Population Space–Time Patterns Analysis and Anthropic Pressure Assessment of the Insubric Lakes Using User-Generated Geodata
Abstract
:1. Introduction
2. Data and Case Study Definition
2.1. User-Generated Geodata from Facebook
2.2. Study Areas and Period
2.3. Facebook Data Representativeness
3. Data Processing and Analysis
4. Results and Discussion
4.1. Facebook Users’ Population Patterns Exploration
4.2. Anthropic Pressure Assessment
5. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Canada Government of New Brunswick. The Importance of Lakes. Available online: https://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/water/content/lakes/importance.html (accessed on 24 November 2021).
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2014; Volume 2, Chapter 1. [Google Scholar]
- Dokulil, M.T. Environmental Impacts of Tourism on Lakes. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2014; Volume 2, Chapter 7. [Google Scholar]
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication of Lakes. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2014; Volume 2, Chapter 5. [Google Scholar]
- Sun, Q.; Liu, Z. Impact of tourism activities on water pollution in the West Lake Basin (Hangzhou, China). Open Geosci. 2020, 12, 1302–1308. [Google Scholar] [CrossRef]
- Markogianni, V.; Mentzafou, A.; Dimitriou, E. Assessing the impacts of human activities and soil erosion on the water quality of Plastira mountainous Mediterranean Lake, Greece. Environ. Earth Sci. 2016, 75, 915. [Google Scholar] [CrossRef]
- Guzzella, L.M.; Novati, S.; Casatta, N.; Roscioli, C.; Valsecchi, L.; Binelli, A.; Parolini, M.; Solcà, N.; Bettinetti, R.; Manca, M.; et al. Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): Contamination in sediments and biota. Hydrobiologia 2018, 824, 271–290. [Google Scholar] [CrossRef]
- Valsecchi, S.; Babut, M.; Mazzoni, M.; Pascariello, S.; Ferrario, C.; De Felice, B.; Bettinetti, R.; Veyrand, B.; Marchand, P.; Polesello, S. Per- and Polyfluoroalkyl Substances (PFAS) in Fish from European Lakes: Current Contamination Status, Sources, and Perspectives for Monitoring. Environ. Toxicol. Chem. 2021, 40, 658–676. [Google Scholar] [CrossRef] [PubMed]
- Marziali, L.; Guzzella, L.; Salerno, F.; Marchetto, A.; Valsecchi, L.; Tasselli, S.; Roscioli, C.; Schiavon, A. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): Relation with anthropogenic factors. Environ. Sci. Pollut. Res. 2021, 28, 38193–38208. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Sadilek, A.; Zhang, Q.; Marchal, N.A.; Tuli, G.; Cohn, E.L.; Hswen, Y.; Perkins, T.A.; Smith, D.L.; Reiner, R.C.; et al. Mapping global variation in human mobility. Nat. Hum. Behav. 2020, 4, 800–810. [Google Scholar] [CrossRef]
- Wong, E.; Law, R.; Li, G. Reviewing Geotagging Research in Tourism. In Information and Communication Technologies in Tourism 2017; Schegg, R., Stangl, B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Teles da Mota, V.; Pickering, C. Using social media to assess nature-based tourism: Current research and future trends. IEEE Commun. Mag. 2018, 56, 52–59. [Google Scholar] [CrossRef]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing—UrbCop’13, Chicago, IL, USA, 11 August 2013. [Google Scholar] [CrossRef]
- Manca, M.; Boratto, L.; Morell Roman, V.; Martori i Gallissà, O.; Kaltenbrunner, A. Using social media to characterize urban mobility patterns: State-of-the-art survey and case-study. Online Soc. Netw. Media 2017, 1, 56–69. [Google Scholar] [CrossRef]
- Comito, C.; Falcone, D.; Talia, D. Mining human mobility patterns from social geo-tagged data. Pervasive Mob. Comput. 2016, 33, 91–107. [Google Scholar] [CrossRef]
- Jiang, B.; Ma, D.; Yin, J.; Sandberg, M. Spatial Distribution of City Tweets and Their Densities: City Tweets and their Densities. Geogr. Anal. 2016, 48, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimpour, Z.; Wan, W.; Velázquez García, J.L.; Cervantes, O.; Hou, L. Analyzing Social-Geographic Human Mobility Patterns Using Large-Scale Social Media Data. ISPRS Int. J. Geo-Inf. 2020, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Yoshida, M.; Toriumi, F.; Ohashi, H. Extraction of Tourist Destinations and Comparative Analysis of Preferences Between Foreign Tourists and Domestic Tourists on the Basis of Geotagged Social Media Data. ISPRS Int. J. Geo-Inf. 2018, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, M.A.; Cannata, M.; Rogora, M. SIMILE, a geospatial enabler of the monitoring of Sustainable Development Goal 6 (Ensure availability and sustainability of water for all). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W20, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Facebook. Facebook Data for Good. Available online: https://dataforgood.fb.com (accessed on 4 November 2021).
