepolta. Il caso del tempio tuscanico di Uni a Marzabotto. Archeol. Calcol. 2016, 27, 251–270. Available online: http://www.archcalc.cnr.it/indice/PDF27/13_Garagnani_et_al.pdf (accessed on 19 April 2023).
- Gonzalez-Vares, I. Conservación de Bienes Culturales [Conservation of Cultural Items]; Manuales Arte Cátedra: Madrid, Spain, 2006; Chapters 10–11. [Google Scholar]
- Forster, A.; Kayan, B. Maintenance for historic buildings: A current perspective. Struct. Surv. 2009, 27, 210–229. [Google Scholar] [CrossRef]
- Migilinskas, D.V.; Popov, V.; Juocevicius, L. The benefits, obstacles and problems of practical BIM implementation. Procedia Eng. 2013, 57, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Kempton, J. Can lean thinking apply to the repair and refurbishment of properties in the registered social landlord sector? Struct. Surv. 2006, 24, 201–211. [Google Scholar] [CrossRef]
- Perng, Y.H.; Hsia, Y.P.; Lu, H.J. A Service Quality Improvement Dynamic Decision Support System for Refurbishment Contractors. Total Qual. Manag. Bus. Excell. 2007, 18, 731–749. [Google Scholar] [CrossRef]
- Ferwati, M.S.; Al-Hammadi, M.; Marthya, K.L.; El-Menshawy, S.; Althbah, H.A. Multi-Layered Documentation of Heritage Villages: The Case of Tinbak, Qatar. Designs 2021, 5, 38. [Google Scholar] [CrossRef]
- Sanchez-Calvillo, A.; Alonso-Guzman, E.M.; Solís-Sánchez, A.; Martinez-Molina, W.; Navarro-Ezquerra, A.; Gonzalez-Sanchez, B.; Arreola-Sanchez, M.; Sandoval-Castro, K. Use of Audiovisual Methods and Documentary Film for the Preservation and Reappraisal of the Vernacular Architectural Heritage of the State of Michoacan, Mexico. Heritage 2023, 6, 2101–2125. [Google Scholar] [CrossRef]
- Lorek, D.; Horbiński, T. Interactive Web-Map of the European Freeway Junction A1/A4 Development with the Use of Archival Cartographic Sources. ISPRS Int. J. Geo-Inf. 2020, 9, 438. [Google Scholar] [CrossRef]
- Challis, K. Airborne laser altimetry in alluviated landscapes. Archaeol. Prospect. 2006, 13, 103–127. [Google Scholar] [CrossRef]
- Crutchley, S. Light detection and ranging (lidar) in the Witham valley, Lincolnshire: An assessment of new remote sensing techniques. Archaeol. Prospect. 2006, 13, 251–257. [Google Scholar] [CrossRef]
- Bofinger, J.; Kurz, S.; Schmidt, S. Ancient maps–modern data sets: Different investigative techniques in the landscape of the Early Iron Age princely hill fort Heuneburg, Baden-Württemberg. From Space to Place. BAR Int. Ser. 2006, 1568, 87. [Google Scholar]
- Bewley, R.H.; Crutchley, S.P.; Shell, C.A. New light on an ancient landscape: Lidar survey in the Stonehenge World Heritage Site. Antiquity 2005, 79, 636–647. [Google Scholar] [CrossRef]
- Devereux, B.J.; Amable, G.S.; Crow, P.; Cliff, A.D. The potential of airborne lidar for detection of archaeological features under woodland canopies. Antiquity 2005, 79, 648–660. [Google Scholar] [CrossRef]
- Doneus, M.; Briese, C. Digital terrain modelling for archaeological interpretation within forested areas using fullwaveform laserscanning. In Proceedings of the 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, Nicosia, Cyprus, 30 October–4 November 2006; pp. 155–162. [Google Scholar] [CrossRef]
- Sittler, B.; Weinacker, H.; Gultlinger, M.; Koupaliantz, L. The potential of Lidar in assessing elements of cultural heritage hidden under forests. In New Developments and Challenges in Remote Sensing; Bochenek, Z., Ed.; Millpress: Rotterdam, The Netherlands, 2006; pp. 539–548. [Google Scholar]
- Lütjens, M.; Kersten, T.P.; Dorschel, B.; Tschirschwitz, F. Virtual Reality in Cartography: Immersive 3D Visualization of the Arctic Clyde Inlet (Canada) Using Digital Elevation Models and Bathymetric Data. Multimodal Technol. Interact. 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, A.P.; Kersten, T.P. The Imperial Cathedral in Königslutter (Germany) as an Immersive Experience in Virtual Reality with Integrated 360° Panoramic Photography. Appl. Sci. 2020, 10, 1517. [Google Scholar] [CrossRef] [Green Version]
- Büyüksalih, G.; Kan, T.; Özkan, G.E.; Meriç, M.; Isın, L.; Kersten, T.P. Preserving the Knowledge of the Past Through Virtual Visits: From 3D Laser Scanning to Virtual Reality Visualisation at the Istanbul Çatalca İnceğiz Caves. PFG 2020, 88, 133–146. [Google Scholar] [CrossRef]
- Medyńska-Gulij, B.; Zagata, K. Experts and Gamers on Immersion into Reconstructed Strongholds. ISPRS Int. J. Geo-Inf. 2020, 9, 655. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; Martínez-Carridondo, P.; Yero-Paneque, L.; Agüera-Vega, F. Uav photogrammetry and HBIM for the virtual reconstruction of heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Smaczyński, M.; Lorek, D.; Zagata, K.; Horbiński, T. Cultural Heritage with the Use of Low-Level Aerial Survey Techniques, Space Modelling and Multimedia Reconstruction of the Topographic Landscape (Example of a Windmill in Western Poland). KN J. Cartogr. Geogr. Inf. 2022, 72, 279–291. [Google Scholar] [CrossRef]
- Lorek, D. Przestrzeń Przedindustrialna XIX-Wiecznej Wielkopolski w Ujęciu Kartografi Multimedialnej; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2021. [Google Scholar]
- Leaflet. Available online: https://leafletjs.com/reference.html (accessed on 19 April 2023).
