Private Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data
Abstract
:1. Introduction
2. Methods and Data
2.1. Data and Study Site
2.2. Data Processing
2.2.1. ORS Centrality Simulation
2.2.2. Calculation of the AADTV
- : population size within the Berlin bounding box/within the city limits of Berlin;
- : raster value of the population distribution raster layer extracted from the GHSL for the entire Berlin bounding box/for the city of Berlin;
- : total number of raster cells of the population density raster for the entire Berlin bounding box/for the city of Berlin;
- f: extrapolation factor.
- : annual average daily traffic volume of the given road segment;
- : centrality (cumulative number of trips passing through the given road segment);
- : population size within the Berlin bounding box.
2.2.3. Estimation of the GHG Emissions from Motorized Vehicles
3. Results
4. Discussion
4.1. Annual Average Daily Traffic Volume (AADTV)
4.2. Emission Factors
4.3. Emissions of Privately Owned Motorized Vehicles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AADTV | Annual Average Daily Traffic Volume |
COPERT | Calculation of Air Pollutant Emissions from Road Transport |
GHG | Greenhouse Gas |
GHSL | Global Human Settlement Layer |
HBEFA | Handbook Emission Factors for Road Transport |
MOP | German Mobility Panel |
ORS | OpenRouteService |
OSM | OpenStreetMap |
POI | Point of Interest |
SM2T | SocialMedia2Traffic |
TREMOD | Transport Emission Model |
Appendix A
Key | Value | Key | Value |
---|---|---|---|
amenity | college | building | kindergarten |
building | college | amenity | university |
amenity | school | building | university |
building | school | amenity | library |
amenity | kindergarten | building | library |
Key | Value | Key | Value |
---|---|---|---|
building | stadium | amenity | gambling |
amenity | theatre | building | grandstand |
amenity | cinema | historic | * |
amenity | community_centre | landuse | allotments |
building | sports_hall | amenity | bbq |
landuse | winter_sports | amenity | bicycle_rental |
leisure | * | amenity | brothel |
sport | * | man_made | cross |
tourism | * | amenity | dive_centre |
amenity | arts_centre | amenity | internet_cafe |
amenity | boat_rental | amenity | kneipp_water_cure |
amenity | casino | building | pavilion |
building | riding_hall |
Key | Value |
---|---|
shop | * |
building | retail |
landuse | retail |
Key | Value | Key | Value |
---|---|---|---|
amenity | conference_centre | amenity | embassy |
amenity | bus_station | amenity | events_venue |
amenity | clinic | amenity | fire_station |
amenity | college | building | fire_station |
building | commercial | amenity | fuel |
landuse | commercial | building | military |
building | construction | landuse | military |
landuse | construction | building | mosque |
amenity | ferry_terminal | amenity | nightclub |
amenity | marketplace | amenity | pharmacy |
building | office | amenity | place_of_worship |
amenity | school | amenity | police |
office | * | landuse | quarry |
amenity | biergarten | building | religious |
building | cathedral | landuse | religious |
amenity | childcare | amenity | restaurant |
building | civic | amenity | social_centre |
amenity | doctors | amenity | social_facility |
amenity | fast_food | amenity | studio |
amenity | food_court | building | synagogue |
building | government | building | temple |
amenity | hospital | amenity | veterinary |
building | hospital | building | warehouse |
building | hotel | amenity | bureau_de_change |
building | industrial | building | conservatory |
landuse | industrial | building | cowshed |
amenity | kindergarten | amenity | crematorium |
amenity | parking | amenity | driving_school |
building | parking | building | farm_auxiliary |
landuse | port | amenity | funeral_hall |
amenity | post_depot | amenity | grave_yard |
amenity | post_office | building | greenhouse |
building | public | amenity | ice_cream |
public_transport | station | building | kiosk |
building | supermarket | amenity | language_school |
amenity | townhall | amenity | library |
building | train_station | emergency | lifeguard |
amenity | university | amenity | monastery |
craft | * | building | monastery |
healthcare | * | amenity | music_school |
emergency | ambulance_station | man_made | observatory |
amenity | animal_boarding | amenity | planetarium |
amenity | animal_breeding | power | plant |
amenity | animal_shelter | building | presbytery |
amenity | bank | amenity | prison |
building | bar | amenity | pub |
amenity | cafe | amenity | ranger_station |
amenity | car_rental | man_made | recycling |
amenity | car_wash | amenity | refugee_site |
building | chapel | building | shrine |
building | church | amenity | vehicle_inspection |
amenity | courthouse | amenity | waste_transfer_station |
amenity | dentist | man_made | wastewater_plant |
landuse | depot |
References
- Umweltbundesamt. Klimaschutz im Verkehr. 2022. Available online: https://www.umweltbundesamt.de/themen/verkehr-laerm/klimaschutz-im-verkehr#rolle (accessed on 23 January 2023).