- Shepherd, H.E.; Atherden, F.S.; Theophilus Chan, H.M.; Loveridge, A.; Tatem, A.J. Domestic and International Mobility Trends in the United Kingdom during the COVID-19 Pandemic: An Analysis of Facebook Data. Preprint Report. Available online: http://medrxiv.org/lookup/doi/10.1101/2021.08.03.21261545 (accessed on 5 November 2021).
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.; Das, A.; Bera, U.K. Uncertain demand estimation with optimization of time and cost using Facebook disaster map in emergency relief operation. Appl. Soft Comput. 2020, 87, 105992. [Google Scholar] [CrossRef]
- Jia, S.; Kim, S.H.; Nghiem, S.V.; Doherty, P.; Kafatos, M.C. Patterns of population displacement during mega-fires in California detected using Facebook Disaster Maps. Environ. Res. Lett. 2020, 15, 74029. [Google Scholar] [CrossRef]
- Oxoli, D.; Brovelli, M.A. Citizen-generated geodata for natural parks use analysis: Insights from Facebook in the Insubria region. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B4-2021, 195–199. [Google Scholar] [CrossRef]
- Maas, P.; Gros, A.; McGorman, L.; Iyer, S.; Park, W.; Nayak, C.; Dow, A.P. Facebook Disaster Maps: Aggregate Insights for Crisis Response and Recovery. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; p. 3173. [Google Scholar] [CrossRef]
- Zurbarán, M.; Wightman, P.; Brovelli, M.; Oxoli, D.; Iliffe, M.; Jimeno, M.; Salazar, A. NRand-K: Minimizing the impact of location obfuscation in spatial analysis. Trans. GIS 2018, 22, 1257–1274. [Google Scholar] [CrossRef]
- Heo, S.; Lim, C.C.; Bell, M.L. Relationships between local green space and human mobility patterns during COVID-19 for Maryland and California, USA. Sustainability 2020, 12, 9401. [Google Scholar] [CrossRef]
- Schwartz, J. Bing Maps Tile System. Available online: https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system (accessed on 4 November 2021).
- Facebook. Facebook Data for Good Portal. Available online: https://partners.facebook.com/data_for_good (accessed on 10 December 2021).
- Osservatorio Online dell’Economia Varesina. Flussi Turistici nel Periodo 2016–2020. Available online: https://www.osserva-varese.it/turismo/flussi-turistici/varese-andamento-di-arrivi-e-presenze-trimestrale (accessed on 29 December 2021).
- WorldPop. Population Counts. Available online: https://www.worldpop.org/geodata/listing?id=78 (accessed on 10 November 2021).
- Unpingco, J. Python Programming for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Williamson, D.F.; Parker, R.A.; Kendrick, J.S. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 1989, 110, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Swiss Federal Statistical Office. Cross-Border Commuters in Switzerland 1996–2020. Number of Cross-Border Commuters Has Grown Steadily since the Turn of the Millennium. Available online: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.assetdetail.17205542.html (accessed on 27 December 2021).
- Swiss Federal Statistical Office. Labour Market Indicators for 2021. Comments on Findings for the Period 2015–2021. Available online: https://www.bfs.admin.ch/bfs/en/home/news/whats-new.gnpdetail.2021-0447.html (accessed on 27 December 2021).