- Edler, D.; Vetter, M. The simplicity of modern audiovisual web cartography: An example with the open-source Javascript Library leaflet.js. Kn J. Cartogr. Geogr. Inf. 2019, 69, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Horbiński, T.; Lorek, D. The use of Leaflet and GeoJSON files for creating the interactive web map of the preindustrial state of the natural environment. J. Spat. Sci. 2022, 67, 61–77. [Google Scholar] [CrossRef]
- Stanton, M.; Hartley, T.; Loizides, F.; Worrallo, A. Dual-Mode User Interfaces for Web Based Interactive 3D Virtual Environments Using Three.js. In Human-Computer Interaction—INTERACT 2017; Bernhaupt, R., Dalvi, G., Joshi, A.K., Balkrishan, D., O’Neill, J., Winckler, M., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzderland, 2017; Volume 10516. [Google Scholar] [CrossRef] [Green Version]
- Available online: html#manual/en/introduction/Creating-a-scene (accessed on 19 April 2023).
- Korpi, J.A.; Haybatollahi, M.; Ahonen-Rainio, P. Identification of partially occluded map symbols. Cartogr. Perspect. 2014, 76, 19–32. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.C.; Muñoz, F.J.; Planas, J.; Pons, X. Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 130–140. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAVbased earth topography reconstructions based on struc- turefrom-motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Herrero-Tejedor, T.R.; Arques Soler, F.; Lopez-Cuervo Medina, S.; der la Cabrera, M.R.O.; Martın Romero, J.L. Documenting a cultural landscape using point-cloud 3d models obtained with geomatic integration techniques. The case of the El Encın atomic garden, Madrid (Spain). PLoS ONE 2020, 15, 0235169. [Google Scholar] [CrossRef]
- Derrough, J. Instant Interactive Map Designs with Leaflet JavaScript Library How-To; Packt Publishing: Birmingham, UK, 2013. [Google Scholar]
- Farkas, G. Practical GIS; Packt Publishing: Birmingham, UK, 2017. [Google Scholar]
- Faustryjak, D.; Majchrowicz, M.; Jackowska-Strumiłło, L. Application of the layered model management system in an interactive map of university campus. Image Process. Commun. 2017, 22, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.G.; Sack, C.M.; Roth, R.E. Time Series Proportional Symbol Maps with Leaflet and jQuery. Cartogr. Perspect. 2013, 76, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Roth, E.R.; Donohue, R.G.; Sack, C.M.; Wallace, T.R.; Buckingham, T.M.A. A Process for Keeping Pace with Evolving Web Mapping Technologies. Cartogr. Perspect. 2014, 78, 25–52. [Google Scholar] [CrossRef] [Green Version]
- Benesha, J.; Lee, J.; James, D.A.; White, B. Are You for Real? Engineering a Virtual Lab for the Sports Sciences Using Wearables and IoT. Proceedings 2020, 49, 110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horbiński, T.; Smaczyński, M. Interactive Thematic Map as a Means of Documenting and Visualizing Information about Cultural Heritage Objects. ISPRS Int. J. Geo-Inf. 2023, 12, 257. https://doi.org/10.3390/ijgi12070257
Horbiński T, Smaczyński M. Interactive Thematic Map as a Means of Documenting and Visualizing Information about Cultural Heritage Objects. ISPRS International Journal of Geo-Information. 2023; 12(7):257. https://doi.org/10.3390/ijgi12070257
Chicago/Turabian StyleHorbiński, Tymoteusz, and Maciej Smaczyński. 2023. "Interactive Thematic Map as a Means of Documenting and Visualizing Information about Cultural Heritage Objects" ISPRS International Journal of Geo-Information 12, no. 7: 257. https://doi.org/10.3390/ijgi12070257