- Santos, G. Road transport and CO2 emissions: What are the challenges? Transp. Policy 2017, 59, 71–74. [Google Scholar] [CrossRef]
- Sach, T.; Beyschlag, L.; Bruhin, A.; Kerres, P.; Lotz, B.; Oppermann, L. Klimaschutz in Zahlen: Fakten, Trends und Impulse Deutscher Klimapolitik. 2021. Available online: https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutz_zahlen_2021_bf.pdf (accessed on 18 October 2022).
- Alam, M.S.; Duffy, P.; Hyde, B.; McNabola, A. Improvement in the estimation and back-extrapolation of CO2 emissions from the Irish road transport sector using a bottom-up data modelling approach. Transp. Res. Part Transp. Environ. 2017, 56, 18–32. [Google Scholar] [CrossRef]
- Keuken, M.; Jonkers, S.; Verhagen, H.; Perez, L.; Trüeb, S.; Okkerse, W.J.; Liu, J.; Pan, X.; Zheng, L.; Wang, H.; et al. Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi’an and Suzhou. Atmos. Environ. 2014, 98, 434–441. [Google Scholar] [CrossRef]
- Li, Y.; Lv, C.; Yang, N.; Liu, H.; Liu, Z. A study of high temporal-spatial resolution greenhouse gas emissions inventory for on-road vehicles based on traffic speed-flow model: A case of Beijing. J. Clean. Prod. 2020, 277, 122419. [Google Scholar] [CrossRef]
- Mueller, K.; Lauvaux, T.; Gurney, K.; Roest, G.; Ghosh, S.; Gourdji, S.; Karion, A.; DeCola, P.; Whetstone, J. An emerging GHG estimation approach can help cities achieve their climate and sustainability goals. Environ. Res. Lett. 2021, 16, 084003. [Google Scholar] [CrossRef]
- Pla, M.A.M.; Lorenzo-Sáez, E.; Luzuriaga, J.E.; Prats, S.M.; Moreno-Pérez, J.A.; Urchueguía, J.F.; Oliver-Villanueva, J.V.; Lemus, L.G. From traffic data to GHG emissions: A novel bottom-up methodology and its application to Valencia city. Sustain. Cities Soc. 2021, 66, 102643. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, F.; Peng, P. A high-resolution emissions inventory and its spatiotemporal pattern variations for heavy-duty diesel trucks in Beijing, China. J. Clean. Prod. 2020, 250, 119445. [Google Scholar] [CrossRef]
- Sitati, C.N.; Oludhe, C.; Oyake, L.; Mbandi, A.M. A street-level assessment of greenhouse gas emissions associated with traffic congestion in the city of Nairobi, Kenya. Clean Air J. 2022, 32, 1–12. [Google Scholar] [CrossRef]
- Wen, Y.; Wu, R.; Zhou, Z.; Zhang, S.; Yang, S.; Wallington, T.J.; Shen, W.; Tan, Q.; Deng, Y.; Wu, Y. A data-driven method of traffic emissions mapping with land use random forest models. Appl. Energy 2022, 305, 117916. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Liu, H.; Huang, R.; Un, P.; Zhou, Y.; Fu, L.; Hao, J. Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China. Energy 2014, 69, 247–257. [Google Scholar] [CrossRef]
- Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen. Verkehrsmengen DTV 2019. 2019. Available online: https://www.berlin.de/umweltatlas/verkehr-laerm/verkehrsmengen/2019/zusammenfassung/ (accessed on 16 March 2023).
- Authority, G.L. London Atmospheric Emissions Inventory (LAEI) 2019. 2022. Available online: https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--laei--2019 (accessed on 16 March 2023).