Lake | 2 km Buffer | 5 km Buffer |
---|---|---|
Maggiore | 501.8 | 1033.9 |
Como | 420.8 | 864.9 |
Lugano | 214.7 | 476.8 |
Lake | Buffer 2 km | Buffer 5 km |
---|---|---|
Maggiore | 4.32% | 4.19% |
Como | 3.83% | 4.04% |
Lugano | 4.57% | 4.52% |
whole region | 4.21% | 4.23% |
Mean | Median | (Mean–Median)/Median | |||||||
---|---|---|---|---|---|---|---|---|---|
Maggiore | Como | Lugano | Maggiore | Como | Lugano | Maggiore | Como | Lugano | |
May 2020 | 10,166 | 8500 | 7188 | 10,065 | 8376 | 7300 | 1.00% | 1.48% | −1.53% |
June 2020 | 10,616 | 8885 | 7023 | 10,392 | 8686 | 7207 | 2.15% | 2.29% | —2.55% |
July 2020 | 11,226 | 9019 | 7149 | 11,091 | 8799 | 7291 | 1.21% | 2.50% | −1.95% |
August 2020 | 11,233 | 8740 | 6782 | 11,064 | 8663 | 6659 | 1.53% | 0.89% | 1.85% |
September 2020 | 10,839 | 9025 | 7351 | 10,629 | 8859 | 7509 | 1.98% | 1.87% | —2.10% |
October 2020 | 10,433 | 8780 | 7305 | 10,427 | 8751 | 7462 | 0.06% | 0.33% | −2.10% |
November 2020 | 9884 | 8240 | 7119 | 9852 | 8175 | 7237 | 0.32% | 0.78% | −1.63% |
December 2020 | 9654 | 8061 | 6792 | 9662 | 8109 | 6786 | −0.07% | −0.59% | 0.09% |
January 2021 | 9433 | 7896 | 6654 | 9438 | 7905 | 6841 | −0.06% | −0.12% | −2.73% |
February 2021 | 9663 | 8243 | 6778 | 9602 | 8156 | 6904 | 0.63% | 1.06% | −1.82% |
March 2021 | 9734 | 8029 | 7043 | 9726 | 8042 | 7159 | 0.08% | −0.16% | −1.62% |
April 2021 | 10,168 | 8160 | 7291 | 10,115 | 8173 | 7425 | 0.52% | −0.17% | −1.81% |
May 2021 | 10,546 | 8624 | 7197 | 10,379 | 8541 | 7404 | 1.61% | 0.97% | −2.80% |
June 2021 | 10,442 | 8632 | 6776 | 10,239 | 8449 | 6872 | 1.99% | 2.17% | −1.39% |
July 2021 | 10,585 | 8691 | 6599 | 10,479 | 8631 | 6734 | 1.01% | 0.70% | −2.01% |
August 2021 | 10,681 | 8242 | 6313 | 10,680 | 8180 | 6243 | 0.01% | 0.76% | 1.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavassori, A.; Oxoli, D.; Brovelli, M.A. Population Space–Time Patterns Analysis and Anthropic Pressure Assessment of the Insubric Lakes Using User-Generated Geodata. ISPRS Int. J. Geo-Inf. 2022, 11, 206. https://doi.org/10.3390/ijgi11030206
Vavassori A, Oxoli D, Brovelli MA. Population Space–Time Patterns Analysis and Anthropic Pressure Assessment of the Insubric Lakes Using User-Generated Geodata. ISPRS International Journal of Geo-Information. 2022; 11(3):206. https://doi.org/10.3390/ijgi11030206
Chicago/Turabian StyleVavassori, Alberto, Daniele Oxoli, and Maria Antonia Brovelli. 2022. "Population Space–Time Patterns Analysis and Anthropic Pressure Assessment of the Insubric Lakes Using User-Generated Geodata" ISPRS International Journal of Geo-Information 11, no. 3: 206. https://doi.org/10.3390/ijgi11030206
APA StyleVavassori, A., Oxoli, D., & Brovelli, M. A. (2022). Population Space–Time Patterns Analysis and Anthropic Pressure Assessment of the Insubric Lakes Using User-Generated Geodata. ISPRS International Journal of Geo-Information, 11(3), 206. https://doi.org/10.3390/ijgi11030206