- Zia, M.; Fürle, J.; Ludwig, C.; Lautenbach, S.; Gumbrich, S.; Zipf, A. SocialMedia2Traffic: Derivation of Traffic Information from Social Media Data. ISPRS Int. J. Geo-Inf. 2022, 11, 482. [Google Scholar] [CrossRef]
- Grujić, N.; Brdar, S.; Osinga, S.; Hofstede, G.J.; Athanasiadis, I.N.; Pljakić, M.; Obrenović, N.; Govedarica, M.; Crnojević, V. Combining Telecom Data with Heterogeneous Data Sources for Traffic and Emission Assessments—An Agent-Based Approach. ISPRS Int. J. Geo-Inf. 2022, 11, 366. [Google Scholar] [CrossRef]
- Henry, E.; Bonnetain, L.; Furno, A.; El Faouzi, N.E.; Zimeo, E. Spatio-temporal correlations of betweenness centrality and traffic metrics. In Proceedings of the 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Cracow, Poland, 5–7 June 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, P.; Cui, Y. A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China. Phys. Stat. Mech. Its Appl. 2017, 478, 143–157. [Google Scholar] [CrossRef]
- Pazoky, S.H.; Pahlavani, P. Developing a multi-classifier system to classify OSM tags based on centrality parameters. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102595. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Gkatzoflias, D.; Kouridis, C.; Samaras, Z. COPERT: A European road transport emission inventory model. In Information Technologies in Environmental Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 491–504. [Google Scholar] [CrossRef]
- Matthias, V.; Bieser, J.; Mocanu, T.; Pregger, T.; Quante, M.; Ramacher, M.O.P.; Seum, S.; Winkler, C. Modelling road transport emissions in Germany—Current day situation and scenarios for 2040. Transp. Res. Part Transp. Environ. 2020, 87, 102536. [Google Scholar] [CrossRef]
- Amt für Statistik Berlin-Brandenburg. Statistischer Bericht AV3-j/16. Flächenerhebung nach Art der Tatsächlichen Nutzung in Berlin 2016. Available online: https://download.statistik-berlin-brandenburg.de/4cbc45e2f201ec6d/7b47b10b8343/SB_A05-03-00_2016j01_BE.pdf (accessed on 16 March 2023).
- Amt für Statistik Berlin-Brandenburg. Bevölkerungsstand. Available online: https://www.statistik-berlin-brandenburg.de/bevoelkerung/demografie/bevoelkerungsstand (accessed on 16 March 2023).
- Ecke, L.; Chlond, B.; Magdolen, M.; Vortisch, P. Deutsches Mobilitätspanel (MOP)—Wissenschaftliche Begleitung und Auswertungen Bericht 2019/2020: Alltagsmobilität und Fahrleistung. Available online: https://mobilitaetspanel.ifv.kit.edu/downloads/Bericht_MOP_19_20.pdf (accessed on 16 March 2023).
- Schiavina, M.; Freire, S.; MacManus, K. GHS-POP R2022A—GHS Population Grid Multitemporal (1975–2030); Technical Report; European Commission, Joint Research Centre (JRC): Brussels, Belgium, 2022. [Google Scholar] [CrossRef]
- Kraftfahrt-Bundesamt. Bestand an Kraftfahrzeugen und Kraftfahrzeuganhängern nach Bundesländern, Fahrzeugklassen und ausgewählten Merkmalen, 1. Januar 2020. 2021. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/FahrzeugklassenAufbauarten/2020/2020_b_tabellen.html?nn=3524712&fromStatistic=3524712&yearFilter=2020&fromStatistic=3524 (accessed on 16 March 2023).
- Link, G.; Krüger, C.; Rösler, C.; Bunzel, A.; Nagel, A.; Sommer, B. Klimaschutz in Kommunen. Praxisleitfaden. 3. aktual. u. erw. Aufl. 2018. Available online: https://repository.difu.de/jspui/handle/difu/248422 (accessed on 16 March 2023).
- Keller, M.; Hausberger, S.; Matzer, C.; Wüthrich, P.; Notter, B. HBEFA Version 3.3.; Technical Report; MK Consulting GmbH: Bern, Switzerland, 2017; Available online: https://www.hbefa.net/e/documents/HBEFA33_Documentation_20170425.pdf (accessed on 16 March 2023).
- Geofabrik GmbH. Berlin. 2022. Available online: https://download.geofabrik.de/europe/germany/berlin.html (accessed on 16 March 2023).
- Raifer, M.; Troilo, R.; Kowatsch, F.; Auer, M.; Loos, L.; Marx, S.; Przybill, K.; Fendrich, S.; Mocnik, F.B.; Zipf, A. OSHDB: A framework for spatio-temporal analysis of OpenStreetMap history data. Open Geospat. Data, Softw. Stand. 2019, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Winkler, C.; Mocanu, T. Methodology and application of a German national passenger transport model for future transport scenarios. In Proceedings of the 45th European Transport Conference, Barcelona, Spain, 4–6 October 2017. [Google Scholar]
- Yang, C.; Gidofalvi, G. Fast map matching, an algorithm integrating hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci. 2018, 32, 547–570. [Google Scholar] [CrossRef]
- Mohamad, D.; Sinha, K.C.; Kuczek, T.; Scholer, C.F. Annual average daily traffic prediction model for county roads. Transp. Res. Rec. 1998, 1617, 69–77. [Google Scholar] [CrossRef]
- McDonald, B.C.; McBride, Z.C.; Martin, E.W.; Harley, R.A. High-resolution mapping of motor vehicle carbon dioxide emissions. J. Geophys. Res. Atmos. 2014, 119, 5283–5298. [Google Scholar] [CrossRef]
- Senatsverwaltung für Umwelt, V.u.K. Mobilität der Stadt. Berliner Verkehr in Zahlen 2017. 2017. Available online: https://www.berlin.de/sen/uvk/_assets/verkehr/verkehrsdaten/zahlen-und-fakten/mobilitaet-der-stadt-berliner-verkehr-in-zahlen-2017/mobilitaet_dt_komplett.pdf (accessed on 16 March 2023).
- Ermes, B.; Belz, J.; Brand, T.; Eggs, J.; Follmer, R.; Gruschwitz, D.; Kellerhoff, J.; Pirsig, T.; Roggendorf, M.; Schwehr, M. Mobilität in Deutschland—MiD Regionalbericht Hauptstadtregion Berlin-Brandenburg. 2020. Available online: https://mil.brandenburg.de/sixcms/media.php/9/20200703_MiD2017_infas_BerlinBrandenburg_Regionalbericht_MiD5431_20200629_final.pdf (accessed on 16 March 2023).
- Ritter, N.; Vance, C. Do fewer people mean fewer cars? Population decline and car ownership in Germany. Transp. Res. Part Policy Pract. 2013, 50, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Ecke, L.; Magdolen, M.; Chlond, B.; Vortisch, P. Tracing the effects of the Covid-19 pandemic on car usage in Germany-an analysis of the German Mobility Panel. Eur. J. Transp. Infrastruct. Res. 2021, 21, 64–81. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Gaudet, B.; Gurney, K.R.; Huang, J.; O’Keefe, D.; et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Human Action Function [15] | MOP Statistics | ||
---|---|---|---|
Theme | Weight (%) * | Trip Group by Purpose ** | Traffic Volume (%) * |
1. Work | 24.8 | Work, official or business back home […] | 14.2 10.6 |
2. Education | 2.4 | Education back home […] | 1.4 1.0 |
3. Shopping | 49.7 | Procurement and service Other private errands back home […] | 19.9 8.5 21.3 |
4. Recreation | 22.9 | Recreation back home […] | 13.1 9.8 |
Road Types | CO2 Equivalents per Vehicle Kilometer (g) |
---|---|
motorways | 189 |
roads outside of built-up areas | 148 |
roads inside of built-up areas | 210 |
Human Action Function | CO2 Equivalents per Year (kt) |
---|---|
1. Work | 1787.69 |
2. Education | 182.45 |
3. Shopping | 3646.96 |
4. Recreation | 1717.03 |
Total | 7334.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulrich, V.; Brückner, J.; Schultz, M.; Vardag, S.N.; Ludwig, C.; Fürle, J.; Zia, M.; Lautenbach, S.; Zipf, A. Private Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data. ISPRS Int. J. Geo-Inf. 2023, 12, 138. https://doi.org/10.3390/ijgi12040138
Ulrich V, Brückner J, Schultz M, Vardag SN, Ludwig C, Fürle J, Zia M, Lautenbach S, Zipf A. Private Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data. ISPRS International Journal of Geo-Information. 2023; 12(4):138. https://doi.org/10.3390/ijgi12040138
Chicago/Turabian StyleUlrich, Veit, Josephine Brückner, Michael Schultz, Sanam Noreen Vardag, Christina Ludwig, Johannes Fürle, Mohammed Zia, Sven Lautenbach, and Alexander Zipf. 2023. "Private Vehicles Greenhouse Gas Emission Estimation at Street Level for Berlin Based on Open Data" ISPRS International Journal of Geo-Information 12, no. 4: 138. https://doi.org/10.3390/ijgi12040138